
A Unifying Principle for
Clause Elimination in First-Order Logic

Benjamin Kiesl Martin Suda

Institute for Logic and Computation, TU Wien



Topic of the Talk

Preprocessing techniques for first-order theorem provers.

• Improve the efficiency of provers by simplifying the input.

In particular, clause-elimination techniques:

• Remove redundant clauses from a formula in CNF.

Many clause-elimination techniques are used in SAT solving but
not in first-order logic yet.

We lifted SAT techniques to first-order logic without equality.

• We proved correctness in a uniform way by introducing the
principle of implication modulo resolution.

2 / 21



Topic of the Talk

Preprocessing techniques for first-order theorem provers.

• Improve the efficiency of provers by simplifying the input.

In particular, clause-elimination techniques:

• Remove redundant clauses from a formula in CNF.

Many clause-elimination techniques are used in SAT solving but
not in first-order logic yet.

We lifted SAT techniques to first-order logic without equality.

• We proved correctness in a uniform way by introducing the
principle of implication modulo resolution.

2 / 21



Topic of the Talk

Preprocessing techniques for first-order theorem provers.

• Improve the efficiency of provers by simplifying the input.

In particular, clause-elimination techniques:

• Remove redundant clauses from a formula in CNF.

Many clause-elimination techniques are used in SAT solving but
not in first-order logic yet.

We lifted SAT techniques to first-order logic without equality.

• We proved correctness in a uniform way by introducing the
principle of implication modulo resolution.

2 / 21



Topic of the Talk

Preprocessing techniques for first-order theorem provers.

• Improve the efficiency of provers by simplifying the input.

In particular, clause-elimination techniques:

• Remove redundant clauses from a formula in CNF.

Many clause-elimination techniques are used in SAT solving but
not in first-order logic yet.

We lifted SAT techniques to first-order logic without equality.

• We proved correctness in a uniform way by introducing the
principle of implication modulo resolution.

2 / 21



Topic of the Talk

Preprocessing techniques for first-order theorem provers.

• Improve the efficiency of provers by simplifying the input.

In particular, clause-elimination techniques:

• Remove redundant clauses from a formula in CNF.

Many clause-elimination techniques are used in SAT solving but
not in first-order logic yet.

We lifted SAT techniques to first-order logic without equality.

• We proved correctness in a uniform way by introducing the
principle of implication modulo resolution.

2 / 21



Outline

First-order theorem proving and preprocessing in a nutshell.

Details on one successful approach for preprocessing:

• Clause-elimination techniques.

Overview of techniques we lifted.

The unifying principle of implication modulo resolution.

Confluence results.

Future work.

3 / 21



First-Order Theorem Proving

Input: Formula in first-order logic.

Output: Proof

Applications: Mathematics, verification of software and
hardware, reasoning over knowledge bases, etc.

Q(a, b) ∧ ((∀x∀yP(x , y)↔ P(y , x))→ (¬P(a, b) ∨ P(b, a)))

Proof

4 / 21



First-Order Theorem Proving

Input: Formula in first-order logic.

Output: Proof

Applications: Mathematics, verification of software and
hardware, reasoning over knowledge bases, etc.

Q(a, b) ∧ ((∀x∀yP(x , y)↔ P(y , x))→ (¬P(a, b) ∨ P(b, a)))

Proof

4 / 21



Automatic First-Order Theorem Proving

(b)

Proving

Preprocessing

Preprocessing

Simplified Formula
in CNF (negated)

Q(a, b) ∧ ((∀x∀yP(x , y)↔ P(y , x))→ (¬P(a, b) ∨ P(b, a)))

Q(a, b) ∧ ((∀x∀yP(x , y)↔ P(y , x))→ (¬P(a, b) ∨ P(b, a)))

Q(a, b) ∧ ((∀x∀yP(x , y)↔ P(y , x))→ (¬P(a, b) ∨ P(b, a)))

(¬P(x , y) ∨ P(y , x)) ∧ P(a, b) ∧ ¬P(b, a)

Refutation

5 / 21



Automatic First-Order Theorem Proving

(b)

Proving

Preprocessing

Preprocessing

Simplified Formula
in CNF (negated)

Q(a, b) ∧ ((∀x∀yP(x , y)↔ P(y , x))→ (¬P(a, b) ∨ P(b, a)))

Q(a, b) ∧ ((∀x∀yP(x , y)↔ P(y , x))→ (¬P(a, b) ∨ P(b, a)))

Q(a, b) ∧ ((∀x∀yP(x , y)↔ P(y , x))→ (¬P(a, b) ∨ P(b, a)))

(¬P(x , y) ∨ P(y , x)) ∧ P(a, b) ∧ ¬P(b, a)

Refutation

5 / 21



Automatic First-Order Theorem Proving

(b)

Proving

Preprocessing

Preprocessing

Simplified Formula
in CNF (negated)

Q(a, b) ∧ ((∀x∀yP(x , y)↔ P(y , x))→ (¬P(a, b) ∨ P(b, a)))

Q(a, b) ∧ ((∀x∀yP(x , y)↔ P(y , x))→ (¬P(a, b) ∨ P(b, a)))

Q(a, b) ∧ ((∀x∀yP(x , y)↔ P(y , x))→ (¬P(a, b) ∨ P(b, a)))

(¬P(x , y) ∨ P(y , x)) ∧ P(a, b) ∧ ¬P(b, a)

