
Modeling and Verifying Asynchronous Circuits
Using the DE System

Cuong Chau
ckcuong@cs.utexas.edu

Department of Computer Science
The University of Texas at Austin

Ph.D. Dissertation Proposal

April 9, 2018

C. Chau (UT Austin) Async Circuit Modeling and Verification April 9, 2018 1 / 31

mailto:ckcuong@cs.utexas.edu

Introduction
Synchronous circuits (or clocked circuits): changes in the state of storage
elements are synchronized by a global clock signal.

Asynchronous circuits (or self-timed circuits): no global clock signal. The
communications between storage elements are performed via local
communication protocols.

C. Chau (UT Austin) Async Circuit Modeling and Verification April 9, 2018 2 / 31

Motivation

Most efforts in verifying self-timed circuit implementations concern
circuit-level timing properties.

Electrical-level timing analysis is conducted to assure that signal
propagation of ready signals is always slower than data propagation so
that data are valid when transferred.

Most verification methods for self-timed circuits have concentrated on
small-size circuits.

Scalable methods for self-timed system verification are highly desirable.

We are not aware of any scalable formal methods for validating functional
properties of self-timed systems.

C. Chau (UT Austin) Async Circuit Modeling and Verification April 9, 2018 3 / 31

Motivation

Most efforts in verifying self-timed circuit implementations concern
circuit-level timing properties.

Electrical-level timing analysis is conducted to assure that signal
propagation of ready signals is always slower than data propagation so
that data are valid when transferred.

Most verification methods for self-timed circuits have concentrated on
small-size circuits.

Scalable methods for self-timed system verification are highly desirable.

We are not aware of any scalable formal methods for validating functional
properties of self-timed systems.

C. Chau (UT Austin) Async Circuit Modeling and Verification April 9, 2018 3 / 31

Motivation

Most efforts in verifying self-timed circuit implementations concern
circuit-level timing properties.

Electrical-level timing analysis is conducted to assure that signal
propagation of ready signals is always slower than data propagation so
that data are valid when transferred.

Most verification methods for self-timed circuits have concentrated on
small-size circuits.

Scalable methods for self-timed system verification are highly desirable.

We are not aware of any scalable formal methods for validating functional
properties of self-timed systems.

C. Chau (UT Austin) Async Circuit Modeling and Verification April 9, 2018 3 / 31

Motivation

Most efforts in verifying self-timed circuit implementations concern
circuit-level timing properties.

Electrical-level timing analysis is conducted to assure that signal
propagation of ready signals is always slower than data propagation so
that data are valid when transferred.

Most verification methods for self-timed circuits have concentrated on
small-size circuits.

Scalable methods for self-timed system verification are highly desirable.

We are not aware of any scalable formal methods for validating functional
properties of self-timed systems.

C. Chau (UT Austin) Async Circuit Modeling and Verification April 9, 2018 3 / 31

Goals and Impact

Goals:
Develop scalable methods for reasoning about the functional
correctness of self-timed circuits and systems, while abstracting
away circuit-level timing constraints.
Implement those methods using the ACL2 theorem proving system,
providing a useful automated framework with associated libraries to
support the mechanical analysis of general-purpose, self-timed circuit
designs.

Impact: If successful, this project will:
advance the state-of-the-art in self-timed circuit specification and
verification, and provide a means to support building reliable
complex hardware systems using the self-timed paradigm; and thus,
support a computing paradigm where systems can proceed at their
best rate and no longer require clock signals.

C. Chau (UT Austin) Async Circuit Modeling and Verification April 9, 2018 4 / 31

Goals and Impact

Goals:
Develop scalable methods for reasoning about the functional
correctness of self-timed circuits and systems, while abstracting
away circuit-level timing constraints.
Implement those methods using the ACL2 theorem proving system,
providing a useful automated framework with associated libraries to
support the mechanical analysis of general-purpose, self-timed circuit
designs.

Impact: If successful, this project will:
advance the state-of-the-art in self-timed circuit specification and
verification, and provide a means to support building reliable
complex hardware systems using the self-timed paradigm; and thus,
support a computing paradigm where systems can proceed at their
best rate and no longer require clock signals.

C. Chau (UT Austin) Async Circuit Modeling and Verification April 9, 2018 4 / 31

Approach

Extend the DE-based, synchronous-style verification system [Hunt:2000] to
one that is capable of analyzing self-timed system models.

Apply the link-joint model introduced by Roncken et
al. [Roncken et al.:2015] to modeling self-timed circuit designs.

Develop a hierarchical reasoning approach that is amenable to verifying
correctness of large, non-deterministic systems without a large growth of
the time complexity.

Avoid exploring the operations internal to a verified submodule as
well as their interleavings.
The input-output relationship of a verified submodule is determined
based on the communication signals at the submodule’s input and
output ports, while abstracting away all execution paths internal
to that submodule.

