
An Update on Self-Timed Circuit Verification

Cuong Chau
ckcuong@cs.utexas.edu

Department of Computer Science
The University of Texas at Austin

ACL2 Seminar Talk

September 21, 2018

C. Chau (UT Austin) Self-Timed Circuit Verification September 21, 2018 1 / 23

mailto:ckcuong@cs.utexas.edu

Outline

1 Progress

2 Verification Flow

3 Arbitrated Merge

4 Conclusion

C. Chau (UT Austin) Self-Timed Circuit Verification September 21, 2018 2 / 23

Outline

1 Progress

2 Verification Flow

3 Arbitrated Merge

4 Conclusion

C. Chau (UT Austin) Self-Timed Circuit Verification September 21, 2018 3 / 23

Progress

HVC-2017 paper [Chau et al.:2017]: Modeled and verified a 32-bit
self-timed serial adder.

Proved the correctness of circuit behavior under a condition that the
circuit behavior follows an explicitly declared interleaving set.
Our reasoning method explored all declared interleavings,
including ones internal to submodules.
Imposed a design restriction preventing a module from
communicating with other modules until it becomes quiescent
after finishing all of its internal processing.

C. Chau (UT Austin) Self-Timed Circuit Verification September 21, 2018 4 / 23

Progress

ASYNC-2018 paper [Chau et al.:2018]: Modeled and verified
data-loop-free self-timed circuits.

Proved the correctness of circuit behavior without specifying any
interleaving.
Developed a new hierarchical verification method that avoids
exploring the internal structures as well as operational interleavings of
verified submodules.
Avoided imposing the design restriction presented in the HVC-2017
paper.

C. Chau (UT Austin) Self-Timed Circuit Verification September 21, 2018 5 / 23

Progress

Spring 2018: Modeled and verified iterative self-timed circuits that
compute the greatest-common-divisors (GCDs) of their two input
operands.

Implemented circuit generators that mechanically generate circuit
descriptions of arbitrary data-bus width, and verified such
parameterized circuit generators.
Showed that the verification method introduced in the ASYNC-2018
paper can be applied to iterative circuits as well.

C. Chau (UT Austin) Self-Timed Circuit Verification September 21, 2018 6 / 23

Progress

Summer 2018: Modeled and verified self-timed circuits performing
arbitrated merge operations.

Formalized an arbitrated merge joint that provides mutually
exclusive accesses to its output link from its two input links.
Developed strategies for formalizing the relationship between the
input and output sequences for modules containing such arbitrated
merge joints.
Developed a library that supports reasoning about the membership
relation and the interleaving operation.

C. Chau (UT Austin) Self-Timed Circuit Verification September 21, 2018 7 / 23

Progress

Fall 2018:
Model and verify a parameterized self-timed serial adder model using
our new approach.

Formalize shift register models based on the link-joint paradigm.
Re-design the serial adder model with the new shift register models.
The new design should avoid imposing the design restrictions
introduced in the HVC-2017 paper.

Further demonstrate the compositionality of our new approach by
proving the functional correctness of a GCD circuit model that
contains the serial adders as submodules.

C. Chau (UT Austin) Self-Timed Circuit Verification September 21, 2018 8 / 23

Outline

1 Progress

2 Verification Flow

3 Arbitrated Merge

4 Conclusion

C. Chau (UT Austin) Self-Timed Circuit Verification September 21, 2018 9 / 23

Verification Flow

Value and
state lemmas

Multi-step
state lemma

Single-step-update
property

Multi-step
input-output
relationship

Functional
correctness

Induction

Induction

Hierarchical reasoning
& induction

C. Chau (UT Austin) Self-Timed Circuit Verification September 21, 2018 10 / 23

Value and State Lemmas

Value lemma: characterize the module’s outputs
se(module-name, inputs, st, netlist) = outputs(inputs, st)

State lemma: characterize the module’s next state
de(module-name, inputs, st, netlist) = step(inputs, st)

outputs and step are hierarchically defined as symbolic, four-valued
expressions that specify the module’s outputs and next state, respectively.

C. Chau (UT Austin) Self-Timed Circuit Verification September 21, 2018 11 / 23

Multi-Step State Lemma

Characterize the module’s final state after an n-step execution.
de-n(module-name, inputs-seq, st, netlist, n) = run(inputs-seq, st, n)

run(inputs-seq, st, n) :=
if (n ≤ 0) st
else

run(rest(inputs-seq),
step(first(inputs-seq), st),
n − 1)

C. Chau (UT Austin) Self-Timed Circuit Verification September 21, 2018 12 / 23

Multi-Step State Lemma

Characterize the module’s final state after an n-step execution.
de-n(module-name, inputs-seq, st, netlist, n) = run(inputs-seq, st, n)

run(inputs-seq, st, n) :=
if (n ≤ 0) st
else

run(rest(inputs-seq),
step(first(inputs-seq), st),
n − 1)

C. Chau (UT Austin) Self-Timed Circuit Verification September 21, 2018 12 / 23

Single-Step-Update Property

Specify the input-output relationship after one execution step.

Introduce an extraction function for each self-timed module, extract(st),
that returns a sequence of values computed from state st that may
ultimately appear in the output sequence.

Applying extract to step will compute the one-step update on the output
sequence given the current inputs and current state. Note that extract
and step are defined hierarchically.

Single-step-update property:
extract(step(inputs, st)) = extracted-step(inputs, st)

where extracted-step is the specification for the one-step update on the
output sequence.