Refutation

5 / 21



Automatic First-Order Theorem Proving

(b)

Proving

Preprocessing

Preprocessing

Simplified Formula
in CNF (negated)

Q(a, b) ∧ ((∀x∀yP(x , y)↔ P(y , x))→ (¬P(a, b) ∨ P(b, a)))

Q(a, b) ∧ ((∀x∀yP(x , y)↔ P(y , x))→ (¬P(a, b) ∨ P(b, a)))

Q(a, b) ∧ ((∀x∀yP(x , y)↔ P(y , x))→ (¬P(a, b) ∨ P(b, a)))

(¬P(x , y) ∨ P(y , x)) ∧ P(a, b) ∧ ¬P(b, a)

Refutation

5 / 21



Automatic First-Order Theorem Proving

(b)

Proving

Preprocessing

Preprocessing

Simplified Formula
in CNF (negated)

Q(a, b) ∧ ((∀x∀yP(x , y)↔ P(y , x))→ (¬P(a, b) ∨ P(b, a)))

Q(a, b) ∧ ((∀x∀yP(x , y)↔ P(y , x))→ (¬P(a, b) ∨ P(b, a)))

Q(a, b) ∧ ((∀x∀yP(x , y)↔ P(y , x))→ (¬P(a, b) ∨ P(b, a)))

(¬P(x , y) ∨ P(y , x)) ∧ P(a, b) ∧ ¬P(b, a)

Refutation

5 / 21



Automatic First-Order Theorem Proving

(b)

Proving

Preprocessing

Preprocessing

Simplified Formula
in CNF (negated)

Q(a, b) ∧ ((∀x∀yP(x , y)↔ P(y , x))→ (¬P(a, b) ∨ P(b, a)))

Q(a, b) ∧ ((∀x∀yP(x , y)↔ P(y , x))→ (¬P(a, b) ∨ P(b, a)))

Q(a, b) ∧ ((∀x∀yP(x , y)↔ P(y , x))→ (¬P(a, b) ∨ P(b, a)))

(¬P(x , y) ∨ P(y , x)) ∧ P(a, b) ∧ ¬P(b, a)

Refutation

5 / 21



Resolution Refutations (Propositional Logic)

Resolution Rule: Derive C ∨ D from C ∨ L and ¬L ∨ D:

C ∨ L ¬L ∨ D
C ∨ D

å C ∨ D is a resolvent of C ∨ L upon L.

Every unsatisfiable formula can be refuted by resolution.

Example: F = (¬P ∨ Q) ∧ (P) ∧ (¬Q)

¬P ∨ Q P
Q ¬Q

⊥

6 / 21



Resolution Refutations (Propositional Logic)

Resolution Rule: Derive C ∨ D from C ∨ L and ¬L ∨ D:

C ∨ L ¬L ∨ D
C ∨ D

å C ∨ D is a resolvent of C ∨ L upon L.

Every unsatisfiable formula can be refuted by resolution.

Example: F = (¬P ∨ Q) ∧ (P) ∧ (¬Q)

¬P ∨ Q P
Q ¬Q

⊥

6 / 21



Resolution Refutations (Propositional Logic)

Resolution Rule: Derive C ∨ D from C ∨ L and ¬L ∨ D:

C ∨ L ¬L ∨ D
C ∨ D

å C ∨ D is a resolvent of C ∨ L upon L.

Every unsatisfiable formula can be refuted by resolution.

Example: F = (¬P ∨ Q) ∧ (P) ∧ (¬Q)

¬P ∨ Q P
Q ¬Q

⊥

6 / 21



Resolution Refutations (Propositional Logic)

Resolution Rule: Derive C ∨ D from C ∨ L and ¬L ∨ D:

C ∨ L ¬L ∨ D
C ∨ D

å C ∨ D is a resolvent of C ∨ L upon L.

Every unsatisfiable formula can be refuted by resolution.

Example: F = (¬P ∨ Q) ∧ (P) ∧ (¬Q)

¬P ∨ Q P
Q ¬Q

⊥

6 / 21



Resolution Refutations (First-Order Logic)

Resolution Rule: Derive (C ∨ D)σ from C ∨ L(t1, . . . , tn) and
¬L(s1, . . . , sn) ∨D if σ unifies L(t1, . . . , tn) and L(s1, . . . , sn):

Intuitively, a mapping σ unifies literals if it makes them equal:

• P(x , y) and P(a, b) are unifiable → σ(x) = a and σ(y) = b.

• P(b, a) and P(b, a) are unifiable → no mapping necessary.

Example Refutation:
F = (¬P(x , y) ∨ P(y , x)) ∧ P(a, b) ∧ ¬P(b, a)

¬P(x , y) ∨ P(y , x) P(a, b)

P(b, a) ¬P(b, a)

⊥

7 / 21



Resolution Refutations (First-Order Logic)

Resolution Rule: Derive (C ∨ D)σ from C ∨ L(t1, . . . , tn) and
¬L(s1, . . . , sn) ∨D if σ unifies L(t1, . . . , tn) and L(s1, . . . , sn):

Intuitively, a mapping σ unifies literals if it makes them equal:

• P(x , y) and P(a, b) are unifiable → σ(x) = a and σ(y) = b.

• P(b, a) and P(b, a) are unifiable → no mapping necessary.

