
A Framework for Asynchronous Circuit Modeling and
Verification in ACL2

Cuong Chau
ckcuong@cs.utexas.edu

Department of Computer Science

The University of Texas at Austin

October 20, 2017

Cuong Chau (UT Austin) Asynchronous Circuit Verification October 20, 2017 1 / 41

mailto:ckcuong@cs.utexas.edu

Outline

1 Introduction

2 The DE System

3 Modeling and Verification Approach

4 Case Studies
Circuits with No Feedback Loops
Circuits with Feedback Loops

5 Future Work and Conclusions

Cuong Chau (UT Austin) Asynchronous Circuit Verification October 20, 2017 2 / 41

Outline

1 Introduction

2 The DE System

3 Modeling and Verification Approach

4 Case Studies
Circuits with No Feedback Loops
Circuits with Feedback Loops

5 Future Work and Conclusions

Cuong Chau (UT Austin) Asynchronous Circuit Verification October 20, 2017 3 / 41

Introduction

Synchronous circuits (or clock-driven circuits): changes in the state of
storage elements are synchronized by a global clock signal.

Asynchronous circuits (or self-timed circuits): there is no global clock
signal distributed in asynchronous circuits. The communications between
state-holding elements are performed via local communication protocols.

Why asynchronous?

Low power consumption,
High operating speed,
Elimination of clock skew problems,
Better composability and modularity for large systems,
...

Cuong Chau (UT Austin) Asynchronous Circuit Verification October 20, 2017 4 / 41

Introduction

Synchronous circuits (or clock-driven circuits): changes in the state of
storage elements are synchronized by a global clock signal.

Asynchronous circuits (or self-timed circuits): there is no global clock
signal distributed in asynchronous circuits. The communications between
state-holding elements are performed via local communication protocols.

Why asynchronous?

Low power consumption,
High operating speed,
Elimination of clock skew problems,
Better composability and modularity for large systems,
...

Cuong Chau (UT Austin) Asynchronous Circuit Verification October 20, 2017 4 / 41

Introduction

Synchronous circuits (or clock-driven circuits): changes in the state of
storage elements are synchronized by a global clock signal.

Asynchronous circuits (or self-timed circuits): there is no global clock
signal distributed in asynchronous circuits. The communications between
state-holding elements are performed via local communication protocols.

Why asynchronous?

Low power consumption,
High operating speed,
Elimination of clock skew problems,
Better composability and modularity for large systems,
...

Cuong Chau (UT Austin) Asynchronous Circuit Verification October 20, 2017 4 / 41

Introduction

Our goal: developing scalable methods for reasoning about the functional
correctness of self-timed systems using ACL2.

We use the DE system [Hunt:2000], which is built in ACL2, to specify
and verify self-timed circuit designs.
Developing a hierarchical verification approach to support scalability.
Exploring strategies for reasoning with non-deterministic circuit
behavior.

Cuong Chau (UT Austin) Asynchronous Circuit Verification October 20, 2017 5 / 41

Introduction

Our goal: developing scalable methods for reasoning about the functional
correctness of self-timed systems using ACL2.

We use the DE system [Hunt:2000], which is built in ACL2, to specify
and verify self-timed circuit designs.

Developing a hierarchical verification approach to support scalability.
Exploring strategies for reasoning with non-deterministic circuit
behavior.

Cuong Chau (UT Austin) Asynchronous Circuit Verification October 20, 2017 5 / 41

Introduction

Our goal: developing scalable methods for reasoning about the functional
correctness of self-timed systems using ACL2.

We use the DE system [Hunt:2000], which is built in ACL2, to specify
and verify self-timed circuit designs.
Developing a hierarchical verification approach to support scalability.

Exploring strategies for reasoning with non-deterministic circuit
behavior.

Cuong Chau (UT Austin) Asynchronous Circuit Verification October 20, 2017 5 / 41

Introduction

Our goal: developing scalable methods for reasoning about the functional
correctness of self-timed systems using ACL2.

We use the DE system [Hunt:2000], which is built in ACL2, to specify
and verify self-timed circuit designs.
Developing a hierarchical verification approach to support scalability.
Exploring strategies for reasoning with non-deterministic circuit
behavior.

Cuong Chau (UT Austin) Asynchronous Circuit Verification October 20, 2017 5 / 41

Outline

1 Introduction

2 The DE System

3 Modeling and Verification Approach

4 Case Studies
Circuits with No Feedback Loops
Circuits with Feedback Loops

5 Future Work and Conclusions

Cuong Chau (UT Austin) Asynchronous Circuit Verification October 20, 2017 6 / 41

The DE System
DE is a formal occurrence-oriented hardware description language
developed in ACL2 for describing Mealy machines [Hunt:2000].

The DE system supports hierarchical verification:

Each time a module is specified, there are two lemmas need be
proven: a value lemma specifying the module’s outputs and a state
lemma specifying the module’s next state.
If a module doesn’t have an internal state (purely combinational),
only the value lemma need be proven.
These lemmas are used to prove the correctness of yet larger modules
containing these submodules, without the need to dig into any
details about the submodules.
This approach has been demonstrated its scalability to large systems,
as shown on contemporary x86 designs at Centaur
Technology [Slobodova et al.:2011].

Cuong Chau (UT Austin) Asynchronous Circuit Verification October 20, 2017 7 / 41

The DE System
DE is a formal occurrence-oriented hardware description language
developed in ACL2 for describing Mealy machines [Hunt:2000].

The DE system supports hierarchical verification:

Each time a module is specified, there are two lemmas need be
proven: a value lemma specifying the module’s outputs and a state
lemma specifying the module’s next state.

