A Self-Timed Radix-2 FFT
Design

Mertcan Temel
mert@utexas.edu

February 6, 2018

Introduction

* A design methodology/State machine examples using the Link-joint model
(introduced in 2015 by Roncken et al.)

* Unsigned Multiplier

* Signed Multiplier

 Complex Multiplier

 Radix-2 FFT

* Everything implemented as circuit generators in DE (but no proofs just yet)

Outline

e Link-Joint Model

* Asynchronous Register
 Multipliers

* Unsigned

* Signed

e Complex

* Radix-2 Decimation-in-time FFT Summary
e Self-timed Radix-2 FFT Module

e Summary and Future Work

Link-Joint Model

din dout
= D-latch(es) >
Ten
wr_fire
rd_fire
SR latch [«
S R
v full
Links

e Storage elements

e D-latches for Data

* SR latch for full status: is data valid?

* wr_fire: write new data & mark as full
* rd_fire: read data & mark as empty

rd_fire(s) wr_fire(s)

Joints

Data Processing Elements

Implements fire rules: decides when data should
proceed

Goes between two links

wr_fire: write to links

rd_fire: read from links

Link-Joint Model (cntd.)

Link to Joint Arrow:

o * Full (link->joint)
* Dout (link->joint)
Link * rd_fire (join->link)
- Link

Joint to Link Arrow: Link

* Full (link->joint) We can have as many joints and links
* Din (joint->link) connected together as long as they

e wr_fire (join->link) alternate!

Link

Link-Joint Model (cntd.)

Link to Joint Arrow:

* Full (link->joint)

* Dout (link->joint)
* rd_fire (join->link)

Link

Link N

Link

e

Joint to Link Arrow: Complex Link

* Full (link->joint) « A module/encapsulation that starts
* Din (joint->link) and ends with links.

* wr_fire (join->link) * Can be connected to joints on each
side.

* Denoted by a rectangle with rounded
Complex Lin corners

Link

Link

6

Link-Joint Model Restrictions

Restriction 1: Restriction 2:
A link cannot have multiple writer/reader joints A link cannot be read and written by the same joint

Link

How do you intervene and load data to modules? How do you update the same data when processing?

Asynchronous Register

\ 4

Li

Lin

rd

Lout

Async Register

Wr

v

Here, we propose an asynchronous register module.
* Load initial data to Li

* Write data to Lin (during processing)

* Read data from Lout (during processing)

* Denote the module with double lined rectangles

Function of Ji:
if (full(Li))
Lout = Li;
fire Li, Lin, Lout;
elsif (full(Lin) && empty(Lout))

Lout = Lin;
fire Lin, Lout;
end if;

* Now, we can load initial data, and use the same joint
to update data
* We can write and still read the previous data

Asynchronous n-bit Unsigned Multiplier

[0-bit

0 ;
—>»i| logn-bit
L-busy g
pre4fu|| Counter
M2 n-bit 2n-bit Res
— e
M.cand Result | rd_fire
sucfull
'\ﬁ n-bit
Multiplier
Acc

Unsigned Mult.
wr_fire \

Registers are initialized by
some external joint writing to
the module

L-busy indicates the module is
not ready (prefull) for new
input

Registers, M.cand, and L-busy
all use the same wr_fire signal
that originates externally.

The module behaves like a link
(complex link), only it has two
full signals

Double arrow indicates that
the joint both reads and writes.

Asynchronous n-bit Unsigned Multiplier (cntd.)

logn-bit

Counter

0-bit
L-busy
prejull
M2 n-bit
M.cand
'\£ n-bit
Multiplier

Acc

Unsigned Mult.

2n-bit Res
—
Result) rd_fire
sucfull

J-mul performs shift and add to

multiply.
e if MSB(Multiplier) is 1, add
M.cand to Acc
e Shift Multiplier and Acc
* When Counter=n, clear
everything and buffer Acc
to Result.

M.cand is just a link as we only
read from it.

