PRuning Through Satisfaction

Marijn J.H. Heule, Benjamin Kiesl, Martina Seidl, and Armin Biere

UT Austin, Vienna University of Technology, and JKU Linz

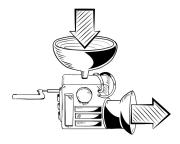
ACL2 Seminar

March 2, 2018

SAT problem:

Given a propositional formula, is it satisfiable?

$(x \lor y) \land (x \lor \overline{y}) \land (\overline{y} \lor \overline{z})$

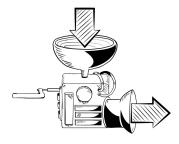


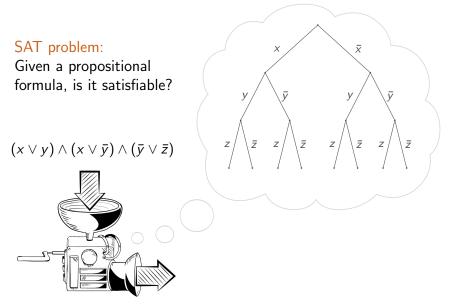
SAT problem:

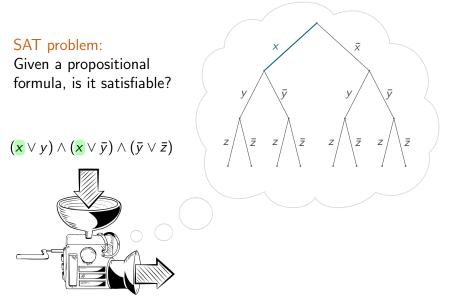
Given a propositional formula, is it satisfiable?

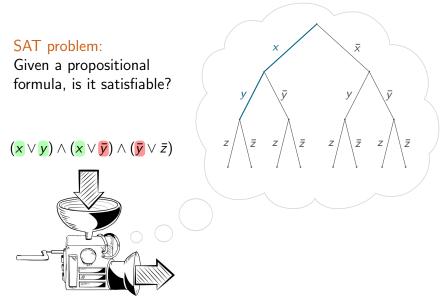
Input Formula in CNF

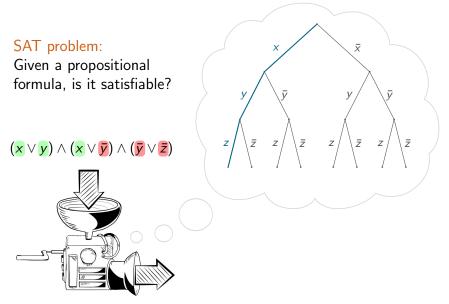
$$\bigvee (x \lor y) \land (x \lor \overline{y}) \land (\overline{y} \lor \overline{z})$$