If a module doesn’t have an internal state (purely combinational),
only the value lemma need be proven.
These lemmas are used to prove the correctness of yet larger modules
containing these submodules, without the need to dig into any
details about the submodules.
This approach has been demonstrated its scalability to large systems,
as shown on contemporary x86 designs at Centaur
Technology [Slobodova et al.:2011].

Cuong Chau (UT Austin) Asynchronous Circuit Verification October 20, 2017 7 / 41

The DE System
DE is a formal occurrence-oriented hardware description language
developed in ACL2 for describing Mealy machines [Hunt:2000].

The DE system supports hierarchical verification:

Each time a module is specified, there are two lemmas need be
proven: a value lemma specifying the module’s outputs and a state
lemma specifying the module’s next state.
If a module doesn’t have an internal state (purely combinational),
only the value lemma need be proven.

These lemmas are used to prove the correctness of yet larger modules
containing these submodules, without the need to dig into any
details about the submodules.
This approach has been demonstrated its scalability to large systems,
as shown on contemporary x86 designs at Centaur
Technology [Slobodova et al.:2011].

Cuong Chau (UT Austin) Asynchronous Circuit Verification October 20, 2017 7 / 41

The DE System
DE is a formal occurrence-oriented hardware description language
developed in ACL2 for describing Mealy machines [Hunt:2000].

The DE system supports hierarchical verification:

Each time a module is specified, there are two lemmas need be
proven: a value lemma specifying the module’s outputs and a state
lemma specifying the module’s next state.
If a module doesn’t have an internal state (purely combinational),
only the value lemma need be proven.
These lemmas are used to prove the correctness of yet larger modules
containing these submodules, without the need to dig into any
details about the submodules.

This approach has been demonstrated its scalability to large systems,
as shown on contemporary x86 designs at Centaur
Technology [Slobodova et al.:2011].

Cuong Chau (UT Austin) Asynchronous Circuit Verification October 20, 2017 7 / 41

The DE System
DE is a formal occurrence-oriented hardware description language
developed in ACL2 for describing Mealy machines [Hunt:2000].

The DE system supports hierarchical verification:

Each time a module is specified, there are two lemmas need be
proven: a value lemma specifying the module’s outputs and a state
lemma specifying the module’s next state.
If a module doesn’t have an internal state (purely combinational),
only the value lemma need be proven.
These lemmas are used to prove the correctness of yet larger modules
containing these submodules, without the need to dig into any
details about the submodules.
This approach has been demonstrated its scalability to large systems,
as shown on contemporary x86 designs at Centaur
Technology [Slobodova et al.:2011].

Cuong Chau (UT Austin) Asynchronous Circuit Verification October 20, 2017 7 / 41

Outline

1 Introduction

2 The DE System

3 Modeling and Verification Approach

4 Case Studies
Circuits with No Feedback Loops
Circuits with Feedback Loops

5 Future Work and Conclusions

Cuong Chau (UT Austin) Asynchronous Circuit Verification October 20, 2017 8 / 41

Modeling

No global clock signal

⇒ Adding local signaling to state-holding devices

Local communication protocols

⇒ Modeling the link-joint model introduced by Roncken et al., a
universal communication model for various self-timed circuit
families [Roncken et al.:2015]

Non-deterministic behavior due to variable delays in wires and gates

⇒ Employing an oracle, which we call a collection of go signals.
These signals are part of the input.

Cuong Chau (UT Austin) Asynchronous Circuit Verification October 20, 2017 9 / 41

Modeling

No global clock signal
⇒ Adding local signaling to state-holding devices
Local communication protocols

⇒ Modeling the link-joint model introduced by Roncken et al., a
universal communication model for various self-timed circuit
families [Roncken et al.:2015]

Non-deterministic behavior due to variable delays in wires and gates

⇒ Employing an oracle, which we call a collection of go signals.
These signals are part of the input.

Cuong Chau (UT Austin) Asynchronous Circuit Verification October 20, 2017 9 / 41

Modeling

No global clock signal
⇒ Adding local signaling to state-holding devices
Local communication protocols
⇒ Modeling the link-joint model introduced by Roncken et al., a
universal communication model for various self-timed circuit
families [Roncken et al.:2015]
Non-deterministic behavior due to variable delays in wires and gates

⇒ Employing an oracle, which we call a collection of go signals.
These signals are part of the input.

Cuong Chau (UT Austin) Asynchronous Circuit Verification October 20, 2017 9 / 41

Modeling

No global clock signal
⇒ Adding local signaling to state-holding devices
Local communication protocols
⇒ Modeling the link-joint model introduced by Roncken et al., a
universal communication model for various self-timed circuit
families [Roncken et al.:2015]
Non-deterministic behavior due to variable delays in wires and gates
⇒ Employing an oracle, which we call a collection of go signals.
These signals are part of the input.

Cuong Chau (UT Austin) Asynchronous Circuit Verification October 20, 2017 9 / 41

The Link-Joint Model

We model self-timed systems as finite state machines (FSMs) representing
networks of communication links.

Links communicate with each other locally via handshake components,
which are called joints, using the link-joint model.

Links are communication channels in which data and full/empty
states are stored.
Joints are handshake components that implement flow control and
data operations.

Joints are the meeting points for links to coordinate states and
exchange data.

Cuong Chau (UT Austin) Asynchronous Circuit Verification October 20, 2017 10 / 41

The Link-Joint Model

We model self-timed systems as finite state machines (FSMs) representing
networks of communication links.

Links communicate with each other locally via handshake components,
which are called joints, using the link-joint model.

Links are communication channels in which data and full/empty
states are stored.
Joints are handshake components that implement flow control and
data operations.

