Modeling HexNet in ACL2

Presentation by Ebele Esimai

ebele@cs.utexas.edu




OUTLINE

Intfroduction info HexNet and its features

plementation in ACL2

Packet movement in a sample network
Proof properties

Some ACL2 events




HexNet

» The network plan is based on a hexagonal topology, hence is called HexNet.

This hexagonal topology can also be seen in the connections in a brick wall




HexNet

Each node in the network is called a JUNCTION.

A Junction can either be
» REPEATER (degree of 3) : This accepts data and forwards it to its appropriate output.

» DESTINATION (degree of 1) : This is an entry or exit point in the network.

Usually, branching and merging in the network is two-way.

Therefore, data on only two input links compete for each output link and data on

each input link can leave through only two possible output links.

Our goal : Modeling the high-level description of this network and packet movement in

the network



Features of the network

» Arbitration : Correct decision behavior when data arrives on two input links at

nearly the same time. Also, a mechanism for fairness is needed.




Features of the network

» Packet Routing: Packet coming through one input link has two
possible output links to pass through. This decision is based on the
comparison of the final destination and the current junction’s

location.




» The network is modeled as a

graph
(0 6)

» Addressing is based on @
cartesian grid, as such, each

ction is list of its x coordinate

and its y coordinate

: : 02
two connected junctions to 02

represent data movement in

each direction.

(2 6)

(2 4)

» There are two links between any .:}@l:(%‘)

(22)

Implementation of HexNet in ACL2

(47) (87)
ﬁ ﬁ (10 6) (12 6)
i - ~®
(4 6) (6 6) (8 6)
(3 4) (11 4)
(10 4)
(4 3) (8 3)
ﬁt = —®
(42) (82) (10 2) (12 2)

(60)



Implementation of HexNet in ACL2

(47) % (8 7) (defconst  *network*
(26) ﬁ ﬁ (10 6) (12 6) ;; junct dest in out
. — - W02 (22) S20  S02))
(46) (66 (8 6) (22)  ((02) S02  S20)

((42) S42 S24)

114
(10 4) (11 4) ((24) T24  T42))
((42) ((22) S24 S42)
83) ((62) S64  S46)
(6 2) ﬁ ((43) T23 T32))
- E & —= ((62) ((42) S46  S64)
(8 2) (102) (12 2)

(82) S86  S68)
((60) T02  T20))

((82) ((62) S68 S86)

(6 0) ((102) S108 $810)

((83) T83  T38))



Packets

» A packet is modelled as a list that Pktl -‘(E (87) (02) data)

contains .
= A turn signal, which is the next E - furn_signa
direction the packet should take 8 7) - coordinates of the final
» An address of final destination of the elesiieliieln
packet (0 2) - coordinates of the origin of the
. packet
» An address of the origin of the
packet
: : defconst *linkmap*
» The information to be passed along '(((SOZ (E (12 2) (5)2) data))
» The packets are stored on the links. (520) (S24) (S42) (S46) (S64)
. . (S68) (S86) (S810) (S108)
» A link can either be full or empty. (S1012) (S1220) (T20)

(T02) (T32) (T23) (T38)

» A linkmap shows the current state of (T83 (W (3 4) (8 3) data)) ...

all the links in the network at a given
time.



Arbitration in the Model

» Arbitration is based on the output direction -
Pkt Pkt
2 —_—

» One of the packets is chosen to proceed while

W

the second waits




Arbitration in the Model

» Arbitration is based on the output direction

» One of the packets is chosen to proceed while W

the second waits

owever, to facilitate fairness, the model has to

remember the decision at the previous step if

there is another tie at that junction S



Arbitration is based on the output
direction

» One of the packets is chosen to
proceed while the second waits

However, to facilitate fairness, the
el has fo remember the decision

t the previous step if there is another

tie at that junction
Outlink - link in the output direction
Inputs — links with packets

St — statemap that stores previous step
decisions

Arbitration in the Model

(defun arbiter (outlink inputs st)

(cond

((atom inputs)
((atom (cdr inputs))

(t

(mv nil st))
(mv (car inputs) st))

(let* ((entry (assoc-eq outlink st))

(pref  (cdr entry)))
(if (and pref
(member-eq pref inputs))
(let* ((new-pref (car (remove-eq pref inputs)))
(new-st (update-alist outlink new-pref st)))
(mv pref new-st))
(let* ((new-pref (cadr inputs))
(new-st (update-alist outlink new-pref st)))
(mv (car inputs) new-st)))))))



Packet Routing

» The network uses Advanced
Address Decoding

® This means that the routing function
calculates the next direction, i.e.
turn<signal, a step before it makes
thie turn.