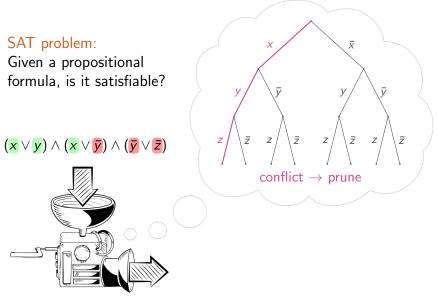


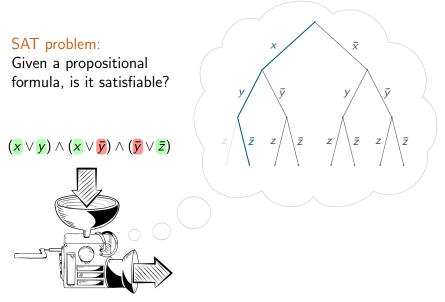


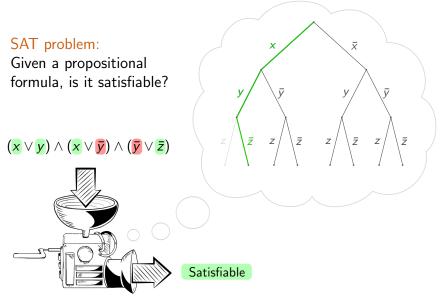


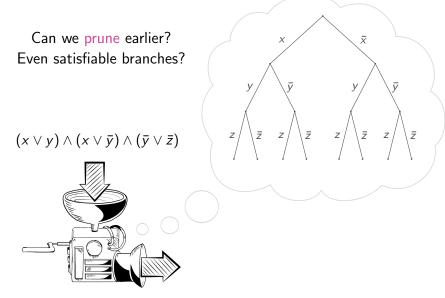


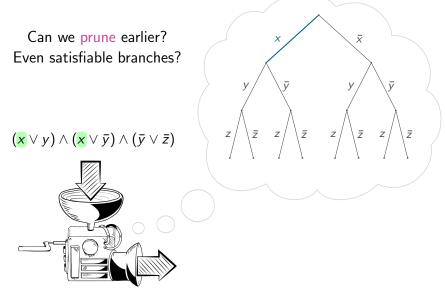


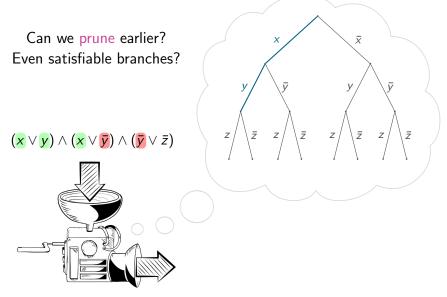


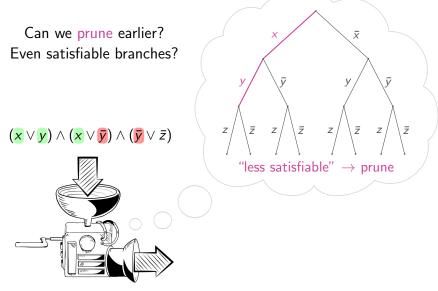


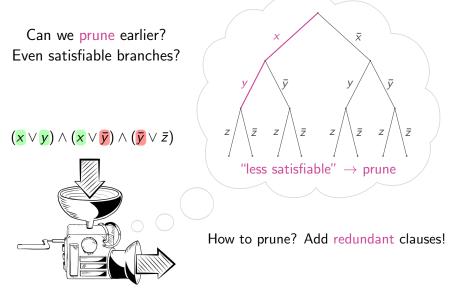


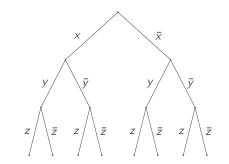






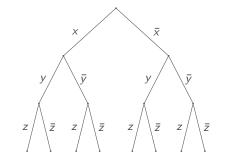






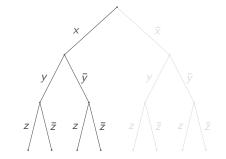
• A clause prunes all branches that falsify the clause.

Example: The clause (x) prunes all branches where x is false.

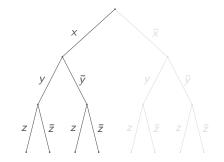


• A clause prunes all branches that falsify the clause.

Example: The clause (x) prunes all branches where x is false.



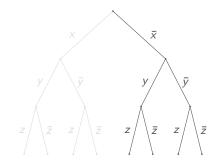
- **Example:** The clause (x) prunes all branches where x is false.
- Other Examples:



• A clause prunes all branches that falsify the clause.

Example: The clause (x) prunes all branches where x is false.

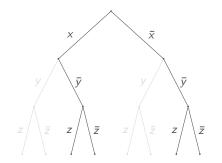
• Other Examples: (\bar{x})



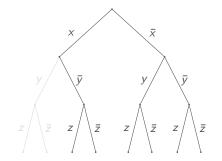
• A clause prunes all branches that falsify the clause.

Example: The clause (x) prunes all branches where x is false.

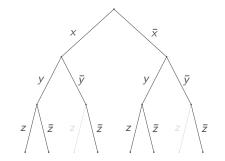
• Other Examples: (\bar{x}) (\bar{y})



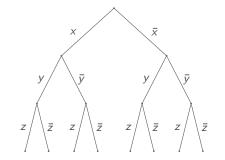
- **Example:** The clause (x) prunes all branches where x is false.
- Other Examples: (\bar{x}) (\bar{y}) $(\bar{x} \lor \bar{y})$



- **Example:** The clause (x) prunes all branches where x is false.
- Other Examples: (\bar{x}) (\bar{y}) $(\bar{x} \lor \bar{y})$ $(y \lor \bar{z})$



- **Example:** The clause (x) prunes all branches where x is false.
- Other Examples: (\bar{x}) (\bar{y}) $(\bar{x} \lor \bar{y})$ $(y \lor \bar{z})$ $(x \lor \bar{x})$



Introduction

The Positive Reduct

Conditional Autarkies

The Algorithm

Evaluation

Conclusions and Future Work

The Positive Reduct

Traditional Proofs vs. Interference-Based Proofs

In traditional proof systems, everything that is inferred, is logically implied by the premises.

$$\frac{C \lor x \quad \overline{x} \lor D}{C \lor D} \text{ (res)} \qquad \frac{A \quad A \to B}{B} \text{ (mp)}$$

Traditional Proofs vs. Interference-Based Proofs

In traditional proof systems, everything that is inferred, is logically implied by the premises.

$$\frac{C \lor x \quad \overline{x} \lor D}{C \lor D} \text{ (res) } \qquad \frac{A \quad A \to B}{B} \text{ (mp)}$$

- ➡ Inference rules reason about the presence of facts.
 - If certain premises are present, infer the conclusion.