C. Chau (UT Austin) Async Circuit Modeling and Verification April 9, 2018 5 / 31

Approach

Extend the DE-based, synchronous-style verification system [Hunt:2000] to
one that is capable of analyzing self-timed system models.

Apply the link-joint model introduced by Roncken et
al. [Roncken et al.:2015] to modeling self-timed circuit designs.

Develop a hierarchical reasoning approach that is amenable to verifying
correctness of large, non-deterministic systems without a large growth of
the time complexity.

Avoid exploring the operations internal to a verified submodule as
well as their interleavings.
The input-output relationship of a verified submodule is determined
based on the communication signals at the submodule’s input and
output ports, while abstracting away all execution paths internal
to that submodule.

C. Chau (UT Austin) Async Circuit Modeling and Verification April 9, 2018 5 / 31

Approach

Extend the DE-based, synchronous-style verification system [Hunt:2000] to
one that is capable of analyzing self-timed system models.

Apply the link-joint model introduced by Roncken et
al. [Roncken et al.:2015] to modeling self-timed circuit designs.

Develop a hierarchical reasoning approach that is amenable to verifying
correctness of large, non-deterministic systems without a large growth of
the time complexity.

Avoid exploring the operations internal to a verified submodule as
well as their interleavings.
The input-output relationship of a verified submodule is determined
based on the communication signals at the submodule’s input and
output ports, while abstracting away all execution paths internal
to that submodule.

C. Chau (UT Austin) Async Circuit Modeling and Verification April 9, 2018 5 / 31

Approach

Extend the DE-based, synchronous-style verification system [Hunt:2000] to
one that is capable of analyzing self-timed system models.

Apply the link-joint model introduced by Roncken et
al. [Roncken et al.:2015] to modeling self-timed circuit designs.

Develop a hierarchical reasoning approach that is amenable to verifying
correctness of large, non-deterministic systems without a large growth of
the time complexity.

Avoid exploring the operations internal to a verified submodule as
well as their interleavings.
The input-output relationship of a verified submodule is determined
based on the communication signals at the submodule’s input and
output ports, while abstracting away all execution paths internal
to that submodule.

C. Chau (UT Austin) Async Circuit Modeling and Verification April 9, 2018 5 / 31

What Has Been Done?

Extended the DE system to modeling self-timed circuit designs.
Extended the DE primitive database with a new link-control primitive
that coordinates the means to update the state of a (storage) link.
Formally specified several self-timed circuit models using the extended
DE system.

Developed a hierarchical verification approach that scales well even as
circuit size increases.

Implemented strategies for reasoning with non-deterministic circuit
behavior efficiently.

Successfully applied our verification approach to several self-timed
circuit models.

C. Chau (UT Austin) Async Circuit Modeling and Verification April 9, 2018 6 / 31

What Has Been Done?

Extended the DE system to modeling self-timed circuit designs.
Extended the DE primitive database with a new link-control primitive
that coordinates the means to update the state of a (storage) link.
Formally specified several self-timed circuit models using the extended
DE system.

Developed a hierarchical verification approach that scales well even as
circuit size increases.

Implemented strategies for reasoning with non-deterministic circuit
behavior efficiently.

Successfully applied our verification approach to several self-timed
circuit models.

C. Chau (UT Austin) Async Circuit Modeling and Verification April 9, 2018 6 / 31

What Has Been Done?

Extended the DE system to modeling self-timed circuit designs.
Extended the DE primitive database with a new link-control primitive
that coordinates the means to update the state of a (storage) link.
Formally specified several self-timed circuit models using the extended
DE system.

Developed a hierarchical verification approach that scales well even as
circuit size increases.

Implemented strategies for reasoning with non-deterministic circuit
behavior efficiently.

Successfully applied our verification approach to several self-timed
circuit models.

C. Chau (UT Austin) Async Circuit Modeling and Verification April 9, 2018 6 / 31

Future Work
Goal: Demonstrate the effectiveness of our compositional, mechanized
methodology for scalable formal verification of functional properties of
self-timed circuit designs.

Proposed tasks:
Enhance the effectiveness of our framework by increasing automation
through the further introduction of proof idioms using macros.
Verify self-timed circuit models performing arbitrated merge
operations that grant mutually exclusive access to a shared resource
on a first-come-first-served (FCFS) basis.
Verify a self-timed serial adder model without imposing the design
restrictions inherent in our previous work [Chau et al.:2017].
Demonstrate compositionality by certifying that the functionality of
gcd is preserved when replacing its combinational
ripple-carry-adder sub-circuit with a functionally-equivalent,
self-timed serial adder.

C. Chau (UT Austin) Async Circuit Modeling and Verification April 9, 2018 7 / 31

Future Work
Goal: Demonstrate the effectiveness of our compositional, mechanized
methodology for scalable formal verification of functional properties of
self-timed circuit designs.

Proposed tasks:
Enhance the effectiveness of our framework by increasing automation
through the further introduction of proof idioms using macros.