The module can pipeline
requests. Can start another
calculation before Result is
cleared.

10

Asynchronous n-bit Unsigned Multiplier

prefire
—>

0-bit

Lstart

prefull

M1

prefire
—>

n-bit

prefire bit
— >

logn-
bit

L1

Multiplicand

J1

L2

prefire prefull

Multiplier

n-bit

L3

n-bit

L4

Multiplier B1

Multiplier B2

Laccl Lacc2

prefire

A 4

2n-bit

L5

sucfull
L

sucfire
<—

Result

!

l

sucfire sucfull

An external joint pre-
fires to start

Ji1, Ji2, Ji3 initialize
successor links

* Lentl=0

* Laccl=0

e |3=L2
Center Joint J1

processes and
propagates data
e If MSB(L3) then
Ishf and add L1
else
Ishf and buffer
Repeat when cnt<31
J1 finishes if cnt==31.
* Wrrestol5
* Release all
prelinks

11

Asynchronous 32-bit Unsigned Multiplier

. 5-bit
_ 0-bit prefire
prefire —>
—>
Lstart
prefull 5-bit 5-bit
Lentl Lent2
M1 32-bit
_ﬁ

Center

prefire
L1

Multiplicand 64-bit

M2 32-bit 32-bit 32-bit
_ﬁ

prefire
" 2 L3 L4
— Laccl
Multiplier Multiplier B1 ~ Multiplier B2
prefire
—

64-bit

LDm?2

64-bit

Lacc2

64-bit

sucfull
L

sucfire

L5

b

prefire prefull

Result

-4

sucfire sucfull

An external joint pre-
fires to start

Ji1, Ji2, Ji3 initialize
successor links

e Lentl=0
e Laccl=0
e L3=L2

Center Joint J1
processes and
propagates data
* |f MSB(L3) then
Ishf and add L1
else
Ishf and buffer
Repeat when cnt<31
J1 finishes if cnt==31.
* Wr.resto L5
* Release all
prelinks

12

Asynchronous 32-bit Unsigned Multiplier

prefire
—>

0-bit

Lstart

prefull

M1

prefire
—>

32-bit

prefire
—>

Center

L1

Multiplicand

M2
R —

prefire
—>

32-bit

L2

|

Multiplier

l

prefire prefull

J1

32-bit

L3

32-bit

L4

Multiplier B1

Multiplier B2

64-bit

Laccl

prefire
—>

64-bit

LDm?2

64-bit

Lacc2

64-bit

sucfull
L

sucfire

L5

Result

-4

sucfire sucfull

An external joint pre-
fires to start

Ji1, Ji2, Ji3 initialize
successor links

e Lentl=0
e Laccl=0
e L3=L2

Center Joint J1
processes and
propagates data
* |f MSB(L3) then
Ishf and add L1
else
Ishf and buffer
Repeat when cnt<31
J1 finishes if cnt==31.
* Wr.resto L5
* Release all
prelinks

13

Asynchronous 32-bit Unsigned Multiplier

64-bit

Lacc2

64-bit

sucfull
L

sucfire

L5

. 5-bit
. 0-bit prefire
prefire —>
—>
Lstart
prefull
M1 32-bit
_ﬁ
Center
i 1 \
prefire
L1
Multiplicand 64-bit
M2 32-bit 32-bit 32-bit
_ﬁ
prefire
L2 L3 L4
— Laccl
Multiplier Multiplier B1 Multiplier B2 64-bit
prefire
—* LDm2

|

l

prefire prefull

Result

-4

sucfire sucfull

An external joint pre-
fires to start

Ji1, Ji2, Ji3 initialize
successor links

e Lentl=0
e Laccl=0
e |3=L2

Center Joint J1
processes and
propagates data
* |f MSB(L3) then
Ishf and add L1
else
Ishf and buffer
Repeat when cnt<31
J1 finishes if cnt==31.
* Wr.resto L5
* Release all
prelinks

