
Verifying filesystems in ACL2
Towards verifying file recovery tools

Mihir Mehta

Department of Computer Science
University of Texas at Austin

mihir@cs.utexas.edu

10 November, 2017

1/34



2/34

Outline

Motivation and related work

Our approach

Progress so far

Future work



3/34

Why we need a verified filesystem

I Filesystems are everywhere, even as operating systems move
towards making them invisible.

I In the absence of a clear specification of filesystems, users
(and sysadmins in particular) are underserved.

I Modern filesystems have become increasingly complex, and so
have the tools to analyse and recover data from them.

I It would be worthwhile to specify and formally verify, in the
ACL2 theorem prover, the guarantees claimed by filesystems
and tools.



4/34

Related work

I In Haogang Chen’s 2016 dissertation, the author uses Coq to
build a filesystem (named FSCQ) which is proven safe against
crashes in a new logical framework named Crash Hoare Logic.

I His implementation was exported into Haskell, and showed
comparable performance to ext4 when run on FUSE.

I Hyperkernel (Nelson et al, SOSP ’17) is a ”push-button”
verification effort, but approximates by changing POSIX
system calls for ease of verification.

I In our work, we instead aim to model an existing filesystem
(FAT32) faithfully and match the resulting disk image
byte-to-byte.



5/34

Outline

Motivation and related work

Our approach

Progress so far

Future work



6/34

Choosing an initial model

I Our goal here is to verify the FAT32 filesystem, but we need a
simpler model to begin with.

I Our filesystem’s operations should suffice for running a
workload.

I Yet, parsimony and avoidance of redundancy are essential for
theorem proving.

I What’s a necessary and sufficient set of operations?



7/34

Minimal set of operations?

I The Google filesystem suggests a minimal set of operations:
I create
I delete
I open
I close
I read
I write

I Of these, open and close require the maintenance of file
descriptor state - so they can wait.

I However, they are essential when describing concurrency and
multiprogramming behaviour.

I Thus, we can start modelling a filesystem, and several
refinements thereof.



8/34

Quick overview of models

I Model 1: Tree representation of directory structure with
unbounded file size and unbounded filesystem size.

I Model 2: Model 1 with file length as metadata.

I Model 3: Tree representation of directory structure with file
contents stored in a ”disk”.

I Model 4: Model 3 with bounded filesystem size and garbage
collection.



9/34

Model 1

\

vmlinuz,”\0\0\0” tmp

ticket1,”Sun 19:00”



10/34

Model 1

\

vmlinuz,”\0\0\0” tmp

ticket1,”Sun 19:00” ticket2,”Tue 21:00”



11/34

Model 1

\

vmlinuz,”\0\0\0” tmp

ticket2,”Tue 21:00”



12/34

Model 1

\

vmlinuz,”\0\0\0” tmp

ticket2,”Wed 01:00”



13/34

Model 2

I Model 1 supports nested directory structures, unbounded file
size and unbounded filesystem size.

I However, there’s no metadata, either to provide additional
information or to validate the contents of the file.

I With an extra field for length, we can create a simple version
of fsck that checks file contents for consistency.

I Further, we can verify that create, write, delete etc preserve
this notion of consistency.



14/34

Model 2

\

vmlinuz,”\0\0\0”,3 tmp

ticket1,”Sun 19:00”,9



15/34

Model 2

\

vmlinuz,”\0\0\0”,3 tmp

ticket1,”Sun 19:00”,9 ticket2,”Tue 21:00”,9



16/34

Model 2

\

vmlinuz,”\0\0\0”,3 tmp

ticket2,”Tue 21:00”,9



17/34

Model 2

\

vmlinuz,”\0\0\0”,3 tmp

ticket2,”Wed 01:00”,9



18/34

Model 3

I As the next step, we focus on externalising the storage of file
contents.

I We also choose to break up file contents into ”blocks” of a
constant length (8.)

I Note: this would mean storing file length is no longer optional,
to avoid reading garbage past end of file at the end of a block.