Verify self-timed circuit models performing arbitrated merge
operations that grant mutually exclusive access to a shared resource
on a first-come-first-served (FCFS) basis.
Verify a self-timed serial adder model without imposing the design
restrictions inherent in our previous work [Chau et al.:2017].
Demonstrate compositionality by certifying that the functionality of
gcd is preserved when replacing its combinational
ripple-carry-adder sub-circuit with a functionally-equivalent,
self-timed serial adder.

C. Chau (UT Austin) Async Circuit Modeling and Verification April 9, 2018 7 / 31

Future Work
Goal: Demonstrate the effectiveness of our compositional, mechanized
methodology for scalable formal verification of functional properties of
self-timed circuit designs.

Proposed tasks:
Enhance the effectiveness of our framework by increasing automation
through the further introduction of proof idioms using macros.
Verify self-timed circuit models performing arbitrated merge
operations that grant mutually exclusive access to a shared resource
on a first-come-first-served (FCFS) basis.

Verify a self-timed serial adder model without imposing the design
restrictions inherent in our previous work [Chau et al.:2017].
Demonstrate compositionality by certifying that the functionality of
gcd is preserved when replacing its combinational
ripple-carry-adder sub-circuit with a functionally-equivalent,
self-timed serial adder.

C. Chau (UT Austin) Async Circuit Modeling and Verification April 9, 2018 7 / 31

Future Work
Goal: Demonstrate the effectiveness of our compositional, mechanized
methodology for scalable formal verification of functional properties of
self-timed circuit designs.

Proposed tasks:
Enhance the effectiveness of our framework by increasing automation
through the further introduction of proof idioms using macros.
Verify self-timed circuit models performing arbitrated merge
operations that grant mutually exclusive access to a shared resource
on a first-come-first-served (FCFS) basis.
Verify a self-timed serial adder model without imposing the design
restrictions inherent in our previous work [Chau et al.:2017].

Demonstrate compositionality by certifying that the functionality of
gcd is preserved when replacing its combinational
ripple-carry-adder sub-circuit with a functionally-equivalent,
self-timed serial adder.

C. Chau (UT Austin) Async Circuit Modeling and Verification April 9, 2018 7 / 31

Future Work
Goal: Demonstrate the effectiveness of our compositional, mechanized
methodology for scalable formal verification of functional properties of
self-timed circuit designs.

Proposed tasks:
Enhance the effectiveness of our framework by increasing automation
through the further introduction of proof idioms using macros.
Verify self-timed circuit models performing arbitrated merge
operations that grant mutually exclusive access to a shared resource
on a first-come-first-served (FCFS) basis.
Verify a self-timed serial adder model without imposing the design
restrictions inherent in our previous work [Chau et al.:2017].
Demonstrate compositionality by certifying that the functionality of
gcd is preserved when replacing its combinational
ripple-carry-adder sub-circuit with a functionally-equivalent,
self-timed serial adder.
C. Chau (UT Austin) Async Circuit Modeling and Verification April 9, 2018 7 / 31

Outline

1 The DE System

2 Modeling and Verification Approach

3 Case Studies

4 Conclusions

C. Chau (UT Austin) Async Circuit Modeling and Verification April 9, 2018 8 / 31

Outline

1 The DE System

2 Modeling and Verification Approach

3 Case Studies

4 Conclusions

C. Chau (UT Austin) Async Circuit Modeling and Verification April 9, 2018 9 / 31

The DE System
DE is a formal occurrence-oriented hardware description language
developed in ACL2 for describing Mealy machines [Hunt:2000].

The semantics of DE is given by a simulator that computes the outputs
and next state for a module from the module’s current inputs and
current state.
The DE system has previously been used to model and verify hierarchical
synchronous circuits.

The DE simulator is used repeatedly to evaluate a circuit netlist
description at each global clock “tick”.
Prove the following two lemmas hierarchically for each module: a
value lemma specifying the module’s outputs and a state lemma
specifying the module’s next state.
The value and state lemmas of composite modules are proved by
automatic application of those lemmas of their submodules, without
the need to dig into any details about the submodules.

C. Chau (UT Austin) Async Circuit Modeling and Verification April 9, 2018 10 / 31

The DE System
DE is a formal occurrence-oriented hardware description language
developed in ACL2 for describing Mealy machines [Hunt:2000].
The semantics of DE is given by a simulator that computes the outputs
and next state for a module from the module’s current inputs and
current state.

The DE system has previously been used to model and verify hierarchical
synchronous circuits.

The DE simulator is used repeatedly to evaluate a circuit netlist
description at each global clock “tick”.
Prove the following two lemmas hierarchically for each module: a
value lemma specifying the module’s outputs and a state lemma
specifying the module’s next state.
The value and state lemmas of composite modules are proved by
automatic application of those lemmas of their submodules, without
the need to dig into any details about the submodules.