14

Asynchronous 32-bit Unsigned Multiplier

64-bit

Lacc2

64-bit

sucfull
L

sucfire

L5

. 5-bit
. 0-bit prefire
prefire —>
—>
Lstart
prefull
M1 32-bit
_ﬁ
Center
prefire
L1
Multiplicand 64-bit
M2 32-bit 32-bit 32-bit
_ﬁ
prefire
L2 L3 L4
— Laccl
Multiplier Multiplier B1 Multiplier B2 64-bit
prefire
—®» LDm2

|

l

prefire prefull

Result

-4

sucfire sucfull

An external joint pre-
fires to start

Ji1, Ji2, Ji3 initialize
successor links

e Lentl=0
e Laccl=0
e |3=L2

Center Joint J1
processes and
propagates data
* |f MSB(L3) then
Ishf and add L1
else
Ishf and buffer
Repeat when cnt<31
J1 finishes if cnt==31.
* Wr.resto L5
* Release all
prelinks

15

Asynchronous 32-bit Unsigned Multiplier

. 0-bit prefire
prefire —>
—>

Lstart

prefull

M1 32-bit

prefire

L1

Multiplicand 64-bit

M2 32-bit 32-bit 32-bit
_ﬁ

prefire
—>

L2 L3 L4

Laccl

Multiplier

Multiplier B1 Multiplier B2

prefire

—>

64-bit

LDm?2

64-bit

Lacc2

64-bit

sucfull
L

sucfire

L5

b

prefire prefull

Result

-4

sucfire sucfull

An external joint pre-
fires to start

Ji1, Ji2, Ji3 initialize
successor links

e Lentl=0
e Laccl=0
e L3=L2

Center Joint J1
processes and
propagates data
* |f MSB(L3) then
Ishf and add L1
else
Ishf and buffer
Repeat when cnt<31
J1 finishes if cnt==31.
* Wr.resto L5
* Release all
prelinks

16

Asynchronous 32-bit Unsigned Multiplier

prefire
—>

0-bit

Lstart

prefull

M1

prefire
—>

32-bit

prefire
—>

5-bit

L1

Multiplicand

M2
R —

prefire
—>

32-bit

L2

|

Multiplier

l

prefire prefull

J1

LSHF(L3)

4

32-bit

L3

32-bit

L4

Multiplier B1

Multiplier B2

5-bit

'\ 64-bit
Lcntl+1
sucfull
LSHF(Laccl) + (0 or L1)
X sucfire
64-bit 64-bit s [
Result
Laccl Lacc2
64-bit
prefire

—» LDm2

-4

sucfire sucfull

An external joint pre-
fires to start

Ji1, Ji2, Ji3 initialize
successor links

e Lentl=0
e Laccl=0
e L3=L2

Center Joint J1
processes and
propagates data
 |f MSB(L3) then
Ishf and add L1
else
Ishf and buffer
Repeat when cnt<31
J1 finishes if cnt==31.
* Wr.resto L5
* Release all
prelinks

17

Asynchronous 32-bit Unsigned Multiplier

prefire
—>

0-bit

Lstart

prefull

M1

prefire
—>

32-bit

prefire
—>

5-bit

L1

Multiplicand

M2
R —

prefire
—>

32-bit

L2

|

Multiplier

l

prefire prefull

J1

LSHF(L3)

4

32-bit

L3

32-bit

L4

Multiplier B1

Multiplier B2

5-bit

'\ 64-bit
Lcntl+1
LSHF(Laccl) + (0 or L1) suctul
N sucfire
64-bit 64-bit L
Result
Laccl Lacc2
64-bit
prefire

—» LDm2

-4

sucfire sucfull

An external joint pre-
fires to start

Ji1, Ji2, Ji3 initialize
successor links

e Lentl=0
e Laccl=0
e L3=L2

Center Joint J1
processes and
propagates data
 |f MSB(L3) then
Ishf and add L1
else
Ishf and buffer
Repeat when cnt<31
J1 finishes if cnt==31.
* Wr.resto L5
* Release all
prelinks