Example Refutation:
F = (¬P(x , y) ∨ P(y , x)) ∧ P(a, b) ∧ ¬P(b, a)

¬P(x , y) ∨ P(y , x) P(a, b)

P(b, a) ¬P(b, a)

⊥

7 / 21



Resolution Refutations (First-Order Logic)

Resolution Rule: Derive (C ∨ D)σ from C ∨ L(t1, . . . , tn) and
¬L(s1, . . . , sn) ∨D if σ unifies L(t1, . . . , tn) and L(s1, . . . , sn):

Intuitively, a mapping σ unifies literals if it makes them equal:

• P(x , y) and P(a, b) are unifiable → σ(x) = a and σ(y) = b.

• P(b, a) and P(b, a) are unifiable → no mapping necessary.

Example Refutation:
F = (¬P(x , y) ∨ P(y , x)) ∧ P(a, b) ∧ ¬P(b, a)

¬P(x , y) ∨ P(y , x) P(a, b)

P(b, a) ¬P(b, a)

⊥

7 / 21



Resolution Refutations (First-Order Logic)

Resolution Rule: Derive (C ∨ D)σ from C ∨ L(t1, . . . , tn) and
¬L(s1, . . . , sn) ∨D if σ unifies L(t1, . . . , tn) and L(s1, . . . , sn):

Intuitively, a mapping σ unifies literals if it makes them equal:

• P(x , y) and P(a, b) are unifiable → σ(x) = a and σ(y) = b.

• P(b, a) and P(b, a) are unifiable → no mapping necessary.

Example Refutation:
F = (¬P(x , y) ∨ P(y , x)) ∧ P(a, b) ∧ ¬P(b, a)

¬P(x , y) ∨ P(y , x) P(a, b)

P(b, a) ¬P(b, a)

⊥

7 / 21



Automatic First-Order Theorem Proving

(b)

Proving

Preprocessing

Simplified Formula
in CNF (negated)

What’s going on here?

Q(a, b) ∧ ((∀x∀yP(x , y)↔ P(y , x))→ (¬P(a, b) ∨ P(b, a)))

(¬P(x , y) ∨ P(y , x)) ∧ P(a, b) ∧ ¬P(b, a)

Resolution Refutation

8 / 21



Automatic First-Order Theorem Proving

(b)

Proving

Preprocessing

Simplified Formula
in CNF (negated)

What’s going on here?

Q(a, b) ∧ ((∀x∀yP(x , y)↔ P(y , x))→ (¬P(a, b) ∨ P(b, a)))

(¬P(x , y) ∨ P(y , x)) ∧ P(a, b) ∧ ¬P(b, a)

Resolution Refutation

8 / 21



Automatic First-Order Theorem Proving

(b)

Proving

Preprocessing

Simplified Formula
in CNF (negated)

What’s going on here?

8 / 21



Preprocessing Pipeline

Topic of this talk: Simplifications on the clause level.

Q(a, b) ∧ ((∀x∀yP(x , y)↔ P(y , x))→ (¬P(a, b) ∨ P(b, a)))

Simplifications on Formula Level

((∀x∀yP(x , y)↔ P(y , x))→ (¬P(a, b) ∨ P(b, a)))

Negation & Clausification

(P(x , y) ∨ ¬P(y , x)) ∧ (¬P(x , y) ∨ P(y , x)) ∧ P(a, b) ∧ ¬P(b, a)

Simplifications on Clause LevelSimplifications on Clause Level

(¬P(x , y) ∨ P(y , x)) ∧ P(a, b) ∧ ¬P(b, a)

9 / 21



Preprocessing Pipeline

Topic of this talk: Simplifications on the clause level.

Q(a, b) ∧ ((∀x∀yP(x , y)↔ P(y , x))→ (¬P(a, b) ∨ P(b, a)))

Simplifications on Formula Level

((∀x∀yP(x , y)↔ P(y , x))→ (¬P(a, b) ∨ P(b, a)))

Negation & Clausification

(P(x , y) ∨ ¬P(y , x)) ∧ (¬P(x , y) ∨ P(y , x)) ∧ P(a, b) ∧ ¬P(b, a)

Simplifications on Clause LevelSimplifications on Clause Level

(¬P(x , y) ∨ P(y , x)) ∧ P(a, b) ∧ ¬P(b, a)

9 / 21



Preprocessing Pipeline

Topic of this talk: Simplifications on the clause level.

Q(a, b) ∧ ((∀x∀yP(x , y)↔ P(y , x))→ (¬P(a, b) ∨ P(b, a)))

Simplifications on Formula Level

((∀x∀yP(x , y)↔ P(y , x))→ (¬P(a, b) ∨ P(b, a)))

Negation & Clausification

(P(x , y) ∨ ¬P(y , x)) ∧ (¬P(x , y) ∨ P(y , x)) ∧ P(a, b) ∧ ¬P(b, a)

Simplifications on Clause LevelSimplifications on Clause Level

(¬P(x , y) ∨ P(y , x)) ∧ P(a, b) ∧ ¬P(b, a)

9 / 21



Preprocessing Pipeline

Topic of this talk: Simplifications on the clause level.

