DFT and FFT implementations and proofs using ACL2
 Mertcan Temel

What is Fourier Transform?

- Decomposition of a signal into the frequencies that make it up
- Applications include:
- Differential/Difference Eqs, Filter Design, Speech Recognition, Fast Large Integer Multiplication...
- 3 main types:
- Continuous Time Fourier Transform (CTFT)
- Input: Continuous, Output: Continuous
- Discrete Time Fourier Transform (DTFT)
- Input: Discrete, Output: Continuous
- Discrete Fourier Transform (DFT)
- Input: Discrete, Output: Discrete
- The one we are interested in
- Fast Fourier Transform (FFT): some efficient algorithms to compute DFT

What is Discrete Fourier Transform (DFT)?

$$
X_{k}=\sum_{m=0}^{N-1} x_{m} e^{-j 2 \pi m k / N} x_{m}=\frac{1}{N} \sum_{k=0}^{N-1} X_{k} e^{j 2 \pi m k / N}
$$

x : input vector of finite length N
x_{m} : $m^{\text {th }}$ element of x
X : output vector of the same length N
X_{k} : $k^{\text {th }}$ element of X
j : square root of -1

DFT Implementation:

- Calculate the sum over m from 0 to $N-1$ for every k in [0 N-1]
- Time complexity of $\mathrm{O}\left(\mathrm{N}^{2}\right)$

What is Fast Fourier Transform (FFT)?

- An efficient implementation of DFT
- Two most commonly known ways:
- Decimation-in-time (DIT)
- Decimation-in-frequency (DIF)
- Restriction: vector length N should be power of 2 . If not, fill with 0 s.
- A recursive algorithm

What is Fast Fourier Transform (FFT)?

Work Done in ACL2

- DFT Implementation
- Proof for (idft (dft x N) N) =x
- FFT decimation-in-time implementation
- Proof for (fft x N) = (dft x N)

DFT Implementation in ACL2

$$
X_{k}=\sum_{m=0}^{N-1} x_{m} e^{-j 2 \pi m k / N}
$$

Inverse DFT (IDFT)

```
(defun dft_sum (x N k m)
    (declare (xargs :measure (nfix (- N m))))
    (if (zp (-N m))
            (exp- (* #c(0 1)
                2
                            (PI-)
                            m
                            -1
                k
                    (/ N))))
            (dft_sum x N k (+ m 1)))))
```


Proof for IDFT of DFT of X is X

Goal:
Prove that inverse DFT of DFT of a vector gives the original vector.
i.e. $(\mathrm{idft}(\mathrm{dft} x))=x$?

ACL2 theorem:
(DEFTHM IDFT-0F-DFT-0F-X-IS-X (IMPLIES (AND (ACL2-NUMBER-LISTP X) (EQUAL N (LEN X)))
(EQUAL (IDFT (DFT X N) N) X))

Proof for IDFT of DFT of X is X - Steps

Step 1: Plug DFT sum into IDFT sum. 3 variables: p, q, and m

$$
\frac{1}{N} \sum_{q=0}^{N-1}\left(\sum_{p=0}^{N-1} x_{p} e^{-j 2 \pi q p / N}\right) e^{j 2 \pi m q} / N
$$

Step 2: Merge exponentials

$$
\frac{1}{N} \sum_{q=0}^{N-1} \sum_{p=0}^{N-1} x_{p} e^{-j 2 \pi q p+j 2 \pi m q} /_{N}
$$

Proof for IDFT of DFT of X is X - Steps

Step 2: Merge exponentials

$$
\frac{1}{N} \sum_{q=0}^{N-1} \sum_{p=0}^{N-1} x_{p} e^{-j 2 \pi q p+j 2 \pi m q} /_{N}
$$

Step 3: Change summation order

$$
\frac{1}{N} \sum_{p=0}^{N-1} \sum_{q=0}^{N-1} x_{p} e^{j 2 \pi q(m-p) / N}
$$

Proof for IDFT of DFT of X is X - Steps

Step 3: Change summation order

$$
\frac{1}{N} \sum_{p=0}^{N-1} \sum_{q=0}^{N-1} x_{p} e^{j 2 \pi q(m-p)} /_{N}
$$

Step 4: Take x_{p} out

$$
\frac{1}{N} \sum_{p=0}^{N-1} x_{p} \sum_{q=0}^{N-1} e^{j 2 \pi q(m-p) / N}
$$

Proof for IDFT of DFT of X is X - Steps

Step 4: Take x_{p} out

$$
\frac{1}{N} \sum_{p=0}^{N-1} x_{p} \sum_{q=0}^{N-1} e^{j 2 \pi q(m-p) / N}
$$

Step 5: Take $1 / \mathrm{N}$ in

$$
\sum_{p=0}^{N-1} x_{p}\left(\frac{1}{N} \sum_{q=0}^{N-1} 1 * e^{j 2 \pi q(m-p) / N}\right)
$$

Proof for IDFT of DFT of X is X - Steps

Step 5: Take $1 / \mathrm{N}$ in

$$
\sum_{p=0}^{N-1} x_{p}\left(\frac{1}{N} \sum_{q=0}^{N-1} 1 * e^{j 2 \pi q(m-p)} / N\right)
$$

Step 6: Rewrite impulse from idft of ones

$$
\sum_{p=0}^{N-1} x_{p} \delta[m-p]
$$

where

$$
\delta[a]= \begin{cases}1, & a=0 \\ 0, & a \neq 0\end{cases}
$$

Proof for IDFT of DFT of X is X - Steps

Step 6: Rewrite impulse from idft of ones

$$
\sum_{p=0}^{N-1} x_{p} \delta[m-p]
$$

where

$$
\delta[a]= \begin{cases}1, & a=0 \\ 0, & a \neq 0\end{cases}
$$

Step 7: Equate the term to x_{m}. This concludes the proof.