Joints are the meeting points for links to coordinate states and
exchange data.

Cuong Chau (UT Austin) Asynchronous Circuit Verification October 20, 2017 10 / 41

The Link-Joint Model

We model self-timed systems as finite state machines (FSMs) representing
networks of communication links.

Links communicate with each other locally via handshake components,
which are called joints, using the link-joint model.

Links are communication channels in which data and full/empty
states are stored.
Joints are handshake components that implement flow control and
data operations.

Joints are the meeting points for links to coordinate states and
exchange data.

Cuong Chau (UT Austin) Asynchronous Circuit Verification October 20, 2017 10 / 41

The Link-Joint Model

D0

S0. F D /

fullin

Comb. Logic

firedrain

D1

S1. F D /

fill

fullout

JointLink Link

L0 L1

0. F D / 0. F D /

D0

0

1. F D /

0

1 0

1

D1

0. F D / 1. F D /

GO
A joint can have several input and output links connected to it.
A joint can have multiple (guarded) mutually exclusive actions.
Necessary conditions for a joint-action to fire: all input and output links
of that action are full and empty, respectively.

Cuong Chau (UT Austin) Asynchronous Circuit Verification October 20, 2017 11 / 41

The Link-Joint Model

D0

S0. F D /

fullin

Comb. Logic

firedrain

D1

S1. F D /

fill

fullout

JointLink Link

L0 L1

0. F D / 0. F D /

D0

0

1. F D /

0

1 0

1

D1

0. F D / 1. F D /

GO

A joint can have several input and output links connected to it.
A joint can have multiple (guarded) mutually exclusive actions.
Necessary conditions for a joint-action to fire: all input and output links
of that action are full and empty, respectively.

Cuong Chau (UT Austin) Asynchronous Circuit Verification October 20, 2017 11 / 41

The Link-Joint Model

D0

S0. F D /

fullin

Comb. Logic

firedrain

D1

S1. F D /

fill

fullout

JointLink Link

L0 L1

0. F D / 0. F D /

D0

00

0 0

0

1. F D /

0

1 0

1

D1

0. F D / 1. F D /

GO

A joint can have several input and output links connected to it.
A joint can have multiple (guarded) mutually exclusive actions.
Necessary conditions for a joint-action to fire: all input and output links
of that action are full and empty, respectively.

Cuong Chau (UT Austin) Asynchronous Circuit Verification October 20, 2017 11 / 41

The Link-Joint Model

D0

S0. F D /

fullin

Comb. Logic

firedrain

D1

S1. F D /

fill

fullout

JointLink Link

L0 L1

0. F D / 0. F D /

D0

0

0 0

0

D0

1

1. F D /

0

1 0

1

D1

0. F D / 1. F D /

GO

A joint can have several input and output links connected to it.
A joint can have multiple (guarded) mutually exclusive actions.
Necessary conditions for a joint-action to fire: all input and output links
of that action are full and empty, respectively.

Cuong Chau (UT Austin) Asynchronous Circuit Verification October 20, 2017 11 / 41

The Link-Joint Model

D0

S0. F D /

fullin

Comb. Logic

firedrain

D1

S1. F D /

fill

fullout

JointLink Link

L0 L1

0. F D / 0. F D /

D0

0

1. F D /

0

1 0

1

D1

0. F D / 1. F D /

GO

A joint can have several input and output links connected to it.
A joint can have multiple (guarded) mutually exclusive actions.
Necessary conditions for a joint-action to fire: all input and output links
of that action are full and empty, respectively.

Cuong Chau (UT Austin) Asynchronous Circuit Verification October 20, 2017 11 / 41

The Link-Joint Model

D0

S0. F D /

fullin

Comb. Logic

firedrain

D1

S1. F D /

fill

fullout

JointLink Link

L0 L1

0. F D / 0. F D /

D0

0

1. F D /

0

1 0

1

D1

0. F D / 1. F D /

GO
A joint can have several input and output links connected to it.
A joint can have multiple (guarded) mutually exclusive actions.
Necessary conditions for a joint-action to fire: all input and output links
of that action are full and empty, respectively.

Cuong Chau (UT Austin) Asynchronous Circuit Verification October 20, 2017 11 / 41

The Link-Joint Model

fullin0...
fullinm

...

GO

fullout0...
fulloutn

...

drain0 ...
drainm

fill0...
filln

Comb. Logic
Din0...
Dinm

Dout0...
Doutn

When a joint-action fires, three tasks will be executed in parallel:
transfer data computed from the input links to the output links,
fill the output links, make them full,
drain the input links, make them empty.

Cuong Chau (UT Austin) Asynchronous Circuit Verification October 20, 2017 12 / 41

Verification

Our framework applies a hierarchical verification approach to formalizing
single transitions of circuit behavior (simulated by se and de functions).

The output and next state of a module are formalized using the
formalized outputs and next states of submodules, without delving
into details about the submodules.
Self-timed modules can be abstracted as “complex” links or
“complex” joints.

Cuong Chau (UT Austin) Asynchronous Circuit Verification October 20, 2017 13 / 41

Self-Timed Modules

Ci

A

B

+

Co

S

A complex link: an adder

L0 L1

A complex joint: a queue Q2 of two links

Cuong Chau (UT Austin) Asynchronous Circuit Verification October 20, 2017 14 / 41

Verification

Compositional reasoning:
Functional properties of self-timed systems may involve multi-step
executions that are quite burdensome to establish directly.
Decompose the executions into smaller steps in such a way that
sub-properties after executing each of these smaller steps can be
carried out much easier.
The desired properties are then established by simply composing these
sub-properties.