Q(a, b) ∧ ((∀x∀yP(x , y)↔ P(y , x))→ (¬P(a, b) ∨ P(b, a)))

Simplifications on Formula Level

((∀x∀yP(x , y)↔ P(y , x))→ (¬P(a, b) ∨ P(b, a)))

Negation & Clausification

(P(x , y) ∨ ¬P(y , x)) ∧ (¬P(x , y) ∨ P(y , x)) ∧ P(a, b) ∧ ¬P(b, a)

Simplifications on Clause LevelSimplifications on Clause Level

(¬P(x , y) ∨ P(y , x)) ∧ P(a, b) ∧ ¬P(b, a)

9 / 21



Preprocessing Pipeline

Topic of this talk: Simplifications on the clause level.

Q(a, b) ∧ ((∀x∀yP(x , y)↔ P(y , x))→ (¬P(a, b) ∨ P(b, a)))

Simplifications on Formula Level

((∀x∀yP(x , y)↔ P(y , x))→ (¬P(a, b) ∨ P(b, a)))

Negation & Clausification

(P(x , y) ∨ ¬P(y , x)) ∧ (¬P(x , y) ∨ P(y , x)) ∧ P(a, b) ∧ ¬P(b, a)

Simplifications on Clause LevelSimplifications on Clause Level

(¬P(x , y) ∨ P(y , x)) ∧ P(a, b) ∧ ¬P(b, a)

9 / 21



Preprocessing Pipeline

Topic of this talk: Simplifications on the clause level.

Q(a, b) ∧ ((∀x∀yP(x , y)↔ P(y , x))→ (¬P(a, b) ∨ P(b, a)))

Simplifications on Formula Level

((∀x∀yP(x , y)↔ P(y , x))→ (¬P(a, b) ∨ P(b, a)))

Negation & Clausification

(P(x , y) ∨ ¬P(y , x)) ∧ (¬P(x , y) ∨ P(y , x)) ∧ P(a, b) ∧ ¬P(b, a)

Simplifications on Clause LevelSimplifications on Clause Level

(¬P(x , y) ∨ P(y , x)) ∧ P(a, b) ∧ ¬P(b, a)

9 / 21



Preprocessing Pipeline

Topic of this talk: Simplifications on the clause level.

Q(a, b) ∧ ((∀x∀yP(x , y)↔ P(y , x))→ (¬P(a, b) ∨ P(b, a)))

Simplifications on Formula Level

((∀x∀yP(x , y)↔ P(y , x))→ (¬P(a, b) ∨ P(b, a)))

Negation & Clausification

(P(x , y) ∨ ¬P(y , x)) ∧ (¬P(x , y) ∨ P(y , x)) ∧ P(a, b) ∧ ¬P(b, a)

Simplifications on Clause LevelSimplifications on Clause Level

(¬P(x , y) ∨ P(y , x)) ∧ P(a, b) ∧ ¬P(b, a)

9 / 21



Preprocessing Pipeline

Topic of this talk: Simplifications on the clause level.

Q(a, b) ∧ ((∀x∀yP(x , y)↔ P(y , x))→ (¬P(a, b) ∨ P(b, a)))

Simplifications on Formula Level

((∀x∀yP(x , y)↔ P(y , x))→ (¬P(a, b) ∨ P(b, a)))

Negation & Clausification

(P(x , y) ∨ ¬P(y , x)) ∧ (¬P(x , y) ∨ P(y , x)) ∧ P(a, b) ∧ ¬P(b, a)

Simplifications on Clause Level

Simplifications on Clause Level

(¬P(x , y) ∨ P(y , x)) ∧ P(a, b) ∧ ¬P(b, a)

9 / 21



Preprocessing Pipeline

Topic of this talk: Simplifications on the clause level.

Q(a, b) ∧ ((∀x∀yP(x , y)↔ P(y , x))→ (¬P(a, b) ∨ P(b, a)))

Simplifications on Formula Level

((∀x∀yP(x , y)↔ P(y , x))→ (¬P(a, b) ∨ P(b, a)))

Negation & Clausification

(P(x , y) ∨ ¬P(y , x)) ∧ (¬P(x , y) ∨ P(y , x)) ∧ P(a, b) ∧ ¬P(b, a)

Simplifications on Clause Level

Simplifications on Clause Level

(¬P(x , y) ∨ P(y , x)) ∧ P(a, b) ∧ ¬P(b, a)

9 / 21



Preprocessing Pipeline

Topic of this talk: Simplifications on the clause level.

Q(a, b) ∧ ((∀x∀yP(x , y)↔ P(y , x))→ (¬P(a, b) ∨ P(b, a)))

Simplifications on Formula Level

((∀x∀yP(x , y)↔ P(y , x))→ (¬P(a, b) ∨ P(b, a)))

Negation & Clausification

(P(x , y) ∨ ¬P(y , x)) ∧ (¬P(x , y) ∨ P(y , x)) ∧ P(a, b) ∧ ¬P(b, a)

Simplifications on Clause Level

Simplifications on Clause Level

(¬P(x , y) ∨ P(y , x)) ∧ P(a, b) ∧ ¬P(b, a)

9 / 21



Clause-Elimination Techniques in Theory

Clause-elimination techniques remove redundant clauses.

A clause is redundant if its removal preserves unsatisfiability.

å If we can refute the formula before removing the clause, we
can still refute it afterwards.

Definition

A clause C is redundant with respect to a formula F if F and
F \ {C} are equisatisfiable.

Remark: Redundant clauses need not be implied!