Traditional Proofs vs. Interference-Based Proofs

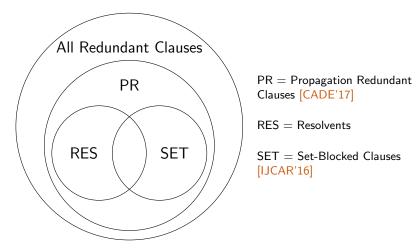
In traditional proof systems, everything that is inferred, is logically implied by the premises.

$$\frac{C \lor x \quad \overline{x} \lor D}{C \lor D} \text{ (res) } \qquad \frac{A \quad A \to B}{B} \text{ (mp)}$$

- ➡ Inference rules reason about the presence of facts.
 - If certain premises are present, infer the conclusion.
 - Different approach: Allow not only implied conclusions.
 - Require only that the addition of facts preserves satisfiability.
 - Reason also about the absence of facts.
 - ➡ This leads to interference-based proof systems.

Redundant Clauses

A clause C is redundant w.r.t. a formula F if and only if F and $F \wedge C$ are either both satisfiable or both unsatisfiable.



Determining whether a clause C is SET or PR w.r.t. a formula F is an NP-complete problem.

How to find SET and PR clauses? Encode it in SAT!

Determining whether a clause C is SET or PR w.r.t. a formula F is an NP-complete problem.

How to find SET and PR clauses? Encode it in SAT!

Given a formula F and a clause C. Let α denote the smallest assignment that falsifies C. The positive reduct of F and α is a formula which is satisfiable if and only if C is SET w.r.t. F.

Determining whether a clause C is SET or PR w.r.t. a formula F is an NP-complete problem.

How to find SET and PR clauses? Encode it in SAT!

Given a formula F and a clause C. Let α denote the smallest assignment that falsifies C. The positive reduct of F and α is a formula which is satisfiable if and only if C is SET w.r.t. F.

Positive reducts are typically very easy to solve!

Determining whether a clause C is SET or PR w.r.t. a formula F is an NP-complete problem.

How to find SET and PR clauses? Encode it in SAT!

Given a formula F and a clause C. Let α denote the smallest assignment that falsifies C. The positive reduct of F and α is a formula which is satisfiable if and only if C is SET w.r.t. F.

Positive reducts are typically very easy to solve!

Key Idea: While solving a formula F, check whether the positive reduct of F and the current assignment α is satisfiable. In that case, prune the branch α .

The Positive Reduct: An Example

Given a formula F and a clause C. Let α denote the smallest assignment that falsifies C. The positive reduct of F and α , denoted by $p(F, \alpha)$, is the formula that contains C and all assigned (D, α) with $D \in F$ and D is satisfied by α .

Example

Consider the formula $F := (x \lor y) \land (x \lor \overline{y}) \land (\overline{y} \lor \overline{z}).$

Let $C_1 = (\bar{x})$, so $\alpha_1 = x$. The positive reduct $p(F, \alpha_1) = (\bar{x}) \land (x) \land (x)$ is unsatisfiable. Let $C_2 = (\bar{x} \lor \bar{y})$, so $\alpha_2 = x y$. The positive reduct $p(F, \alpha_2) = (\bar{x} \lor \bar{y}) \land (x \lor y) \land (x \lor \bar{y})$ is satisfiable.

Conditional Autarkies

Autarkies

A non-empty assignment α is an autarky for formula F if every clause $C \in F$ that is touched by α is also satisfied by α .

A pure literal and a satisfying assignment are autarkies.

Example

Consider the formula $F := (x \lor y) \land (x \lor \bar{y}) \land (\bar{y} \lor \bar{z})$. Assignment $\alpha_1 = \bar{z}$ is an autarky: $(x \lor y) \land (x \lor \bar{y}) \land (\bar{y} \lor \bar{z})$. Assignment $\alpha_2 = x \bar{y} z$ is an autarky: $(x \lor y) \land (x \lor \bar{y}) \land (\bar{y} \lor \bar{z})$.

Autarkies

A non-empty assignment α is an autarky for formula F if every clause $C \in F$ that is touched by α is also satisfied by α .