C. Chau (UT Austin) Async Circuit Modeling and Verification April 9, 2018 10 / 31

The DE System
DE is a formal occurrence-oriented hardware description language
developed in ACL2 for describing Mealy machines [Hunt:2000].
The semantics of DE is given by a simulator that computes the outputs
and next state for a module from the module’s current inputs and
current state.
The DE system has previously been used to model and verify hierarchical
synchronous circuits.

The DE simulator is used repeatedly to evaluate a circuit netlist
description at each global clock “tick”.

Prove the following two lemmas hierarchically for each module: a
value lemma specifying the module’s outputs and a state lemma
specifying the module’s next state.
The value and state lemmas of composite modules are proved by
automatic application of those lemmas of their submodules, without
the need to dig into any details about the submodules.

C. Chau (UT Austin) Async Circuit Modeling and Verification April 9, 2018 10 / 31

The DE System
DE is a formal occurrence-oriented hardware description language
developed in ACL2 for describing Mealy machines [Hunt:2000].
The semantics of DE is given by a simulator that computes the outputs
and next state for a module from the module’s current inputs and
current state.
The DE system has previously been used to model and verify hierarchical
synchronous circuits.

The DE simulator is used repeatedly to evaluate a circuit netlist
description at each global clock “tick”.
Prove the following two lemmas hierarchically for each module: a
value lemma specifying the module’s outputs and a state lemma
specifying the module’s next state.

The value and state lemmas of composite modules are proved by
automatic application of those lemmas of their submodules, without
the need to dig into any details about the submodules.

C. Chau (UT Austin) Async Circuit Modeling and Verification April 9, 2018 10 / 31

The DE System
DE is a formal occurrence-oriented hardware description language
developed in ACL2 for describing Mealy machines [Hunt:2000].
The semantics of DE is given by a simulator that computes the outputs
and next state for a module from the module’s current inputs and
current state.
The DE system has previously been used to model and verify hierarchical
synchronous circuits.

The DE simulator is used repeatedly to evaluate a circuit netlist
description at each global clock “tick”.
Prove the following two lemmas hierarchically for each module: a
value lemma specifying the module’s outputs and a state lemma
specifying the module’s next state.
The value and state lemmas of composite modules are proved by
automatic application of those lemmas of their submodules, without
the need to dig into any details about the submodules.
C. Chau (UT Austin) Async Circuit Modeling and Verification April 9, 2018 10 / 31

The DE System

In our self-timed modeling, the DE simulator is called upon to carry out its
function any time any primary input or internal state changes value.

Allow the design to proceed at its own rate moderated by oracle values
— extra input values modeling non-determinacy — that can cause logic
to delay an arbitrary amount.

Extend the DE primitive database with a link-control primitive that models
the validity of data stored in a communication link.

C. Chau (UT Austin) Async Circuit Modeling and Verification April 9, 2018 11 / 31

The DE System

In our self-timed modeling, the DE simulator is called upon to carry out its
function any time any primary input or internal state changes value.

Allow the design to proceed at its own rate moderated by oracle values
— extra input values modeling non-determinacy — that can cause logic
to delay an arbitrary amount.

Extend the DE primitive database with a link-control primitive that models
the validity of data stored in a communication link.

C. Chau (UT Austin) Async Circuit Modeling and Verification April 9, 2018 11 / 31

Outline

1 The DE System

2 Modeling and Verification Approach

3 Case Studies

4 Conclusions

C. Chau (UT Austin) Async Circuit Modeling and Verification April 9, 2018 12 / 31

The Link-Joint Model

We model self-timed systems as finite state machines (FSMs)
representing networks of communication links and computation joints.

Links communicate with each other locally via joints using the link-joint
model.

Links are communication channels in which data are stored along
with a full/empty signal.
Joints are handshake components that implement data operations
and flow control.
Links are connected via joints, and joints are connected via links. A
joint can have several input and output links connected to it, while a
link connects exactly to one input and one output joint.

Necessary conditions for a joint-action to fire: all input and output links
of that action are full and empty, respectively.

C. Chau (UT Austin) Async Circuit Modeling and Verification April 9, 2018 13 / 31

The Link-Joint Model

We model self-timed systems as finite state machines (FSMs)
representing networks of communication links and computation joints.

Links communicate with each other locally via joints using the link-joint
model.

Links are communication channels in which data are stored along
with a full/empty signal.
Joints are handshake components that implement data operations
and flow control.
Links are connected via joints, and joints are connected via links. A
joint can have several input and output links connected to it, while a
link connects exactly to one input and one output joint.

Necessary conditions for a joint-action to fire: all input and output links
of that action are full and empty, respectively.

C. Chau (UT Austin) Async Circuit Modeling and Verification April 9, 2018 13 / 31

The Link-Joint Model

We model self-timed systems as finite state machines (FSMs)
representing networks of communication links and computation joints.

Links communicate with each other locally via joints using the link-joint
model.