10 / 21



Clause-Elimination Techniques in Theory

Clause-elimination techniques remove redundant clauses.

A clause is redundant if its removal preserves unsatisfiability.

å If we can refute the formula before removing the clause, we
can still refute it afterwards.

Definition

A clause C is redundant with respect to a formula F if F and
F \ {C} are equisatisfiable.

Remark: Redundant clauses need not be implied!

10 / 21



Clause-Elimination Techniques in Theory

Clause-elimination techniques remove redundant clauses.

A clause is redundant if its removal preserves unsatisfiability.

å If we can refute the formula before removing the clause, we
can still refute it afterwards.

Definition

A clause C is redundant with respect to a formula F if F and
F \ {C} are equisatisfiable.

Remark: Redundant clauses need not be implied!

10 / 21



Clause-Elimination Techniques in Theory

Clause-elimination techniques remove redundant clauses.

A clause is redundant if its removal preserves unsatisfiability.

å If we can refute the formula before removing the clause, we
can still refute it afterwards.

Definition

A clause C is redundant with respect to a formula F if F and
F \ {C} are equisatisfiable.

Remark: Redundant clauses need not be implied!

10 / 21



Clause-Elimination Techniques in Theory

Clause-elimination techniques remove redundant clauses.

A clause is redundant if its removal preserves unsatisfiability.

å If we can refute the formula before removing the clause, we
can still refute it afterwards.

Definition

A clause C is redundant with respect to a formula F if F and
F \ {C} are equisatisfiable.

Remark: Redundant clauses need not be implied!

10 / 21



Clause-Elimination Techniques in Practice

Problem: Checking if a clause is redundant is undecidable.

å Define efficiently decidable criteria that ensure redundancy.

Examples: A clause C is redundant if . . .

• . . . it contains two complementary literals L and ¬L. (Tautology)

• . . . all resolvents upon one of its literals are tautologies.
(Blocked clause)

• . . . there exist another clause D and a substitution λ
such that Dλ ⊆ C . (Subsumed clause)

• . . .

11 / 21



Clause-Elimination Techniques in Practice

Problem: Checking if a clause is redundant is undecidable.

å Define efficiently decidable criteria that ensure redundancy.

Examples: A clause C is redundant if . . .

• . . . it contains two complementary literals L and ¬L. (Tautology)

• . . . all resolvents upon one of its literals are tautologies.
(Blocked clause)

• . . . there exist another clause D and a substitution λ
such that Dλ ⊆ C . (Subsumed clause)

• . . .

11 / 21



Clause-Elimination Techniques in Practice

Problem: Checking if a clause is redundant is undecidable.

å Define efficiently decidable criteria that ensure redundancy.

Examples:

A clause C is redundant if . . .

• . . . it contains two complementary literals L and ¬L. (Tautology)

• . . . all resolvents upon one of its literals are tautologies.
(Blocked clause)

• . . . there exist another clause D and a substitution λ
such that Dλ ⊆ C . (Subsumed clause)

• . . .

11 / 21



Clause-Elimination Techniques in Practice

Problem: Checking if a clause is redundant is undecidable.

å Define efficiently decidable criteria that ensure redundancy.

Examples: A clause C is redundant if . . .

• . . . it contains two complementary literals L and ¬L. (Tautology)

• . . . all resolvents upon one of its literals are tautologies.
(Blocked clause)

• . . . there exist another clause D and a substitution λ
such that Dλ ⊆ C . (Subsumed clause)

• . . .

11 / 21



Clause-Elimination Techniques in Practice

Problem: Checking if a clause is redundant is undecidable.

å Define efficiently decidable criteria that ensure redundancy.

Examples: A clause C is redundant if . . .

• . . . it contains two complementary literals L and ¬L. (Tautology)

• . . . all resolvents upon one of its literals are tautologies.
(Blocked clause)

• . . . there exist another clause D and a substitution λ
such that Dλ ⊆ C . (Subsumed clause)

• . . .

11 / 21



Clause-Elimination Techniques in Practice

Problem: Checking if a clause is redundant is undecidable.

å Define efficiently decidable criteria that ensure redundancy.

Examples: A clause C is redundant if . . .

• . . . it contains two complementary literals L and ¬L. (Tautology)

• . . . all resolvents upon one of its literals are tautologies.
(Blocked clause)

• . . . there exist another clause D and a substitution λ
such that Dλ ⊆ C . (Subsumed clause)

• . . .

11 / 21



Clause-Elimination Techniques in Practice

Problem: Checking if a clause is redundant is undecidable.

å Define efficiently decidable criteria that ensure redundancy.

Examples: A clause C is redundant if . . .

• . . . it contains two complementary literals L and ¬L. (Tautology)

• . . . all resolvents upon one of its literals are tautologies.
(Blocked clause)

• . . . there exist another clause D and a substitution λ
such that Dλ ⊆ C . (Subsumed clause)

• . . .

11 / 21



Clause-Elimination Techniques in Practice

Problem: Checking if a clause is redundant is undecidable.

å Define efficiently decidable criteria that ensure redundancy.

Examples: A clause C is redundant if . . .

• . . . it contains two complementary literals L and ¬L. (Tautology)

• . . . all resolvents upon one of its literals are tautologies.
(Blocked clause)

• . . . there exist another clause D and a substitution λ
such that Dλ ⊆ C . (Subsumed clause)

• . . .