A pure literal and a satisfying assignment are autarkies.

Example

Consider the formula $F := (x \lor y) \land (x \lor \overline{y}) \land (\overline{y} \lor \overline{z})$. Assignment $\alpha_1 = \overline{z}$ is an autarky: $(x \lor y) \land (x \lor \overline{y}) \land (\overline{y} \lor \overline{z})$. Assignment $\alpha_2 = x \, \overline{y} \, z$ is an autarky: $(x \lor y) \land (x \lor \overline{y}) \land (\overline{y} \lor \overline{z})$.

Given an assignment α , $F|_{\alpha}$ denotes a formula F without the clauses satisfied by α and without the literals falsified by α .

Theorem ([Monien and Speckenmeyer 1985]) Let α be an autarky for formula F. Then, F and $F|_{\alpha}$ are satisfiability equivalent.

Conditional Autarkies

An assignment $\alpha = \alpha_{con} \cup \alpha_{aut}$ is a conditional autarky for formula F if α_{aut} is an autarky for $F|_{\alpha_{con}}$.

Example

Consider the formula $F := (x \lor y) \land (x \lor \overline{y}) \land (\overline{y} \lor \overline{z})$. Let $\alpha_{con} = x$ and $\alpha_{aut} = \overline{y}$, then $\alpha = \alpha_{con} \cup \alpha_{aut} = x \overline{y}$ is a conditional autarky for F:

$$\alpha_{\text{aut}} = \bar{y}$$
 is an autarky for $F \mid \alpha_{\text{con}} = (\bar{y} \lor \bar{z})$.

Conditional Autarkies

An assignment $\alpha = \alpha_{con} \cup \alpha_{aut}$ is a conditional autarky for formula F if α_{aut} is an autarky for $F|_{\alpha_{con}}$.

Example

Consider the formula $F := (x \lor y) \land (x \lor \bar{y}) \land (\bar{y} \lor \bar{z})$. Let $\alpha_{con} = x$ and $\alpha_{aut} = \bar{y}$, then $\alpha = \alpha_{con} \cup \alpha_{aut} = x \bar{y}$ is a conditional autarky for F:

$$\alpha_{\text{aut}} = \bar{y}$$
 is an autarky for $F \mid \alpha_{\text{con}} = (\bar{y} \lor \bar{z})$.

Let $\alpha = \alpha_{con} \cup \alpha_{aut}$ be a conditional autarky for formula F. Then F and $F \land (\alpha_{con} \to \alpha_{aut})$ are satisfiability-equivalent.

In the above example, we could therefore learn $(\bar{x} \lor \bar{y})$.

Learning PR clauses

Theorem

Given a formula F and an assignment α . Every satisfying assignment ω of $p(F, \alpha)$ is a conditional autarky of F.

Recall: Given a formula F and a clause C. Let α denote the smallest assignment that falsifies C. C is SET w.r.t. F if and only if $p(F, \alpha)$ is satisfiable.

Let assignment ω satisfy $p(F, \alpha)$. Removing all but one of the literals in C that are satisfied by ω results in a PR clause w.r.t. F.

The Algorithm

Pseudo-Code of CDCL (formula F)

```
\alpha := \emptyset
 1
       forever do
 2
          \alpha := Simplify (F, \alpha)
 з
          if F|_{\alpha} contains a falsified clause then
 4
              C := AnalyzeConflict ()
 5
             if C is the empty clause then return unsatisfiable
 6
             F := F \cup \{C\}
 7
             \alpha := \mathsf{BackJump}(C, \alpha)
 8
          else
13
             I := Decide()
14
             if / is undefined then return satisfiable
15
             \alpha := \alpha \cup \{I\}
16
```

Pseudo-Code of SDCL (formula *F*)

1	$\alpha := \emptyset$
2	forever do
3	$\alpha := Simplify \ (F, \alpha)$
4	if $F _{\alpha}$ contains a falsified clause then
5	C := AnalyzeConflict ()
6	if C is the empty clause then return unsatisfiable
7	$F := F \cup \{C\}$
8	$\alpha := BackJump(\mathcal{C}, \alpha)$
9	else if $p(F, \alpha)$ is satisfiable then
10	C := AnalyzeWitness ()
11	$F:=F\cup\{C\}$
12	$\alpha := BackJump(\mathcal{C}, \alpha)$
13	else
14	/ := Decide ()
15	if / is undefined then return satisfiable
16	$\alpha := \alpha \cup \{l\}$

Evaluation

Benchmark Suite: Pigeon Hole Formulas

Can n+1 pigeons be placed in n holes (at-most-one pigeon per hole)?

$$\mathsf{PHP}_n := \bigwedge_{1 \le p \le n+1} (x_{1,p} \lor \cdots \lor x_{n,p}) \land \bigwedge_{1 \le h \le n, \ 1 \le p < q \le n+1} (\overline{x}_{h,p} \lor \overline{x}_{h,q})$$

The binary clauses encode the constraint $\leq_1 (x_{h,1}; \ldots; x_{h,n+1})$.