Induction:
We use induction to prove properties of systems over time, for
instance, the relationship between input and output sequences.
We also apply induction to establishing loop invariants of iterative
circuits, i.e., circuits with feedback loops.

Cuong Chau (UT Austin) Asynchronous Circuit Verification October 20, 2017 15 / 41

Verification

Compositional reasoning:
Functional properties of self-timed systems may involve multi-step
executions that are quite burdensome to establish directly.
Decompose the executions into smaller steps in such a way that
sub-properties after executing each of these smaller steps can be
carried out much easier.
The desired properties are then established by simply composing these
sub-properties.

Induction:
We use induction to prove properties of systems over time, for
instance, the relationship between input and output sequences.
We also apply induction to establishing loop invariants of iterative
circuits, i.e., circuits with feedback loops.

Cuong Chau (UT Austin) Asynchronous Circuit Verification October 20, 2017 15 / 41

Outline

1 Introduction

2 The DE System

3 Modeling and Verification Approach

4 Case Studies
Circuits with No Feedback Loops
Circuits with Feedback Loops

5 Future Work and Conclusions

Cuong Chau (UT Austin) Asynchronous Circuit Verification October 20, 2017 16 / 41

Outline

1 Introduction

2 The DE System

3 Modeling and Verification Approach

4 Case Studies
Circuits with No Feedback Loops
Circuits with Feedback Loops

5 Future Work and Conclusions

Cuong Chau (UT Austin) Asynchronous Circuit Verification October 20, 2017 17 / 41

Example 1

Q3

in

L0 L1 L2

out

For self-timed circuits with no feedback loops, we verify their functional
correctness in terms of the relationship between their input and output
sequences.

Let in-act denote the fire signal from the AND gate in the control logic of
joint in, out-act denote the fire signal from the AND gate in the control
logic of joint out.

Module Q3 will accept a new input if the in-act signal is high. In this
case, we call this input valid. We define a (valid) input sequence as a
sequence of valid inputs.

Similarly, we define a (valid) output sequence as a sequence of valid
outputs. Q3 will report a valid output when the out-act signal is high.

Cuong Chau (UT Austin) Asynchronous Circuit Verification October 20, 2017 18 / 41

Example 1

Q3

in

L0 L1 L2

out

For self-timed circuits with no feedback loops, we verify their functional
correctness in terms of the relationship between their input and output
sequences.

Let in-act denote the fire signal from the AND gate in the control logic of
joint in, out-act denote the fire signal from the AND gate in the control
logic of joint out.

Module Q3 will accept a new input if the in-act signal is high. In this
case, we call this input valid. We define a (valid) input sequence as a
sequence of valid inputs.

Similarly, we define a (valid) output sequence as a sequence of valid
outputs. Q3 will report a valid output when the out-act signal is high.

Cuong Chau (UT Austin) Asynchronous Circuit Verification October 20, 2017 18 / 41

Example 1

Q3

in

L0 L1 L2

out

For self-timed circuits with no feedback loops, we verify their functional
correctness in terms of the relationship between their input and output
sequences.

Let in-act denote the fire signal from the AND gate in the control logic of
joint in, out-act denote the fire signal from the AND gate in the control
logic of joint out.

Module Q3 will accept a new input if the in-act signal is high. In this
case, we call this input valid. We define a (valid) input sequence as a
sequence of valid inputs.

Similarly, we define a (valid) output sequence as a sequence of valid
outputs. Q3 will report a valid output when the out-act signal is high.

Cuong Chau (UT Austin) Asynchronous Circuit Verification October 20, 2017 18 / 41

Example 1

Q3

in

L0 L1 L2

out

For self-timed circuits with no feedback loops, we verify their functional
correctness in terms of the relationship between their input and output
sequences.

Let in-act denote the fire signal from the AND gate in the control logic of
joint in, out-act denote the fire signal from the AND gate in the control
logic of joint out.

Module Q3 will accept a new input if the in-act signal is high. In this
case, we call this input valid. We define a (valid) input sequence as a
sequence of valid inputs.

Similarly, we define a (valid) output sequence as a sequence of valid
outputs. Q3 will report a valid output when the out-act signal is high.

Cuong Chau (UT Austin) Asynchronous Circuit Verification October 20, 2017 18 / 41

Example 1

in

[1, 4, 3]
8 x 5

out

[1, 4, 3] ++ [8, 5]

in

1 x x

out

[4, 3, 8, 5]

[1] ++ [4, 3, 8, 5]

Cuong Chau (UT Austin) Asynchronous Circuit Verification October 20, 2017 19 / 41

Example 1

in

[1, 4, 3]
8 x 5

out

[1, 4, 3] ++ [8, 5]

in

1 x x

out

[4, 3, 8, 5]

[1] ++ [4, 3, 8, 5]

Cuong Chau (UT Austin) Asynchronous Circuit Verification October 20, 2017 19 / 41

Example 1

in

L0 L1 L2

out

We define the function q3$extract-data(st) that extracts valid data from
state st of Q3, i.e. extracts data from links that are full at state st. The
following equation states the functional correctness of Q3:

q3$extract-data(q3$run(input-list, st, n)) ++ out-seq =
in-seq ++ q3$extract-data(st)

where

q3$run(input-list, st, n) :=
if (n ≤ 0) st
else q3$run(rest(input-list),

q3$step(first(input-list), st),
n − 1)

Cuong Chau (UT Austin) Asynchronous Circuit Verification October 20, 2017 20 / 41

Example 1

q3$extract-data(q3$run(input-list, st, n)) ++ out-seq =
in-seq ++ q3$extract-data(st) (4.1)