11 / 21



Clause-Elimination Techniques: Success Stories

Clause-elimination is successfully used in SAT and QSAT solving:

• Effective Preprocessing in SAT Through Variable
and Clause Elimination (Eén and Biere, SAT, 2005)

• Clause Elimination for SAT and QSAT (Heule et al., JAIR, 2010)

• Covered Clause Elimination (Heule et al., LPAR, 2010)

• Blocked Clause Elimination (Järvisalo et al., TACAS, 2010)

• Enhancing Search-Based QBF solving by Dynamic Blocked Clause
Elimination (Lonsing et al., LPAR, 2015)

• . . .

Blocked-clause elimination can speed up first-order provers:

• Blocked Clauses in First-Order Logic
(Kiesl, Suda, Seidl, Tompits, and Biere, LPAR, 2017)

12 / 21



Clause-Elimination Techniques: Success Stories

Clause-elimination is successfully used in SAT and QSAT solving:

• Effective Preprocessing in SAT Through Variable
and Clause Elimination (Eén and Biere, SAT, 2005)

• Clause Elimination for SAT and QSAT (Heule et al., JAIR, 2010)

• Covered Clause Elimination (Heule et al., LPAR, 2010)

• Blocked Clause Elimination (Järvisalo et al., TACAS, 2010)

• Enhancing Search-Based QBF solving by Dynamic Blocked Clause
Elimination (Lonsing et al., LPAR, 2015)

• . . .

Blocked-clause elimination can speed up first-order provers:

• Blocked Clauses in First-Order Logic
(Kiesl, Suda, Seidl, Tompits, and Biere, LPAR, 2017)

12 / 21



(Some) Types of Redundant Clauses in SAT Solving

Tautologies

Subsumed Clauses

Blocked Clauses
Resolution Subsumed Clauses

Asymmetric Tautologies

Resolution Asymmetric Tautologies

Covered Clauses

Asymmetric Blocked Clauses

Asymmetric Covered Clauses

Not available in first-order logic before!

å We lifted them.

13 / 21



(Some) Types of Redundant Clauses in SAT Solving

Tautologies

Subsumed Clauses

Blocked Clauses
Resolution Subsumed Clauses

Asymmetric Tautologies

Resolution Asymmetric Tautologies

Covered Clauses

Asymmetric Blocked Clauses

Asymmetric Covered Clauses

Not available in first-order logic before!

å We lifted them.

13 / 21



(Some) Types of Redundant Clauses in SAT Solving

Tautologies

Subsumed Clauses

Blocked Clauses
Resolution Subsumed Clauses

Asymmetric Tautologies

Resolution Asymmetric Tautologies

Covered Clauses

Asymmetric Blocked Clauses

Asymmetric Covered Clauses

Not available in first-order logic before!

å We lifted them.

13 / 21



Example: Blocked Clauses in Propositional Logic

A clause C is blocked in a formula F if all resolvents upon one of
its literals are tautologies.

P ∨ Q ∨ R

¬S ∨ P ∨ Q

¬R ∨ ¬Q

¬R ∨ ¬P

¬T ∨ S ∨ Q

P ∨ Q ∨ ¬Q P ∨ Q ∨ ¬P

å P ∨ Q ∨ R is a blocked clause.

14 / 21



Example: Blocked Clauses in Propositional Logic

A clause C is blocked in a formula F if all resolvents upon one of
its literals are tautologies.

P ∨ Q ∨ R

¬S ∨ P ∨ Q

¬R ∨ ¬Q

¬R ∨ ¬P

¬T ∨ S ∨ Q

P ∨ Q ∨ ¬Q

P ∨ Q ∨ ¬P

å P ∨ Q ∨ R is a blocked clause.

14 / 21



Example: Blocked Clauses in Propositional Logic

A clause C is blocked in a formula F if all resolvents upon one of
its literals are tautologies.

P ∨ Q ∨ R

¬S ∨ P ∨ Q

¬R ∨ ¬Q

¬R ∨ ¬P

¬T ∨ S ∨ Q

P ∨ Q ∨ ¬Q P ∨ Q ∨ ¬P

å P ∨ Q ∨ R is a blocked clause.

14 / 21



Example: Blocked Clauses in Propositional Logic

A clause C is blocked in a formula F if all resolvents upon one of
its literals are tautologies.

P ∨ Q ∨ R

¬S ∨ P ∨ Q

¬R ∨ ¬Q

¬R ∨ ¬P

¬T ∨ S ∨ Q

P ∨ Q ∨ ¬Q P ∨ Q ∨ ¬P

å P ∨ Q ∨ R is a blocked clause.

14 / 21



Blocked Clauses in First-Order Logic

Blocked clauses for first-order logic can be defined in a similar
way as in propositional logic.

Proving redundancy of blocked clauses in propositional logic is
(relatively) simple.

Proving redundancy of blocked clauses in first-order logic
requires heavy machinery.

• Herbrand’s theorem,

• factorization,

• non-trivial properties of (most general) unification, etc.

Required: A general theorem that helps us prove redundancy
of several types of clauses in a unified way.

15 / 21



Blocked Clauses in First-Order Logic

Blocked clauses for first-order logic can be defined in a similar
way as in propositional logic.

Proving redundancy of blocked clauses in propositional logic is
(relatively) simple.

Proving redundancy of blocked clauses in first-order logic
requires heavy machinery.