Links are communication channels in which data are stored along
with a full/empty signal.
Joints are handshake components that implement data operations
and flow control.
Links are connected via joints, and joints are connected via links. A
joint can have several input and output links connected to it, while a
link connects exactly to one input and one output joint.

Necessary conditions for a joint-action to fire: all input and output links
of that action are full and empty, respectively.

C. Chau (UT Austin) Async Circuit Modeling and Verification April 9, 2018 13 / 31

The Link-Joint Model

5

1. F D /

fullin

actdrain

x

0. F D /

fill

fullout

JointLink Link

L0 L1

GO

The green boxes represent the instances of the link-control primitive that
is added to the DE primitive database.
When a joint acts, three tasks will be executed in parallel:

transfer data computed from the input links to the output links;
fill a subset of the output links, leaving them full;
drain a subset of the input links, leaving them empty.
C. Chau (UT Austin) Async Circuit Modeling and Verification April 9, 2018 14 / 31

The Link-Joint Model

5

1. F D /

fullin

actdrain

x

0. F D /

fill

fullout

JointLink Link

L0 L1

GO

0
0

7

0

The green boxes represent the instances of the link-control primitive that
is added to the DE primitive database.
When a joint acts, three tasks will be executed in parallel:

transfer data computed from the input links to the output links;
fill a subset of the output links, leaving them full;
drain a subset of the input links, leaving them empty.
C. Chau (UT Austin) Async Circuit Modeling and Verification April 9, 2018 14 / 31

The Link-Joint Model

5

1. F D /

fullin

actdrain

x

0. F D /

fill

fullout

JointLink Link

L0 L1

GO

0
0

7

0

1 0

0

5 5 x

The green boxes represent the instances of the link-control primitive that
is added to the DE primitive database.
When a joint acts, three tasks will be executed in parallel:

transfer data computed from the input links to the output links;
fill a subset of the output links, leaving them full;
drain a subset of the input links, leaving them empty.
C. Chau (UT Austin) Async Circuit Modeling and Verification April 9, 2018 14 / 31

The Link-Joint Model

5

1. F D /

fullin

actdrain

x

0. F D /

fill

fullout

JointLink Link

L0 L1

GO

0
0

7

1

The green boxes represent the instances of the link-control primitive that
is added to the DE primitive database.
When a joint acts, three tasks will be executed in parallel:

transfer data computed from the input links to the output links;
fill a subset of the output links, leaving them full;
drain a subset of the input links, leaving them empty.
C. Chau (UT Austin) Async Circuit Modeling and Verification April 9, 2018 14 / 31

The Link-Joint Model

5

1. F D /

fullin

actdrain

x

0. F D /

fill

fullout

JointLink Link

L0 L1

GO

0
0

7

1

1 0

1

5 5 5

The green boxes represent the instances of the link-control primitive that
is added to the DE primitive database.
When a joint acts, three tasks will be executed in parallel:

transfer data computed from the input links to the output links;
fill a subset of the output links, leaving them full;
drain a subset of the input links, leaving them empty.
C. Chau (UT Austin) Async Circuit Modeling and Verification April 9, 2018 14 / 31

The Link-Joint Model

5

1. F D /

fullin

actdrain

x

0. F D /

fill

fullout

JointLink Link

L0 L1

GO

0
0

7

1

1 0

1

5 5 5

0. F D / 1. F D /

5

The green boxes represent the instances of the link-control primitive that
is added to the DE primitive database.
When a joint acts, three tasks will be executed in parallel:

transfer data computed from the input links to the output links;
fill a subset of the output links, leaving them full;
drain a subset of the input links, leaving them empty.
C. Chau (UT Austin) Async Circuit Modeling and Verification April 9, 2018 14 / 31

Self-Timed Modules

L0

L1

J0

L2

L3

L4

J1 L5

Complex link

L0 L1

Complex joint: a queue of length two, Q2

C. Chau (UT Austin) Async Circuit Modeling and Verification April 9, 2018 15 / 31

Verification

Objective: Verify the functional correctness of self-timed circuit designs.

Approach:
Formalize the relationship between input and output sequences.
Develop a hierarchical reasoning approach that avoids exploring
internal operations of submodules as well as their interleavings.

Characterize the one-step update on the future output sequence of
a module from the current inputs and current state of that module.
We call this property the single-step-update property.
The single-step-update property of a module is established
hierarchically using the single-step-update properties of its submodules,
without exploring the internal structures of the submodules.
The multi-step input-output relationship is then proved by
induction with the single-step-update property.

C. Chau (UT Austin) Async Circuit Modeling and Verification April 9, 2018 16 / 31

Verification

Objective: Verify the functional correctness of self-timed circuit designs.

Approach:
Formalize the relationship between input and output sequences.
Develop a hierarchical reasoning approach that avoids exploring
internal operations of submodules as well as their interleavings.

Characterize the one-step update on the future output sequence of
a module from the current inputs and current state of that module.
We call this property the single-step-update property.