Our ACL2 proof of (4.1) uses induction and the following
single-step-update property of Q3 as a supporting lemma:

q3$extract-data(q3$step(input, st)) = q3$step-spec(input, st) (4.2)

where q3$step-spec(input, st) :=
q3$extract-data(st), if in-act = F ∧ out-act = F
[input.data] ++ q3$extract-data(st), if in-act = T ∧ out-act = F
remove-last(q3$extract-data(st)), if in-act = F ∧ out-act = T
[input.data] ++ remove-last(q3$extract-data(st)), otherwise

Cuong Chau (UT Austin) Asynchronous Circuit Verification October 20, 2017 21 / 41

Example 2
C

in

A0 Q2 A1

B0 Q3 B1

∨

out

Bitwise OR

In terms of input-output relationship, C simply performs the bitwise OR
operation on the two input operands. The operation of C over the input
sequence is defined as follows:

c$op(in-seq) :=
if (in-seq = NULL) nil
else

let input := first(in-seq)
return [v-or(input.a, input.b)] ++ c$op(rest(in-seq))

Cuong Chau (UT Austin) Asynchronous Circuit Verification October 20, 2017 22 / 41

Example 2

in

A0 Q2 A1

B0 Q3 B1

∨

out

Bitwise OR

If the current state st of C satisfies the following condition:

c$inv(st) :=
(

size
(
extract-data([st.A0] ++ st.Q2 ++ [st.A1])

)
=

size
(
extract-data([st.B0] ++ st.Q3 ++ [st.B1])

))
then the following functional property of C holds:

c$extract-data(c$run(input-list, st, n)) ++ out-seq =
c$op(in-seq) ++ c$extract-data(st) (4.3)

c$extract-data(st) := c$op(extract-data([st.A0] ++ st.Q2 ++ [st.A1]) ⊗
extract-data([st.B0] ++ st.Q3 ++ [st.B1]))

E.g., [1, 3, 5]⊗ [2, 4, 6] = [[1, 2], [3, 4], [5, 6]]

Cuong Chau (UT Austin) Asynchronous Circuit Verification October 20, 2017 23 / 41

Example 2

in

A0 Q2 A1

B0 Q3 B1

∨

out

Bitwise OR

If the current state st of C satisfies the following condition:

c$inv(st) :=
(

size
(
extract-data([st.A0] ++ st.Q2 ++ [st.A1])

)
=

size
(
extract-data([st.B0] ++ st.Q3 ++ [st.B1])

))
then the following functional property of C holds:

c$extract-data(c$run(input-list, st, n)) ++ out-seq =
c$op(in-seq) ++ c$extract-data(st) (4.3)

c$extract-data(st) := c$op(extract-data([st.A0] ++ st.Q2 ++ [st.A1]) ⊗
extract-data([st.B0] ++ st.Q3 ++ [st.B1]))

E.g., [1, 3, 5]⊗ [2, 4, 6] = [[1, 2], [3, 4], [5, 6]]
Cuong Chau (UT Austin) Asynchronous Circuit Verification October 20, 2017 23 / 41

Example 2

in

A0 Q2 A1

B0 Q3 B1

∨

out

Bitwise OR

Our ACL2 proof of (4.3) uses induction and the single-step-update
property (described below, given that c$inv(st) holds) as a supporting
lemma.

c$extract-data(c$step(input, st)) = c$step-spec(input, st) (4.4)

where c$step-spec(input, st) :=
c$extract-data(st), if in-act = F ∧ out-act = F
[v-or(input.a, input.b)] ++ c$extract-data(st), if in-act = T ∧ out-act = F
remove-last(c$extract-data(st)), if in-act = F ∧ out-act = T
[v-or(input.a, input.b)] ++ remove-last(c$extract-data(st)), otherwise

Cuong Chau (UT Austin) Asynchronous Circuit Verification October 20, 2017 24 / 41

Example 2

in

A0 Q2 A1

B0 Q3 B1

∨

out

Bitwise OR

Our ACL2 proof of (4.3) uses induction and the single-step-update
property (described below, given that c$inv(st) holds) as a supporting
lemma.

c$extract-data(c$step(input, st)) = c$step-spec(input, st) (4.4)

Our proof of (4.4) does not concern the details of Q2 and Q3. Instead, we
use their single-step-update properties to prove (4.4).

In other words, we employ a hierarchical strategy in proving the
single-step-update property of a self-timed module.

Cuong Chau (UT Austin) Asynchronous Circuit Verification October 20, 2017 24 / 41

Example 3
WW

−<

in

I0I1
L0

L1

>−

out

O0 O1 −< Branch

>− Merge

WW alternately inputs data into links L0 and L1 and alternately outputs
data from links L0 and L1.

The (Boolean) value of links I0 and O0 indicate which of two links L0 and
L1 will be input and output, respectively.

When the branch joint fires, it will fill either L0 or L1, but not both.
Likewise, the merge joint will drain either L0 or L1 when it fires.

Cuong Chau (UT Austin) Asynchronous Circuit Verification October 20, 2017 25 / 41

Example 3
WW

−<

in

I0I1
L0

L1

>−

out

O0 O1 −< Branch

>− Merge

WW alternately inputs data into links L0 and L1 and alternately outputs
data from links L0 and L1.

The (Boolean) value of links I0 and O0 indicate which of two links L0 and
L1 will be input and output, respectively.

When the branch joint fires, it will fill either L0 or L1, but not both.
Likewise, the merge joint will drain either L0 or L1 when it fires.

Cuong Chau (UT Austin) Asynchronous Circuit Verification October 20, 2017 25 / 41

Example 3
WW

−<

in

I0I1
L0

L1

>−

out

O0 O1 −< Branch

>− Merge

WW alternately inputs data into links L0 and L1 and alternately outputs
data from links L0 and L1.