18

Asynchronous 32-bit Unsigned Multiplier

. 5-bit
. 0-bit prefire
prefire —>
—>
Lstart
prefull
M1 32-bit
_ﬁ

Center

64-bit

prefire
L1

Multiplicand 64-bit
M2 32-bit 32-bit 32-bit
_ﬁ
prefire
L2 L3 L4
- Laccl
Multiplier Multiplier B1 Multiplier B2

prefire
—>

64-bit

LDm?2

64-bit

Lacc2

b

prefire prefull

A 4

sucfull
L

sucfire

L5

Result

-4

sucfire sucfull

An external joint pre-
fires to start

Ji1, Ji2, Ji3 initialize
successor links

e Lentl=0
e Laccl=0
e L3=L2

Center Joint J1
processes and
propagates data
* |f MSB(L3) then
Ishf and add L1
else
Ishf and buffer
Repeat when cnt<31
J1 finishes if cnt==31.
* Wr.resto L5
* Release all
prelinks

19

Asynchronous 32-bit Unsigned Multiplier

. 5-bit
. 0-bit prefire
prefire —>
—>
Lstart
prefull
M1 32-bit
_ﬁ

Center

64-bit

prefire
L1

Multiplicand 64-bit
M2 32-bit 32-bit 32-bit
_ﬁ
prefire
L2 L3 L4
— Laccl
Multiplier Multiplier B1 Multiplier B2

prefire
—>

64-bit

LDm?2

64-bit

Lacc2

b

prefire prefull

A 4

sucfull
L

sucfire

L5

Result

-4

sucfire sucfull

An external joint pre-
fires to start

Ji1, Ji2, Ji3 initialize
successor links

e Lentl=0
e Laccl=0
e L3=L2

Center Joint J1
processes and
propagates data
* |f MSB(L3) then
Ishf and add L1
else
Ishf and buffer
Repeat when cnt<31
J1 finishes if cnt==31.
* Wr.resto L5
* Release all
prelinks

20

Asynchronous 32-bit Unsigned Multiplier

. 0-bit prefire
prefire —>
—>

Lstart

prefull

M1 32-bit

64-bit

prefire

L1

Multiplicand 64-bit

M2 32-bit 32-bit 32-bit
_ﬁ

prefire
—»

L2 L3 L4

Laccl

Multiplier

Multiplier B1 Multiplier B2

prefire

—>

64-bit

LDm?2

64-bit

Lacc2

b

prefire prefull

A 4

sucfull
L

sucfire

L5

Result

-4

sucfire sucfull

An external joint pre-
fires to start

Ji1, Ji2, Ji3 initialize
successor links

e Lentl=0
e Laccl=0
e L3=L2

Center Joint J1
processes and
propagates data
* |f MSB(L3) then
Ishf and add L1
else
Ishf and buffer
Repeat when cnt<31
J1 finishes if cnt==31.
* Wr.resto L5
* Release all
prelinks

21

Asynchronous 32-bit Unsigned Multiplier

. 5-bit
_ 0-bit prefire
prefire —>
—>
Lstart
prefull 5-bit 5-bit
Lentl Lent2
M1 32-bit
_ﬁ

Center

prefire
L1

Multiplicand 64-bit
M2 32-bit 32-bit 32-bit
_ﬁ
prefire
L2 L3 L4
- Laccl
Multiplier Multiplier B1 Multiplier B2

prefire
—>

64-bit

LDm?2

64-bit

Lacc2

64-bit

sucfull
>

sucfire

L5

L4

prefire prefull

Result

-4

sucfire sucfull

An external joint pre-
fires to start

Ji1, Ji2, Ji3 initialize
successor links

e Lentl=0
e Laccl=0
e L3=L2

Center Joint J1
processes and
propagates data
* |f MSB(L3) then
Ishf and add L1
else
Ishf and buffer
Repeat when cnt<31
J1 finishes if cnt==31.
* Wr.restolL5
 Release all
prelinks

22

Asynchronous n-bit Signed Multiplier

0-bit

L-busy

n-bit

L1

Multiplican

n-bit

L2

Multiplier

n-bit

Unsigned
Multiplier

~

2n-bit

L3

Res

Result

Signed Mult.