The single-step-update property of a module is established
hierarchically using the single-step-update properties of its submodules,
without exploring the internal structures of the submodules.
The multi-step input-output relationship is then proved by
induction with the single-step-update property.

C. Chau (UT Austin) Async Circuit Modeling and Verification April 9, 2018 16 / 31

Verification

Objective: Verify the functional correctness of self-timed circuit designs.

Approach:
Formalize the relationship between input and output sequences.
Develop a hierarchical reasoning approach that avoids exploring
internal operations of submodules as well as their interleavings.

Characterize the one-step update on the future output sequence of
a module from the current inputs and current state of that module.
We call this property the single-step-update property.
The single-step-update property of a module is established
hierarchically using the single-step-update properties of its submodules,
without exploring the internal structures of the submodules.

The multi-step input-output relationship is then proved by
induction with the single-step-update property.

C. Chau (UT Austin) Async Circuit Modeling and Verification April 9, 2018 16 / 31

Verification

Objective: Verify the functional correctness of self-timed circuit designs.

Approach:
Formalize the relationship between input and output sequences.
Develop a hierarchical reasoning approach that avoids exploring
internal operations of submodules as well as their interleavings.

Characterize the one-step update on the future output sequence of
a module from the current inputs and current state of that module.
We call this property the single-step-update property.
The single-step-update property of a module is established
hierarchically using the single-step-update properties of its submodules,
without exploring the internal structures of the submodules.
The multi-step input-output relationship is then proved by
induction with the single-step-update property.

C. Chau (UT Austin) Async Circuit Modeling and Verification April 9, 2018 16 / 31

Outline

1 The DE System

2 Modeling and Verification Approach

3 Case Studies

4 Conclusions

C. Chau (UT Austin) Async Circuit Modeling and Verification April 9, 2018 17 / 31

Case Studies

Example 1: A FIFO Circuit

Example 2: A Greatest-Common-Divisor (GCD) Circuit

Example 3: Hierarchical Reasoning

Example 4: Complex Links

C. Chau (UT Austin) Async Circuit Modeling and Verification April 9, 2018 18 / 31

Example 1: A FIFO Circuit

Q3

in

[1, 4, 3]
8 x 5

out
[1, 4, 3] ++ [8, 5]

in

1 x x

out

[4, 3, 8, 5]

[1] ++ [4, 3, 8, 5]

[1] ++ [4, 3, 8, 5] = [1, 4, 3] ++ [8, 5]

C. Chau (UT Austin) Async Circuit Modeling and Verification April 9, 2018 19 / 31

Example 1: A FIFO Circuit

Q3

in

[1, 4, 3]
8 x 5

out
[1, 4, 3] ++ [8, 5]

in

1 x x

out

[4, 3, 8, 5]

[1] ++ [4, 3, 8, 5]

[1] ++ [4, 3, 8, 5] = [1, 4, 3] ++ [8, 5]

C. Chau (UT Austin) Async Circuit Modeling and Verification April 9, 2018 19 / 31

Example 1: A FIFO Circuit

Q3

in

[1, 4, 3]
8 x 5

out
[1, 4, 3] ++ [8, 5]

in

1 x x

out

[4, 3, 8, 5]

[1] ++ [4, 3, 8, 5]

[1] ++ [4, 3, 8, 5] = [1, 4, 3] ++ [8, 5]

C. Chau (UT Austin) Async Circuit Modeling and Verification April 9, 2018 19 / 31

Example 1: A FIFO Circuit

Q3

in

L0 L1 L2

out
Let in-act and out-act denote the act signals from joints in and out,
respectively.

Q3 accepts a new data item each time the in-act signal fires. We define
in-seq, the accepted input sequence, as the sequence of data items that
have passed joint in.

Similarly, we define out-seq, the valid output sequence, as the sequence
of data items that have passed through joint out while out-act fires.

C. Chau (UT Austin) Async Circuit Modeling and Verification April 9, 2018 20 / 31

Example 1: A FIFO Circuit

Q3

in

L0 L1 L2

out
Let in-act and out-act denote the act signals from joints in and out,
respectively.

Q3 accepts a new data item each time the in-act signal fires. We define
in-seq, the accepted input sequence, as the sequence of data items that
have passed joint in.

Similarly, we define out-seq, the valid output sequence, as the sequence
of data items that have passed through joint out while out-act fires.

C. Chau (UT Austin) Async Circuit Modeling and Verification April 9, 2018 20 / 31

Example 1: A FIFO Circuit

Q3

in

L0 L1 L2

out
Let in-act and out-act denote the act signals from joints in and out,
respectively.

Q3 accepts a new data item each time the in-act signal fires. We define
in-seq, the accepted input sequence, as the sequence of data items that
have passed joint in.

Similarly, we define out-seq, the valid output sequence, as the sequence
of data items that have passed through joint out while out-act fires.