The (Boolean) value of links I0 and O0 indicate which of two links L0 and
L1 will be input and output, respectively.

When the branch joint fires, it will fill either L0 or L1, but not both.
Likewise, the merge joint will drain either L0 or L1 when it fires.

Cuong Chau (UT Austin) Asynchronous Circuit Verification October 20, 2017 25 / 41

Example 3

−<

in

I0I1
L0

L1

>−

out

O0 O1 −< Branch

>− Merge

The functionality of WW is equivalent to Q2, but potentially has higher
performance due to shorter latencies:

WW can input data into either L0 or L1, while Q2 can input data
only into L0;
WW can output data from either L0 or L1, while Q2 can output data
only from L1.

Our correctness proof of WW involves establishing an invariant.

Cuong Chau (UT Austin) Asynchronous Circuit Verification October 20, 2017 26 / 41

Example 3

−<

in

I0I1
L0

L1

>−

out

O0 O1 −< Branch

>− Merge

The functionality of WW is equivalent to Q2, but potentially has higher
performance due to shorter latencies:

WW can input data into either L0 or L1, while Q2 can input data
only into L0;
WW can output data from either L0 or L1, while Q2 can output data
only from L1.

Our correctness proof of WW involves establishing an invariant.

Cuong Chau (UT Austin) Asynchronous Circuit Verification October 20, 2017 26 / 41

Example 3

−<

in

I0I1
L0

L1

>−

out

O0 O1 −< Branch

>− Merge

ww$extract-data(ww$run(input-list, st, n)) ++ out-seq =
in-seq ++ ww$extract-data(st) (4.5)

ww$extract-data(st) :=
if full(st.O0.status)

if (st.O0.data = T) extract-data([st.L0, st.L1])
else extract-data([st.L1, st.L0])

else if (st.O1.data = T) extract-data([st.L0, st.L1])
else extract-data([st.L1, st.L0])

Cuong Chau (UT Austin) Asynchronous Circuit Verification October 20, 2017 27 / 41

Example 4
RR

−<

in

I0I1
A0 Q2 A1

B0 Q3 B1

>−

out

O0 O1

The single-step-update property:

rr$extract-data(rr$step(input, st)) = rr$step-spec(input, st) (4.6)

The relationship between input and output sequences:

rr$extract-data(rr$run(input-list, st, n)) ++ out-seq =
in-seq ++ rr$extract-data(st) (4.7)

Cuong Chau (UT Austin) Asynchronous Circuit Verification October 20, 2017 28 / 41

Example 4
RR

−<

in

I0I1
A0 Q2 A1

B0 Q3 B1

>−

out

O0 O1

The single-step-update property:

rr$extract-data(rr$step(input, st)) = rr$step-spec(input, st) (4.6)

The relationship between input and output sequences:

rr$extract-data(rr$run(input-list, st, n)) ++ out-seq =
in-seq ++ rr$extract-data(st) (4.7)

Cuong Chau (UT Austin) Asynchronous Circuit Verification October 20, 2017 28 / 41

Example 4
RR

−<

in

I0I1
A0 Q2 A1

B0 Q3 B1

>−

out

O0 O1

The single-step-update property:

rr$extract-data(rr$step(input, st)) = rr$step-spec(input, st) (4.6)

The relationship between input and output sequences:

rr$extract-data(rr$run(input-list, st, n)) ++ out-seq =
in-seq ++ rr$extract-data(st) (4.7)

Cuong Chau (UT Austin) Asynchronous Circuit Verification October 20, 2017 28 / 41

Example 4

−<

in

I0I1
A0 Q2 A1

B0 Q3 B1

>−

out

O0 O1

The verification time of RR is about 15 minutes, while it only takes
5 seconds to verify WW on a 2.9 GHz Intel Core i7 processor with 4MB
L3 cache and 8GB memory.

There are many case splits in proving the invariant as well as the
single-step-update property for RR. It takes 3.5 minutes to prove the
invariant and 11.5 minutes to prove the single-step-update property.
Can we reduce the number of case splits?
Solution: Abstract two queues (A0 → Q2→ A1) and (B0 → Q3→ B1)
as two complex links.
⇒ The verification time of the new RR circuit is about 9 seconds.

Cuong Chau (UT Austin) Asynchronous Circuit Verification October 20, 2017 29 / 41

Example 4

−<

in

I0I1
A0 Q2 A1

B0 Q3 B1

>−

out

O0 O1

The verification time of RR is about 15 minutes, while it only takes
5 seconds to verify WW on a 2.9 GHz Intel Core i7 processor with 4MB
L3 cache and 8GB memory.
There are many case splits in proving the invariant as well as the
single-step-update property for RR. It takes 3.5 minutes to prove the
invariant and 11.5 minutes to prove the single-step-update property.

Can we reduce the number of case splits?
Solution: Abstract two queues (A0 → Q2→ A1) and (B0 → Q3→ B1)
as two complex links.
⇒ The verification time of the new RR circuit is about 9 seconds.

Cuong Chau (UT Austin) Asynchronous Circuit Verification October 20, 2017 29 / 41

Example 4

−<

in

I0I1
A0 Q2 A1

B0 Q3 B1

>−

out

O0 O1

The verification time of RR is about 15 minutes, while it only takes
5 seconds to verify WW on a 2.9 GHz Intel Core i7 processor with 4MB
L3 cache and 8GB memory.
There are many case splits in proving the invariant as well as the
single-step-update property for RR. It takes 3.5 minutes to prove the
invariant and 11.5 minutes to prove the single-step-update property.
Can we reduce the number of case splits?