C. Chau (UT Austin) Self-Timed Circuit Verification September 21, 2018 13 / 23

Single-Step-Update Property

Let in-act and out-act denote the communication signals at the input
and output ports respectively (Assume that the corresponding module has
one input and one output ports).

extracted-step(inputs, st) :=
extract(st), if in-act = nil ∧ out-act = nil
[op(inputs.data)] ++ extract(st), if in-act = t ∧ out-act = nil
remove-last(extract(st)), if in-act = nil ∧ out-act = t
[op(inputs.data)] ++ remove-last(extract(st)), otherwise

where
++ is the concatenation operator;
remove-last(l) returns list l except for its last element; and
op is the functional specification for the module.

C. Chau (UT Austin) Self-Timed Circuit Verification September 21, 2018 14 / 23

Multi-Step Input-Output Relationship

We verify the functional correctness of self-timed circuits in terms of the
relationship between their input and output sequences.

Our formalization considers a general case where:
the initial state may contain some valid data; and
there can be some valid data remaining in the final state.

Main theorem:

extract(run(inputs-seq, st, n)) ++ out-seq =
op-map(in-seq) ++ extract(st)

C. Chau (UT Austin) Self-Timed Circuit Verification September 21, 2018 15 / 23

Outline

1 Progress

2 Verification Flow

3 Arbitrated Merge

4 Conclusion

C. Chau (UT Austin) Self-Timed Circuit Verification September 21, 2018 16 / 23

Arbitrated Merge

Arbitrated merge is a well-known self-timed circuit model that provides
mutually exclusive access to a shared resource.

Produce non-deterministic output sequences due to arbitrary arrival times
of requests.

We formalize an arbitrated merge joint that provides mutually exclusive
access to its output link from its two input links on a
first-come-first-served basis [Roncken et al.:2017].

M
in0

in1
out

selectS0 S1

n
�

n
�

n
�

1�2
�

2
�

2
�

2
�

C. Chau (UT Austin) Self-Timed Circuit Verification September 21, 2018 17 / 23

Circuits Performing Arbitrated Merges

in0

in1

Q’8

Q’10

A

arbitrated merge

outinterl

interl
in0

in1
L gcd out

2n
�

2n
�

2n
�

2n
�

n
�interl-gcd

interl0
in0

in1
L0

interl1
in2

in3
L1

interl2 outcomp-interl

C. Chau (UT Austin) Self-Timed Circuit Verification September 21, 2018 18 / 23

Verification Flow

Value and
state lemmas

Multi-step
state lemma

Single-step-update
property

Multi-step
input-output
relationship

Functional
correctness

Induction

Induction

Hierarchical reasoning
& induction

C. Chau (UT Austin) Self-Timed Circuit Verification September 21, 2018 19 / 23

Verification Flow

Value and
state lemmas

Multi-step
state lemma

Single-step-update
property

Multi-step
input-output
relationship

Functional
correctness

Induction

Induction

Hierarchical reasoning
& induction

C. Chau (UT Austin) Self-Timed Circuit Verification September 21, 2018 19 / 23

Arbitrated Merge Verification

Define two extraction functions for each arbitrated merge, one for each
input stream.

Single-step-update property:
extract0(step(inputs, st)) = extracted0-step(inputs, st)
extract1(step(inputs, st)) = extracted1-step(inputs, st)

C. Chau (UT Austin) Self-Timed Circuit Verification September 21, 2018 20 / 23

Arbitrated Merge Verification
The multi-step input-output relationship is established using the
membership relation (∈) and the interleaving operation (⊗).

in0

in1

Q’8

Q’10

A

arbitrated merge

outinterl

interl$extract0 and interl$extract1 extract valid data from two complex
links Q′

8 and Q′
10, respectively.

let stf := interl$run(inputs-seq, st, n),
∀x ∈

(
interl$extract0(stf)⊗ interl$extract1(stf)

)
.

(x ++ out-seq) ∈
((

in0-seq ++ interl$extract0(st)
)
⊗(

in1-seq ++ interl$extract1(st)
))

C. Chau (UT Austin) Self-Timed Circuit Verification September 21, 2018 21 / 23

Outline

1 Progress

2 Verification Flow

3 Arbitrated Merge

4 Conclusion

C. Chau (UT Austin) Self-Timed Circuit Verification September 21, 2018 22 / 23

Conclusion

Reviewed the progress of our work on developing a hierarchical method for
self-timed circuit modeling and verification.

Presented the main steps in our verification flow.

Discussed our strategy for verifying self-timed circuits performing
arbitrated merge operations.

Developed a library that supports reasoning about the membership
relation and the interleaving operation.

C. Chau (UT Austin) Self-Timed Circuit Verification September 21, 2018 23 / 23

References

C. Chau, W. A. Hunt Jr., M. Kaufmann, M. Roncken, and I. Sutherland (2018)
Data-Loop-Free Self-Timed Circuit Verification
ASYNC 2018, 51 – 58.

C. Chau, W. A. Hunt Jr., M. Roncken, and I. Sutherland (2017)
A Framework for Asynchronous Circuit Modeling and Verification in ACL2
HVC 2017, 3 – 18.

M. Roncken, I. Sutherland, C. Chen, Y. Hei, W. Hunt Jr., and C. Chau, with S. M.
Gilla, H. Park, X. Song, A. He, and H. Chen (2017)
How to Think about Self-Timed Systems
Asilomar 2017, 1597 – 1604.

Questions?

	Progress
	Verification Flow
	Arbitrated Merge
	Conclusion