• Herbrand’s theorem,

• factorization,

• non-trivial properties of (most general) unification, etc.

Required: A general theorem that helps us prove redundancy
of several types of clauses in a unified way.

15 / 21



Blocked Clauses in First-Order Logic

Blocked clauses for first-order logic can be defined in a similar
way as in propositional logic.

Proving redundancy of blocked clauses in propositional logic is
(relatively) simple.

Proving redundancy of blocked clauses in first-order logic
requires heavy machinery.

• Herbrand’s theorem,

• factorization,

• non-trivial properties of (most general) unification, etc.

Required: A general theorem that helps us prove redundancy
of several types of clauses in a unified way.

15 / 21



The Principle of Implication Modulo Resolution

To prove correctness of the new techniques, we introduced the
principle of implication modulo resolution.

• A first-order variant of quantified implied outer resolvents
(Heule, Seidl, and Biere, JAR, 2017).

Definition

A clause C is implied modulo resolution by a formula F if all
resolvents of C upon one of its literals are implied by F \ {C}.

å F \ {C} might not imply C , but it implies all conclusions
derived from C via resolution upon one of its literals.

Theorem (Main Result)

If a formula F implies a clause C modulo resolution, then C is
redundant with respect to F .

16 / 21



The Principle of Implication Modulo Resolution

To prove correctness of the new techniques, we introduced the
principle of implication modulo resolution.

• A first-order variant of quantified implied outer resolvents
(Heule, Seidl, and Biere, JAR, 2017).

Definition

A clause C is implied modulo resolution by a formula F if all
resolvents of C upon one of its literals are implied by F \ {C}.

å F \ {C} might not imply C , but it implies all conclusions
derived from C via resolution upon one of its literals.

Theorem (Main Result)

If a formula F implies a clause C modulo resolution, then C is
redundant with respect to F .

16 / 21



The Principle of Implication Modulo Resolution

To prove correctness of the new techniques, we introduced the
principle of implication modulo resolution.

• A first-order variant of quantified implied outer resolvents
(Heule, Seidl, and Biere, JAR, 2017).

Definition

A clause C is implied modulo resolution by a formula F if all
resolvents of C upon one of its literals are implied by F \ {C}.

å F \ {C} might not imply C , but it implies all conclusions
derived from C via resolution upon one of its literals.

Theorem (Main Result)

If a formula F implies a clause C modulo resolution, then C is
redundant with respect to F .

16 / 21



The Principle of Implication Modulo Resolution

To prove correctness of the new techniques, we introduced the
principle of implication modulo resolution.

• A first-order variant of quantified implied outer resolvents
(Heule, Seidl, and Biere, JAR, 2017).

Definition

A clause C is implied modulo resolution by a formula F if all
resolvents of C upon one of its literals are implied by F \ {C}.

å F \ {C} might not imply C , but it implies all conclusions
derived from C via resolution upon one of its literals.

Theorem (Main Result)

If a formula F implies a clause C modulo resolution, then C is
redundant with respect to F .

16 / 21



Implication Modulo Resolution: Examples

Definition

A clause C is implied modulo resolution by a formula F if all
resolvents of C upon one of its literals are implied by F \ {C}.

Blocked clauses are implied modulo resolution:

• Every resolvent is a tautology ⇒ every resolvent is implied.

Clauses with pure literals:

• Pure literals are literals whose predicate symbol occurs in only
one polarity in F .

• There are no resolvents upon a pure literal ⇒ every resolvent
is implied.

Resolution asymmetric tautologies (RATs),
resolution-subsumed clauses, etc.

17 / 21



Implication Modulo Resolution: Examples

Definition

A clause C is implied modulo resolution by a formula F if all
resolvents of C upon one of its literals are implied by F \ {C}.

Blocked clauses are implied modulo resolution:

• Every resolvent is a tautology ⇒ every resolvent is implied.

Clauses with pure literals:

• Pure literals are literals whose predicate symbol occurs in only
one polarity in F .

• There are no resolvents upon a pure literal ⇒ every resolvent
is implied.

Resolution asymmetric tautologies (RATs),
resolution-subsumed clauses, etc.

17 / 21



Implication Modulo Resolution: Examples

Definition

A clause C is implied modulo resolution by a formula F if all
resolvents of C upon one of its literals are implied by F \ {C}.

Blocked clauses are implied modulo resolution:

• Every resolvent is a tautology ⇒ every resolvent is implied.

Clauses with pure literals:

• Pure literals are literals whose predicate symbol occurs in only
one polarity in F .

• There are no resolvents upon a pure literal ⇒ every resolvent
is implied.

Resolution asymmetric tautologies (RATs),
resolution-subsumed clauses, etc.

17 / 21



Implication Modulo Resolution: Examples

Definition

A clause C is implied modulo resolution by a formula F if all
resolvents of C upon one of its literals are implied by F \ {C}.

Blocked clauses are implied modulo resolution:

• Every resolvent is a tautology ⇒ every resolvent is implied.

Clauses with pure literals:

• Pure literals are literals whose predicate symbol occurs in only
one polarity in F .

• There are no resolvents upon a pure literal ⇒ every resolvent
is implied.

Resolution asymmetric tautologies (RATs),
resolution-subsumed clauses, etc.

17 / 21



Confluent Clause-Elimination Techniques

Confluence: Eliminating clauses in a different order yields the
same result.