Solution: Abstract two queues (A0 → Q2→ A1) and (B0 → Q3→ B1)
as two complex links.
⇒ The verification time of the new RR circuit is about 9 seconds.

Cuong Chau (UT Austin) Asynchronous Circuit Verification October 20, 2017 29 / 41

Example 4

−<

in

I0I1
A0 Q2 A1

B0 Q3 B1

>−

out

O0 O1

The verification time of RR is about 15 minutes, while it only takes
5 seconds to verify WW on a 2.9 GHz Intel Core i7 processor with 4MB
L3 cache and 8GB memory.
There are many case splits in proving the invariant as well as the
single-step-update property for RR. It takes 3.5 minutes to prove the
invariant and 11.5 minutes to prove the single-step-update property.
Can we reduce the number of case splits?
Solution: Abstract two queues (A0 → Q2→ A1) and (B0 → Q3→ B1)
as two complex links.

⇒ The verification time of the new RR circuit is about 9 seconds.

Cuong Chau (UT Austin) Asynchronous Circuit Verification October 20, 2017 29 / 41

Example 4

−<

in

I0I1
A0 Q2 A1

B0 Q3 B1

>−

out

O0 O1

The verification time of RR is about 15 minutes, while it only takes
5 seconds to verify WW on a 2.9 GHz Intel Core i7 processor with 4MB
L3 cache and 8GB memory.
There are many case splits in proving the invariant as well as the
single-step-update property for RR. It takes 3.5 minutes to prove the
invariant and 11.5 minutes to prove the single-step-update property.
Can we reduce the number of case splits?
Solution: Abstract two queues (A0 → Q2→ A1) and (B0 → Q3→ B1)
as two complex links.
⇒ The verification time of the new RR circuit is about 9 seconds.

Cuong Chau (UT Austin) Asynchronous Circuit Verification October 20, 2017 29 / 41

In summary, for each self-timed module that has no feedback loops, we
prove the following two properties:

1 the single-step-update property (proved by using hierarchical
reasoning),

2 the relationship between the input and output sequences (proved by
using induction and the single-step-update property).

Cuong Chau (UT Austin) Asynchronous Circuit Verification October 20, 2017 30 / 41

Outline

1 Introduction

2 The DE System

3 Modeling and Verification Approach

4 Case Studies
Circuits with No Feedback Loops
Circuits with Feedback Loops

5 Future Work and Conclusions

Cuong Chau (UT Austin) Asynchronous Circuit Verification October 20, 2017 31 / 41

Reasoning with highly non-deterministic behavior in self-timed systems
with feedback loops is very challenging.

Computing loop invariants in these systems becomes much more
complicated than in synchronous systems.

We impose design restrictions on iterative circuits to reduce
non-determinism, and consequently reduce the complexity of the set of
execution paths:

These restrictions enable our framework to verify loop invariants
efficiently via induction and subsequently verify the functional
correctness of self-timed circuit designs.

Design restrictions: A module is ready to communicate with other modules
only when it finishes all of its internal operations and becomes quiescent.

Cuong Chau (UT Austin) Asynchronous Circuit Verification October 20, 2017 32 / 41

Reasoning with highly non-deterministic behavior in self-timed systems
with feedback loops is very challenging.

Computing loop invariants in these systems becomes much more
complicated than in synchronous systems.

We impose design restrictions on iterative circuits to reduce
non-determinism, and consequently reduce the complexity of the set of
execution paths:

These restrictions enable our framework to verify loop invariants
efficiently via induction and subsequently verify the functional
correctness of self-timed circuit designs.

Design restrictions: A module is ready to communicate with other modules
only when it finishes all of its internal operations and becomes quiescent.

Cuong Chau (UT Austin) Asynchronous Circuit Verification October 20, 2017 32 / 41

Reasoning with highly non-deterministic behavior in self-timed systems
with feedback loops is very challenging.

Computing loop invariants in these systems becomes much more
complicated than in synchronous systems.

We impose design restrictions on iterative circuits to reduce
non-determinism, and consequently reduce the complexity of the set of
execution paths:

These restrictions enable our framework to verify loop invariants
efficiently via induction and subsequently verify the functional
correctness of self-timed circuit designs.

Design restrictions: A module is ready to communicate with other modules
only when it finishes all of its internal operations and becomes quiescent.

Cuong Chau (UT Austin) Asynchronous Circuit Verification October 20, 2017 32 / 41

32-Bit Self-Timed Serial Adder Verification

We demonstrate our framework by modeling and verifying the functional
correctness of a 32-bit self-timed serial adder [Chau:2017].

We prove that the self-timed serial adder indeed performs the addition
under an appropriate initial condition.

When the adder finishes its execution, the result is proven to be the
sum of the two 32-bit input operands and the carry-in.

Our verification approach applies compositional reasoning.

Divide the adder’s execution into two parts: the loop part and the
exit part (the execution after exiting the loop),
Formalize a loop invariant for the loop part and the adder behavior
during the exit part,
Prove the functional correctness of the adder by glueing these two
parts together.

Cuong Chau (UT Austin) Asynchronous Circuit Verification October 20, 2017 33 / 41

32-Bit Self-Timed Serial Adder Verification

We demonstrate our framework by modeling and verifying the functional
correctness of a 32-bit self-timed serial adder [Chau:2017].

We prove that the self-timed serial adder indeed performs the addition
under an appropriate initial condition.

When the adder finishes its execution, the result is proven to be the
sum of the two 32-bit input operands and the carry-in.

Our verification approach applies compositional reasoning.