C. Chau (UT Austin) Async Circuit Modeling and Verification April 9, 2018 20 / 31

Example 1: A FIFO Circuit
The relationship between Q3’s in-seq and out-seq.

q3$extract(q3$run(input-list, st, n)) ++ out-seq =
in-seq ++ q3$extract(st)

q3$run(input-list, st, n) :=
if (n ≤ 0) st
else

q3$run(tail(input-list),
q3$step(head(input-list), st), // Return the next state of Q3
n − 1)

The extraction function q3$extract(st) extracts valid data from state st
of Q3, i.e., extracts data from links that are full at state st.

out-seq = in-seq when the initial and final states contain no valid data.

C. Chau (UT Austin) Async Circuit Modeling and Verification April 9, 2018 21 / 31

Example 1: A FIFO Circuit
The relationship between Q3’s in-seq and out-seq.

q3$extract(q3$run(input-list, st, n)) ++ out-seq =
in-seq ++ q3$extract(st)

q3$run(input-list, st, n) :=
if (n ≤ 0) st
else

q3$run(tail(input-list),
q3$step(head(input-list), st), // Return the next state of Q3
n − 1)

The extraction function q3$extract(st) extracts valid data from state st
of Q3, i.e., extracts data from links that are full at state st.

out-seq = in-seq when the initial and final states contain no valid data.
C. Chau (UT Austin) Async Circuit Modeling and Verification April 9, 2018 21 / 31

Example 1: A FIFO Circuit

q3$extract(q3$run(input-list, st, n)) ++ out-seq =
in-seq ++ q3$extract(st) (1)

Our ACL2 proof of (1) uses induction and the following
single-step-update property of Q3 as a supporting lemma,

q3$extract(q3$step(input, st)) = q3$extracted-step(input, st) (2)

where q3$extracted-step(input, st) :=
q3$extract(st), if in-act = nil ∧ out-act = nil
[input.data] ++ q3$extract(st), if in-act = t ∧ out-act = nil
remove-last(q3$extract(st)), if in-act = nil ∧ out-act = t
[input.data] ++ remove-last(q3$extract(st)), otherwise

C. Chau (UT Austin) Async Circuit Modeling and Verification April 9, 2018 22 / 31

Example 1: A FIFO Circuit

q3$extract(q3$run(input-list, st, n)) ++ out-seq =
in-seq ++ q3$extract(st) (1)

Our ACL2 proof of (1) uses induction and the following
single-step-update property of Q3 as a supporting lemma,

q3$extract(q3$step(input, st)) = q3$extracted-step(input, st) (2)

where q3$extracted-step(input, st) :=
q3$extract(st), if in-act = nil ∧ out-act = nil
[input.data] ++ q3$extract(st), if in-act = t ∧ out-act = nil
remove-last(q3$extract(st)), if in-act = nil ∧ out-act = t
[input.data] ++ remove-last(q3$extract(st)), otherwise

C. Chau (UT Austin) Async Circuit Modeling and Verification April 9, 2018 22 / 31

Example 2: A Greatest-Common-Divisor (GCD) Circuit

0

1

S

L0

a 6= 0 &
b 6= 0 &
a 6= b

0

1

L1

a < b

a− b, b

a, b− a

0

1

L2

a, b gcd-alg(a, b)
2n
� 2n

�

1
�

1
�

2n
�

1�

2n�

2n
�

1
�

2n
�

2n
�

2n
�

2n�

n
�

in

out

op

gcd-alg(a, b) :=
while (a 6= 0) ∧ (b 6= 0) ∧ (a 6= b) do

if (a < b)
then b := b − a
else a := a − b

return
if (a = 0) then b else a

C. Chau (UT Austin) Async Circuit Modeling and Verification April 9, 2018 23 / 31

Example 3: Hierarchical Reasoning

0

1

S

L0

a 6= 0 &
b 6= 0 &
a 6= b

0

1

L1

a < b

a− b, b

a, b− a

0

1

L2

a, b gcd-alg(a, b)
2n
� 2n

�

1
�

1
�

2n
�

1�

2n�

2n
�

1
�

2n
�

2n
�

2n
�

2n�

n
�

in

out

Self-timed
GCD condition

op

gcd-alg(a, b) :=
while (a 6= 0) ∧ (b 6= 0) ∧ (a 6= b) do

if (a < b)
then b := b − a
else a := a − b

return
if (a = 0) then b else a

C. Chau (UT Austin) Async Circuit Modeling and Verification April 9, 2018 24 / 31

Example 4: Complex Links

RR

−<

branch

I0I1
A0 Q2 A1

B0 Q3 B1

>−

merge

O0 O1

Abstracting two queues (A0 → Q2 → A1) and (B0 → Q3 → B1) as
two complex links makes reasoning more efficient by reducing case splits in
proving the invariant as well as the single-step-update property for RR.

The verification time of RR is reduced from more than 23.5 minutes to
14 seconds by using the complex links.