Comparison is made between the
final destination of the packet and
the address of next junction.

Turn_signal (pktl) = East => curr

Routing_function (destl dest2 curr final g)
= (compare curr final) => East or South

dest2



14

Routing Packet
Traffic

cuIr

destl

dest2

(defun routing-normal (dest1 dest2 curr final g)
(let* ((destl-x (car destl)) (destl-y (cadr destl) (dest2-x (car dest2))
(dirl (get-direction curr destl g)) (dir2 (get-direction curr dest2 g))
(curr-x (car curr)) (curr-y (cadr curr))
(final-x (car final)) (final-y (cadr final)))

(if (isTerminal dest1 curr g)
(if (equal dest1 final) dirl
(if (isTerminal dest2 curr g)
(if (equal dest2 final)  dir2 (cw "Bad route "))
dir2))
(if (isTerminal dest2 curr g)

(if (equal dest2 final) dir2 dirl)

(cond ((< curr-y final-y)

(if (< curr-y destl-y) dirl dir2))
((> curr-y final-y)

(if (> curr-y destl-y) dirl dir2))
((< curr-x final-x)

(if (< destl-x dest2-x) dir2 dirl))
((> curr-x final-x)

(if (< destl-x dest2-x) dirl dir2)))))))



(3 4)

(24 G—®

 — — ——

(4 6)

(4 3)

Example

(6 8)

?

pkt2

(47) (87)
(06) (2 6) ﬁ . ﬁ (10 ¢6)

(12 6)
>®

(6 6) (8 6)

(11 4)
(10 4)

(83)

o G
< . —®
(82) (102) (122)

» Linkmap before execution
(S02 (E (12 2) (0 2) data))
(T83 (W (3 4) (83) data))
(T68 (E (12 2) (6 8) data))



(06)

Example

qyéa
(47) (87)
(2 6) ﬁ pkt2 ﬁ (10 6) (12 6)
— gy 9
(4 6) (6 6) (8 ¢)
34) (11 4)
(2 4) (10 4)
(8 3)
’ﬁt —r®
BBy 02 (122)

o

(6 0)

» Linkmap before execution
(S02 (E (12 2) (0 2) data))
(T83 (W (3 4) (83) data))
(T68 (E (12 2) (6 8) data))

® Linkmap after 1 step

(524 (E (12 2) (0 2) DATA))
(586 (W (3 4) (83) DATA))
(S686 (E (12 2) (6 8) DATA))



Example

(6 8)

%

(47)

(87)

(12 6)

(0 6) (2 6) ! ﬁ ol (10 ¢)

(4 6) (6 6)

(8 6)

(83)

(10 4)

(11 4)

g

(42)

e

(60)

(82)

(102)

(122)

» Linkmap before execution
(S02 (E (12 2) (0 2) data))
(T83 (W (3 4) (83) data))
(T68 (E (12 2) (6 8) data))

®» Linkmap after 1 step

(524 (E (12 2) (0 2) DATA))
(586 (W (3 4) (83) DATA))
(5686 (E (12 2) (6 8) DATA))

® [inkmap after 2 steps
(S46 (E (12 2) (0 2) DATA))
(S64 (W (34) (83) DATA))
(S610 (S (12 2) (6 8) DATA))



(0 6)

Example

%(68)
(47) (87)
(2 6) ﬁ ﬁ (10¢) (12 6)
.:—_”:.:—_‘b; Py —®
(4 6) (6 6) (8 6)
(3 4) (11 4)
(2 4) A (10 4)
(43) (83)
‘ (62) pkf ﬁ
(22) (42) (82) (102) (122)

(6 0)

» Linkmap before execution
(S02 (E (12 2) (0 2) data))
(T83 (W (3 4) (83)data))
(T68 (E (12 2) (6 8) data))

®» Linkmap after 1 step
(S24 (E (12 2) (0 2) DATA))
(586 (W (34) (83)DATA))
(S686 (E (12 2) (6 8) DATA))

®» Linkmap after 2 steps
(546 (E (12 2) (0 2) DATA))
(S64 (W (34) (83)DATA))
(S610 (S (12 2) (6 8) DATA))

» [inkmap after 3 steps
(S68 (E (12 2) (0 2) DATA))
(542 (N (34) (83) DATA))
(T106 (S (12 2) (6 8) DATA))