Divide the adder’s execution into two parts: the loop part and the
exit part (the execution after exiting the loop),
Formalize a loop invariant for the loop part and the adder behavior
during the exit part,
Prove the functional correctness of the adder by glueing these two
parts together.

Cuong Chau (UT Austin) Asynchronous Circuit Verification October 20, 2017 33 / 41

Data Flow of a 32-Bit Self-Timed Serial Adder

Shift-Reg0
0 1

�
1
�

Shift-Reg1
0 1

�
1
�

Ci

1
�

A
1
�

B
1
�

+

Co
1
�

S
1
�

1
�

1
�

1
�

1
�

1
�

Shift-Reg2

32
�

App

33�

Result+1
5�

1
�

1
�

Cntl-State

5�

Cntl-State’
5
� Done- 015

�

go-a

go-b

go-buf-cntl

go-cntl

go-add

go-carry

go-s

go-result

M1

M2

Full

Full

Full

Full Full

Cuong Chau (UT Austin) Asynchronous Circuit Verification October 20, 2017 34 / 41

Correctness Theorems

Theorem 1 (Partial correctness).

async serial adder(netlist) ∧ (1)
init state(st) ∧ (2)
(operand size = 32) ∧ (3)
interleavings spec(input-list, operand size) ∧ (4)
(st ′ = run(netlist, input-list, st, n)) ∧ (5)
full(st ′.result.status) (6)

⇒ st ′.result.data = st.shift reg 0.data +
st.shift reg 1.data +
st.ci .data

Cuong Chau (UT Austin) Asynchronous Circuit Verification October 20, 2017 35 / 41

Correctness Theorems

Theorem 2 (Termination).

async serial adder(netlist) ∧ (1)
init state(st) ∧ (2)
(operand size = 32) ∧ (3)
interleavings spec(input-list, operand size) ∧ (4)
(st ′ = run(netlist, input-list, st, n)) ∧ (5)
(n ≥ num steps(input-list, operand size)) (6′)

⇒ full(st ′.result.status)

Cuong Chau (UT Austin) Asynchronous Circuit Verification October 20, 2017 36 / 41

Outline

1 Introduction

2 The DE System

3 Modeling and Verification Approach

4 Case Studies
Circuits with No Feedback Loops
Circuits with Feedback Loops

5 Future Work and Conclusions

Cuong Chau (UT Austin) Asynchronous Circuit Verification October 20, 2017 37 / 41

Future Work

We are developing a new proof technique for partial correctness of
iterative self-timed circuits that does not have any conditions on the
values of go signals.

For termination proofs, we need a constraint on go signals guaranteeing
that delays are bounded.

We intend to follow a hierarchical approach to prove module-level
properties of iterative circuits of the following form:

Given an initial state of the module, the module’s final state meets
its specification after that module completes execution.

Cuong Chau (UT Austin) Asynchronous Circuit Verification October 20, 2017 38 / 41

Future Work

We are developing a new proof technique for partial correctness of
iterative self-timed circuits that does not have any conditions on the
values of go signals.

For termination proofs, we need a constraint on go signals guaranteeing
that delays are bounded.

We intend to follow a hierarchical approach to prove module-level
properties of iterative circuits of the following form:

Given an initial state of the module, the module’s final state meets
its specification after that module completes execution.

Cuong Chau (UT Austin) Asynchronous Circuit Verification October 20, 2017 38 / 41

Future Work

We are developing a new proof technique for partial correctness of
iterative self-timed circuits that does not have any conditions on the
values of go signals.

For termination proofs, we need a constraint on go signals guaranteeing
that delays are bounded.

We intend to follow a hierarchical approach to prove module-level
properties of iterative circuits of the following form:

Given an initial state of the module, the module’s final state meets
its specification after that module completes execution.

Cuong Chau (UT Austin) Asynchronous Circuit Verification October 20, 2017 38 / 41

Conclusions
We have presented a framework for modeling and verifying self-timed
circuits using the DE system.

Our goal is to develop a methodology that is capable of verifying the
functional correctness of self-timed circuit designs at large scale.

This work also provides a library for analyzing self-timed systems in
ACL2.

We model self-timed systems as networks of links communicating with
each other locally via joints, using the link-joint model introduced by
Roncken et al.

We model the non-determinism of event-ordering in self-timed circuits
by associating each joint with an external go signal.

Our key proof techniques are hierarchical reasoning, compositional
reasoning, and induction.

Cuong Chau (UT Austin) Asynchronous Circuit Verification October 20, 2017 39 / 41

References

C. Chau, W. Hunt, M. Roncken, and I. Sutherland (2017)
A Framework for Asynchronous Circuit Modeling and Verification in ACL2
HVC 2017, to appear.

W. Hunt (2000)
The DE Language
Computer-Aided Reasoning: ACL2 Case Studies, Kluwer Academic Publishers
Norwell, MA, USA, 151 – 166.

M. Roncken, S. Gilla, H. Park, N. Jamadagni, C. Cowan, I. Sutherland (2015)
Naturalized Communication and Testing
ASYNC 2015, 77 – 84.

A. Slobodova, J. Davis, S. Swords, and W. Hunt (2011)
A Flexible Formal Verification Framework for Industrial Scale Validation
MEMOCODE 2011, 89 – 97.

Cuong Chau (UT Austin) Asynchronous Circuit Verification October 20, 2017 40 / 41

Questions?

Cuong Chau (UT Austin) Asynchronous Circuit Verification October 20, 2017 41 / 41

	Introduction
	The DE System
	Modeling and Verification Approach
	Case Studies
	Circuits with No Feedback Loops
	Circuits with Feedback Loops

	Future Work and Conclusions