Unsigned Multiplier is used as
a link

A queue is used to make use of
pipelining capability of
Unsigned Multiplier.

J1 two’s complement inputs if
they’re negative

J2 buffers

J3 two’s complement the result
if the result is to be negative.

Signed Multiplier can pipeline 4

requests before Result is
cleared

23

Asynchronous n-bit Complex Multiplier

0-bit
" * Signed Multiplier is used as a
-busy :
prefgl_l | link.
" | 4) an-bit Res ~* Aqueue is used to make use of
L, | 2hit n-bit pipelining capability of Signed
‘ Multiplier.
oo - o see
Signed Multiplier 3
L1 - * Performs 4 real multiplication
Complex N1 - / 13 1 per a complex multiplication.
N2 2n-bit e , Result o
—rp o o ! * |t can pipeline 7 requests
1 | 1 1 .
! . . ! before Result is cleared
: see E
12 i Statel State4 | 1
Complex N2 omemmmmemmomeomomooees d u-e-u-e—l

Complex Mult.

24

Radix-2 Decimation-in-Time FFT Summary

- X G
—
X, N/2 G, /551\?
' oint
Evens 1 x, pDFT G, /Wy
. (FFT) W32
—Pp]
- X H,
X N/2 H, \v
——> int N/2+1
Odds { X Poin H, \%
=S DFT NTTEz
: (FFT) .
L ' : Wy
\ y)\ .)
log,(N/2) steps 1 step

Xny2
XN/2+1

XN/2+2

—j2mm/N

Goal is to calculate Discrete
Fourier Transform (DFT)
efficiently

A recursive algorithm
* Input divided into two sets
and N/2-point DFT is
calculated on each
* Results are paired up and
multiplied by a constant
Wy

There are log(N) steps in each
of which N complex
multiplications are performed.

25

Radix-2 Decimation-in-Time FFT Summary (cntd.)

The iterative solution is needed

* Wheninitializing: before implementing

next; = inputs(reverse—bits i)

An formula to redistribute

* When calculating: inputs for initialization
if i>y i
- Z i
next; = prev, + prev; * Wy - ¢ Iterate over each step and then

else - each number
next; = prev; + prev, * Wy ‘

* Find the formula to determine

where the constant I/
i = index of number being processed [0 N)
s = current step [0 logN) * Find the formula to determine

y = I's sth bit flipped ~ the other number n2
z=i<<logN-s 1
* Update numbers with n1*
Wy' +n2
Old values (prev) need to be retained as they’re used twice!

26

Asynchronous Radix-2 FFT

0-bit

L-busy

m-bit

\ 4

XO|‘

—

m-bit

X1

k-bit

CNT

ROM

m-bit

Xn-1]-—

»
o

v

O)

\?/
v

v v
m-bit
Complex Index Num.
.p) Queue Queue
Multiplier
v v v

A

J2

A 4

A4

m-bit

RO

v

m-bit

R1

m-bit

Rn-1

FFT

k = ceil(log(logn) + logn) |

For N-point FFT, numbers are
stored in N registers.

J1

* Keeps track of state

e Selects number pair

* Selects what W to read
J2

e Performs addition

* Writes the resulting

number to a register

Index Q. : index of the number
processed

Number Q. : pair of the number
processed

Old values are kept until next
step while J2 writes on the
registers!

27

Summary and Future Work

* An asynchronous “register” module is proposed.
* Hopefully, it’ll be used developing even more complex machines

A radix-2 FFT module with a single multiplier implemented as circuit generators in
DE

* Plan to work on the functional correctness of the given modules
* Plan to introduce new designs using the link-joint model