FFT Implementation in ACL2

FFT Implementation in ACL2

```
(defun fft2-dit-multi (G H i N)
    (declare (xargs :measure (nfix (- N i))))
    (if (zp (- N i))
        nil
        (let ((j (if (>= i (/ N 2)) (- i (/ N 2)) i)))
            (cons (+ (number-fix (nth j G))
                        (* (number-fix (nth j H))
                            (WNk i N)))
                            (fft2-dit-multi G H (1+ i) N)))))
(defun fft2-dit (x N)
    (declare (xargs :measure (if (> N 1) (floor N 1/2) 0)))
    (if (or (not (integerp N)) (<= N 1))
        (list (number-fix (car x)))
    (let ((evenfft (fft2-dit (getevens x) (/ N 2)))
            (oddfft (fft2-dit (getodds x) (/ N 2))))
        (fft2-dit-multi evenfft oddfft 0 N))))
```


Proof for FFT is DFT

- Basic idea of FFT:
- Get rid of redundant/repeated multiplications
- Remember intermediate results
- Different derivations for Decimation-in-time (DIT) and Decimation-infrequency (DIF). Only DIT will be discussed here.
- ACL2 Theorem:

```
(DEFTHM DFT-IS-FFT-DIT
    (IMPLIES (POWER-OF-2 N)
    (EQUAL (DFT X N) (FFT2-DIT X N)))
```


Proof for FFT is DFT - Steps

DFT formula:

$$
X_{k}=\sum_{n=0}^{N-1} x_{n} e^{-j 2 \pi n k / N}
$$

Step 1: Divide into two summations

$$
X_{k}=\sum_{n=0}^{N / 2-1} x_{2 n} e^{-j 2 \pi(2 n) k / N}+\sum_{n=0}^{N / 2-1} x_{2 n+1} e^{-j 2 \pi(2 n+1) k / N}
$$

Proof for FFT is DFT - Steps

Step 1: Divide into two summations

$$
X_{k}=\sum_{n=0}^{N / 2-1} x_{2 n} e^{-j 2 \pi(2 n) k / N}+\sum_{n=0}^{N / 2-1} x_{2 n+1} e^{-j 2 \pi(2 n+1) k / N}
$$

Step 2: Distribute and commute constants

$$
X_{k}=\sum_{n=0}^{N / 2-1} x_{2 n} e^{-j 2 \pi k /(N / 2)}+\sum_{n=0}^{N / 2-1} x_{2 n+1} e^{-j 2 \pi k n /(N / 2)} e^{-j 2 \pi k / N}
$$

Proof for FFT is DFT - Steps

Step 2: Distribute and commute constants

$$
X_{k}=\sum_{n=0}^{N / 2-1} x_{2 n} e^{-j 2 \pi k /(N / 2)}+\sum_{n=0}^{N / 2-1} x_{2 n+1} e^{-j 2 \pi k n /(N / 2)} e^{-j 2 \pi k / N}
$$

Step 3: Take the constant exponential out

$$
X_{k}=\sum_{n=0}^{N / 2-1} x_{2 n} e^{-j 2 \pi k /(N / 2)}+\left(e^{-j 2 \pi k / N}\right) \sum_{n=0}^{N / 2-1} x_{2 n+1} e^{-j 2 \pi k n /(N / 2)}
$$

Proof for FFT is DFT - Steps

Step 3: Take the constant exponential out

$$
X_{k}=\sum_{n=0}^{N / 2-1} x_{2 n} e^{-j 2 \pi k /(N / 2)}+\left(e^{-j 2 \pi k / N}\right) \sum_{n=0}^{N / 2-1} x_{2 n+1} e^{-j 2 \pi k n /(N / 2)}
$$

Observation 1:
$X_{k}=(N / 2$ point DFT of evens $x)+\left(e^{-j 2 \pi k / N}\right) *(N / 2$ point DFT of odds $x)$ Observation 2:
N point DFT is periodic with N (i.e. $X_{k}=X_{k+N}$)

Proof for FFT is DFT - Steps

Observation 1:

$$
X_{k}=(N / 2 \text { point DFT of evens } x)+\left(e^{-j 2 \pi k / N}\right) *(N / 2 \text { point DFT of odds } x)
$$

Observation 2: N point DFT is periodic with N (i.e. $X_{k}=X_{k+N}$)
$\Rightarrow 1^{\text {st }}$ and $2^{\text {nd }}$ DFTs give the same result for k and $k+N / 2$
(e.g. evendft $\left.(x)_{k}=\operatorname{evendft}(x)_{k+N / 2}\right)$
$=>$ Instead of calculating separately for all $k \in[0 N-1]$,
calculate $1^{\text {st }}$ and $2^{\text {nd }}$ DFTs for $k \in[0 N / 2-1]$
remember and use those values twice for k and $k+N / 2$
Applying these concludes the proof.

Future Work

Implement this FFT web,

- in the DE system in ACL2
- as a self-timed, asynchronous circuit