There exists more compact encodings, such as the sequential counter and minimal encoding, for at-most-one constraints.

We include these encodings to evaluate the robustness of the solver.

We used three tools in our evaluation:

- EBDDRES: A tool based on binary decision diagrams that can convert a refutation into an extended resolution proof.
- GLUCOSER: A SAT solver with extended learning, i.e., a technique that introduces new variables and could potentially solve pigeon hole formulas in polynomial time.
- LINGELING (PR): Our SDCL solver.

Results on Small Pigeon Hole Formulas

	input		Ebddres		GLUCOSER		LINGELING (PR)	
formula	#var	#cls	time	#node	time	#lemma	time	#lemma
PHP ₁₀ -std	110	561	1.00	3M	22.71	329,470	0.07	329
PHP_{11} -std	132	738	3.47	9M	146.61	1,514,845	0.11	439
PHP_{12} -std	156	949	10.64	27M	307.29	2,660,358	0.16	571
PHP_{13} -std	182	1,197	30.81	76M	982.84	6,969,736	0.22	727
PHP ₁₀ -seq	220	311	OF		1.62	25,712	0.07	327
PHP_{11} -seq	264	375	OF		6.94	77,747	0.10	437
PHP_{12} -seq	312	445	OF		19.40	174,084	0.14	569
PHP_{13} -seq	364	521	OF		172.76	1,061,318	0.18	725
PHP ₁₀ -min	180	281	28.60	81M	0.64	15,777	0.06	329
PHP ₁₁ -min	220	342	143.92	399M	1.82	34,561	0.10	439
PHP ₁₂ -min	264	409	OF		9.87	121,321	0.13	571
PHP ₁₃ -min	312	482	OF		57.66	483,789	0.18	727

OF = 32-bit overflow

Results on Large Pigeon Hole Formulas

	input		Ebddres		GLUCOSER		LINGELING (PR)	
formula	#var	#cls	time	#node	time	#lemma	time	#lemma
PHP ₂₀ -std	420	4,221	OF		TO		1.61	2,659
PHP_{30} -std	930	13,981	OF		ТО		13.45	8,989
PHP_{40} -std	1,640	32,841	OF		ТО		67.41	21,319
PHP_{50} -std	2,550	63,801	OF		ТО		241.14	41,649
PHP ₂₀ -seq	840	1,221	OF		TO		1.05	2,657
PHP ₃₀ -seq	1,860	2,731	OF		ТО		6.55	8,987
PHP ₄₀ -seq	3,280	4,841	OF		ТО		27.10	21,317
PHP ₅₀ -seq	5,100	7,551	OF		ТО		86.30	41,647
PHP ₂₀ -min	760	1,161	OF		TO		1.03	2,659
PHP ₃₀ -min	1,740	2,641	OF		то		6.30	8,989
PHP ₄₀ -min	3,120	4,721	OF		ТО		26.65	21,319
PHP ₅₀ -min	4,900	7,401	OF		ТО		85.00	41,649

OF = 32-bit overflow

TO = timeout of 9000 seconds

Conclusions and Future Work

Conclusions

SDCL generalizes the well-known CDCL paradigm by allowing to prune branches that are potentially satisfiable:

- Such branches can be found using the positive reduct;
- Pruning can be expressed in the PR proof system;
- Runtime and proofs can be exponentially smaller.

Our SDCL solver finds short proofs of pigeon hole formulas:

- Integrated in the state-of-the-art solver Lingeling;
- Linear sized proofs in $\mathcal{O}(n^3)$ can be found fully automatically;
- The implementation is efficient, robust, and open source.

Future Work

- SDCL likely requires different heuristics compared to CDCL
- Can more branches be pruned using stronger SAT calls?
- How to minimize clauses from pruning through satisfaction?
- Can SLS techniques be used to find conditional autarkies?

PRuning Through Satisfaction

Marijn J.H. Heule, Benjamin Kiesl, Martina Seidl, and Armin Biere

UT Austin, Vienna University of Technology, and JKU Linz

ACL2 Seminar

March 2, 2018