Example

(6 8)
(87)
(0 ¢) (2 6) ﬁ (10¢) (12 6)
>®
(8 6)
(11 4)
(10 4)
(83)
ﬁ

< - —®

(82) (10 2) (122)

- Linkmap before execution
(502 (E (12 2) (0 2) data))
(T83 (W (3 4) (8 3) data))

(T68 (E (12 2) (6 8) data))

- Linkmap after 1 step
(S24 (E (12 2) (0 2) DATA))
(S86 (W (3 4) (8 3) DATA))

(S686 (E (12 2) (6 8) DATA))

L4 Linkmap after 2 steps
(S46 (E (12 2) (0 2) DATA))
(S64 (W (3 4) (83) DATA))

(610 (S (12 2) (6 8) DATA))

- Linkmap after 3 steps
(S68 (E (12 2) (0 2) DATA))
(S42 (N (34) (83)DATA))

(T106 (S (12 2) (6 8) DATA))

®» [inkmap after 4 steps
(S810 (E (12 2) (0 2) DATA))
(T42 (E (34) (83) DATA))
(T104 (E (12 2) (6 8) DATA))



Example
(6 8)
(87)
(0 ¢) (2 6) ﬁ (10¢) (12 6)
@
(8 6)
(11 4)
(10 4)
(83)
ﬁ
" —®
(82) (10 2) (122)

® [inkmap after 4 steps
(5810 (E (12 2) (0 2) DATA))
(T42 (E (34) (83) DATA))
(T104 (E (12 2) (6 8) DATA))

®» Linkmap after 5 steps

(S1012 (DONE (12 2) (0 2) DATA))
(S23 (DONE (34) (8 3) DATA))
(T104 (E (12 2) (6 8) DATA))

The statemap records that preference should be given to
pkt2 if there is a tie in the next step.

(S51012.T104)



Example
(6 8)
(87)
(0 ¢) (2 6) ﬁ (10¢) (12 6)
@
(8 6)
(11 4)
(10 4)
(83)
ﬁ
Q] —®
(82) (10 2) (122)

® [inkmap after 4 steps
(5810 (E (12 2) (0 2) DATA))
(T42 (E (34) (83) DATA))
(T104 (E (12 2) (6 8) DATA))

®» Linkmap after 5 steps

(S1012 (DONE (12 2) (0 2) DATA))
(S23 (DONE (34) (8 3) DATA))
(T104 (E (12 2) (6 8) DATA))

The statemap records that preference should be given to
pkt2 if there is a tie in the next step.

(S51012.T104)

® [inkmap after 6 steps

(S1012 (DONE (12 2) (6 8) DATA))



Proof Properties

» Reachabillity: Every information source can send data to every
destination.

®» Diameter: The number of steps that the communication from source
to destination will take




(defun update-link (junct dest 1t st g) “Calculates update for the next link”
(let* ((outlink (outlink-lookup junct dest g)))
(if (cdr (assoc-eq outlink It))
(if (equal (car (cadr (assoc-eq outlink It))) 'Done)
(let ((new-It (update-alist outlink nil It)))
(mv new-lt st))
(mv It st))
(let* ((stack (remove-equal dest (sources junct g)))
(inputs (current-inputs junct dest stack It g)))
(if (endp inputs)
(mv It st)
(let* ((result (mv-list 2 (oracle outlink inputs st)))
(input (car result))
(new-st (cadr result)))
(if (atom (cdr (assoc-eq inputlt)))
(mv nil nil)
(let* ((pkt (cadr (assoc-eq inputlt)))
(final (cadr pkt))
(turn_signal (routing junct dest final g)))
(if turn_signal
(let* ((new-pkt (cons turn_signal (cdr pkt)))
(new-link-state (update-alist outlink (list new-pkt) It))
(new-lt (update-alist input nil new-link-state)))

(mv new-It new-st))

(mv nil nil))))))))))



(defun step-junct (junct neighbors Itstg) “Updates all output links in a junction”
(if (endp neighbors)
(mv It st)
(let ((dest (car neighbors)))
(if (unctp dest g)
(let* ((result (mv-list 2 (update-link junct dest It st g)))

(new-It (car result))
(new-st (cadr result)))

(step-junct junct (cdr neighbors) new-1t new-st g))

(mv nil nil)))))

(defun run (juncts It stg) “Updates the Junctions by a step”

(if (endp juncts)
(mv It st)
(let* ((junct (car juncts))
(neighbors (sources junct g))
(result (mv-list 2 (step-junct junct neighbors It st g)))
(new-lt (car result))
(new-st (cadr result)))

(run (cdr juncts) new-lt new-st g))))