Example (boxes are clauses, orange clauses are redundant
according to some redundancy notion):

1 3 4 2 5

3 4 2 1 5

å We don’t need to bother about the elimination order.

18 / 21



Confluent Clause-Elimination Techniques

Confluence: Eliminating clauses in a different order yields the
same result.

Example (boxes are clauses, orange clauses are redundant
according to some redundancy notion):

1 3 4 2 5

3 4 2 1 5

å We don’t need to bother about the elimination order.

18 / 21



Confluent Clause-Elimination Techniques

Confluence: Eliminating clauses in a different order yields the
same result.

Example (boxes are clauses, orange clauses are redundant
according to some redundancy notion):

1

3 4 2 5

3 4 2 1 5

å We don’t need to bother about the elimination order.

18 / 21



Confluent Clause-Elimination Techniques

Confluence: Eliminating clauses in a different order yields the
same result.

Example (boxes are clauses, orange clauses are redundant
according to some redundancy notion):

1

3 4

2

5

3 4 2 1 5

å We don’t need to bother about the elimination order.

18 / 21



Confluent Clause-Elimination Techniques

Confluence: Eliminating clauses in a different order yields the
same result.

Example (boxes are clauses, orange clauses are redundant
according to some redundancy notion):

1 3

4

2

5

3 4 2 1 5

å We don’t need to bother about the elimination order.

18 / 21



Confluent Clause-Elimination Techniques

Confluence: Eliminating clauses in a different order yields the
same result.

Example (boxes are clauses, orange clauses are redundant
according to some redundancy notion):

1 3 4 2

5

3 4 2 1 5

å We don’t need to bother about the elimination order.

18 / 21



Confluent Clause-Elimination Techniques

Confluence: Eliminating clauses in a different order yields the
same result.

Example (boxes are clauses, orange clauses are redundant
according to some redundancy notion):

1 3 4 2 5

3 4 2 1 5

å We don’t need to bother about the elimination order.

18 / 21



Confluent Clause-Elimination Techniques

Confluence: Eliminating clauses in a different order yields the
same result.

Example (boxes are clauses, orange clauses are redundant
according to some redundancy notion):

1 3 4 2 5

3 4 2 1 5

å We don’t need to bother about the elimination order.

18 / 21



Confluent Clause-Elimination Techniques

Confluence: Eliminating clauses in a different order yields the
same result.

Example (boxes are clauses, orange clauses are redundant
according to some redundancy notion):

1 3 4 2 5

3 4 2

1

5

å We don’t need to bother about the elimination order.

18 / 21



Confluent Clause-Elimination Techniques

Confluence: Eliminating clauses in a different order yields the
same result.

Example (boxes are clauses, orange clauses are redundant
according to some redundancy notion):

1 3 4 2 5

3 4

2 1

5

å We don’t need to bother about the elimination order.

18 / 21



Confluent Clause-Elimination Techniques

Confluence: Eliminating clauses in a different order yields the
same result.

Example (boxes are clauses, orange clauses are redundant
according to some redundancy notion):

1 3 4 2 5

3

4

2 1

5

å We don’t need to bother about the elimination order.

18 / 21



Confluent Clause-Elimination Techniques

Confluence: Eliminating clauses in a different order yields the
same result.

Example (boxes are clauses, orange clauses are redundant
according to some redundancy notion):

1 3 4 2 5

3 4 2 1

5

å We don’t need to bother about the elimination order.

18 / 21



Confluent Clause-Elimination Techniques

Confluence: Eliminating clauses in a different order yields the
same result.

Example (boxes are clauses, orange clauses are redundant
according to some redundancy notion):

1 3 4 2 5

3 4 2 1 5

å We don’t need to bother about the elimination order.

18 / 21



Confluent Clause-Elimination Techniques

Confluence: Eliminating clauses in a different order yields the
same result.

Example (boxes are clauses, orange clauses are redundant
according to some redundancy notion):

1 3 4 2 5

3 4 2 1 5

å We don’t need to bother about the elimination order.

18 / 21



Confluence Results

Technique Confluent
Blocked-Clause Elimination 3

Covered-Clause Elimination 3

Asymmetric-Tautology Elimination 7

Resolution-Asymmetric-Tautology Elimination 7

Resolution-Subsumed-Clause Elimination 7

Covered-Literal Addition 3

Asymmetric-Literal Addition 3

19 / 21



Confluence Results

Technique Confluent
Blocked-Clause Elimination 3

Covered-Clause Elimination 3

Asymmetric-Tautology Elimination 7

Resolution-Asymmetric-Tautology Elimination 7

Resolution-Subsumed-Clause Elimination 7

Covered-Literal Addition 3

Asymmetric-Literal Addition 3

19 / 21



Future Work

Implication modulo resolution for first-order logic with equality.

å Lift all preprocessing techniques to first-order logic with equality.

Implement and evaluate a preprocessor with our techniques.

• Blocked-clause elimination is already implemented.

• Preprocessor is based on Vampire.

20 / 21



Summary

Lifted clause-elimination techniques from SAT to first-order logic.

Correctness proofs via principle of implication modulo resolution.

Confluence analysis.

Not in this talk but in the paper:

• Short correctness proof for predicate elimination (Khasidashvili and

Korovin, SAT, 2016) via implication modulo resolution.

21 / 21