C. Chau (UT Austin) Async Circuit Modeling and Verification April 9, 2018 25 / 31

Example 4: Complex Links

RR

−<

branch

I0I1
A0 Q2 A1

B0 Q3 B1

>−

merge

O0 O1

Abstracting two queues (A0 → Q2 → A1) and (B0 → Q3 → B1) as
two complex links makes reasoning more efficient by reducing case splits in
proving the invariant as well as the single-step-update property for RR.

The verification time of RR is reduced from more than 23.5 minutes to
14 seconds by using the complex links.

C. Chau (UT Austin) Async Circuit Modeling and Verification April 9, 2018 25 / 31

Example 4: Complex Links

RR

−<

branch

I0I1
A0 Q2 A1

B0 Q3 B1

>−

merge

O0 O1

Abstracting two queues (A0 → Q2 → A1) and (B0 → Q3 → B1) as
two complex links makes reasoning more efficient by reducing case splits in
proving the invariant as well as the single-step-update property for RR.

The verification time of RR is reduced from more than 23.5 minutes to
14 seconds by using the complex links.

C. Chau (UT Austin) Async Circuit Modeling and Verification April 9, 2018 25 / 31

Outline

1 The DE System

2 Modeling and Verification Approach

3 Case Studies

4 Conclusions

C. Chau (UT Austin) Async Circuit Modeling and Verification April 9, 2018 26 / 31

Conclusions

We have presented a framework for formally modeling and verifying
self-timed circuit designs using the DE system.

We have developed a hierarchical reasoning method that is capable of
verifying the functional correctness of self-timed circuit designs at large
scale.

This work has also provided a library for analyzing self-timed systems in
ACL2.

We model self-timed systems as networks of links communicating with
each other locally via joints, using the link-joint model.

We model the non-determinism of event-ordering in self-timed circuits
by associating each joint with an external go signal that, when disabled,
prevents a joint from firing.

C. Chau (UT Austin) Async Circuit Modeling and Verification April 9, 2018 27 / 31

Timeline

Spring 2018 − Fall 2018: Enhance automation of our framework.
Spring 2018 − Summer 2018: Verify self-timed circuit models that
include FCFS arbitrated merge operations.
Fall 2018: Verify a self-timed serial adder model using our new
approach.
Fall 2018: Demonstrate compositionality by proving that the
functionality of gcd is preserved when replacing its combinational
ripple-carry-adder sub-circuit with a functionally-equivalent, self-timed
serial adder.
Spring 2019: Dissertation writing and final defense.

C. Chau (UT Austin) Async Circuit Modeling and Verification April 9, 2018 28 / 31

Publications

Cuong Chau, Warren A. Hunt Jr., Matt Kaufmann, Marly Roncken, and
Ivan Sutherland
Data-Loop-Free Self-Timed Circuit Verification
In the 24th IEEE International Symposium on Asynchronous Circuits and
Systems (ASYNC), 2018. To appear.

Marly Roncken, Ivan Sutherland, Chris Chen, Yong Hei, Warren Hunt Jr.,
and Cuong Chau, with Swetha Mettala Gilla, Hoon Park, Xiaoyu Song,
Anping He, and Hong Chen
How to Think about Self-Timed Systems
In the IEEE Asilomar Conference on Signals, Systems, and Computers,
2017. To appear.

Cuong Chau, Warren A. Hunt Jr., Marly Roncken, and Ivan Sutherland
A Framework for Asynchronous Circuit Modeling and Verification in ACL2
In the 13th Haifa Verification Conference (HVC), 2017, pp. 3-18.

C. Chau (UT Austin) Async Circuit Modeling and Verification April 9, 2018 29 / 31

References

C. Chau, W. A. Hunt Jr., M. Roncken, and I. Sutherland (2017)
A Framework for Asynchronous Circuit Modeling and Verification in ACL2
HVC 2017, 3 – 18.

W. A. Hunt Jr. (2000)
The DE Language
Computer-Aided Reasoning: ACL2 Case Studies, Kluwer Academic Publishers
Norwell, MA, USA, 151 – 166.

M. Roncken, S. Gilla, H. Park, N. Jamadagni, C. Cowan, I. Sutherland (2015)
Naturalized Communication and Testing
ASYNC 2015, 77 – 84.

M. Roncken, I. Sutherland, C. Chen, Y. Hei, W. Hunt Jr., C. Chau, S. M. Gilla, H.
Park, X. Song, A. He, and H. Chen (2017)
How to Think about Self-Timed Systems
Asilomar 2017, to appear.

A. Slobodova, J. Davis, S. Swords, and W. Hunt Jr. (2011)
A Flexible Formal Verification Framework for Industrial Scale Validation
MEMOCODE 2011, 89 – 97.
C. Chau (UT Austin) Async Circuit Modeling and Verification April 9, 2018 30 / 31

Questions?

C. Chau (UT Austin) Async Circuit Modeling and Verification April 9, 2018 31 / 31

	The DE System
	Modeling and Verification Approach
	Case Studies
	Conclusions