19/34

Model 3

\

vmlinuz,(0),3 tmp

ticket1,(1 2),9

Table: Disk

\0\0\0

Sun 19:0

0



20/34

Model 3

\

vmlinuz,(0),3 tmp

ticket1,(1 2),9 ticket2,(3 4),9

Table: Disk

\0\0\0

Sun 19:0

0

Tue 21:0

0



21/34

Model 3

\

vmlinuz,(0),3 tmp

ticket2,(3 4),9

Table: Disk

\0\0\0

Sun 19:0

0

Tue 21:0

0



22/34

Model 3
\

vmlinuz,(0),3 tmp

ticket2,(5 6),9

Table: Disk

\0\0\0

Sun 19:0

0

Tue 21:0

0

Wed 01:0

0



23/34

Model 4

I In the fourth model, we attempt to implement garbage
collection in the form of an allocation vector.

I The allocation vector tracks whether blocks in the filesystem
are in use by a file. This allows us to reuse unused blocks.



24/34

Model 4
\

vmlinuz,(0),3 tmp

ticket1,(1 2),9

Table: Disk

\0\0\0 true

Sun 19:0 true

0 true

false

false

false



25/34

Model 4
\

vmlinuz,(0),3 tmp

ticket1,(1 2),9 ticket2,(3 4),9

Table: Disk

\0\0\0 true

Sun 19:0 true

0 true

Tue 21:0 true

0 true

false



26/34

Model 4
\

vmlinuz,(0),3 tmp

ticket2,(3 4),9

Table: Disk

\0\0\0 true

Sun 19:0 false

0 false

Tue 21:0 true

0 true

false



27/34

Model 4
\

vmlinuz,(0),3 tmp

ticket2,(1 2),9

Table: Disk

\0\0\0 true

Wed 01:0 true

0 true

Tue 21:0 false

0 false

false



28/34

Outline

Motivation and related work

Our approach

Progress so far

Future work



29/34

Proof approaches and techniques

I There are many properties that could be considered for
correctness, but we choose to focus on the read-over-write
theorems from the first-order theory of arrays.

I Read n characters starting at position start in the file at
path hns in filesystem fs:
l1-rdchs(hns, fs, start, n)

I Write string text characters starting at position start in the
file at path hns in filesystem fs:
l1-wrchs(hns, fs, start, text)



30/34

Proof approaches and techniques

I First read-over-write theorem: reading from a location after
writing to the same location should yield the data that was
written. Formally, assuming n = length(text) and suitable
”type” hypotheses (omitted here):
l1-rdchs(hns, l1-wrchs(hns, fs, start, text),

start, n)

=

text

I Second read-over-write-theorem: Reading from a location
after writing to a different location should yield the same
result as reading before writing. Formally, assuming hns1 !=

hns2 and suitable ”type” hypotheses (omitted here):
l1-rdchs(hns1, l1-wrchs(hns2, fs, start2, text2),

start1, n1)

=

l1-rdchs(hns1, fs, start1, n1)



31/34

Proof approaches and techniques

I For each of the models 1, 2, 3 and 4, we have proofs of
correctness of the two read-after-write properties, making use
of the proofs of equivalence between models and their
successors.

I Model 4 presented some unique challenges - proving the
read-after-write properties required proving an equivalence
between model 4 and model 2, rather than model 3.



32/34

Proof approaches and techniques

l2 l2

l1 l1

l2-to-l1-fs

write

write

l2-to-l1-fs

l2 text

l1

l2-to-l1-fs

read

read

l2 l2 text

l1 l1

l2-to-l1-fs

write

write

l2-to-l1-fs

read

read



33/34

Outline

Motivation and related work

Our approach

Progress so far

Future work



34/34

Future work

I Model and verify file permissions.

I Linearise the tree, leaving only the disk.

I Add the system call open and close with the introduction of
file descriptors.
This would be a step towards the study of concurrent FS
operations.

I Eventually emulate the FAT32 filesystem as a convincing
proof of concept, and move on to fsck and file recovery tools.


	Motivation and related work
	Our approach
	Progress so far
	Future work

