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Value and State Lemmas

Value lemma: characterize the module’s outputs
se(module-name, inputs, st, netlist) = outputs(inputs, st)

State lemma: characterize the module’s next state
de(module-name, inputs, st, netlist) = step(inputs, st)

Functions outputs and step are hierarchically defined as symbolic,
four-valued expressions that specify the module’s outputs and next
state, respectively.
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Multi-Step State Lemma

Characterize the module’s final state after an n-step execution.
de-n(module-name, inputs-seq, st, netlist, n) = run(inputs-seq, st, n)

run(inputs-seq, st, n) :=
if (n ≤ 0) st
else

run(rest(inputs-seq),
step(first(inputs-seq), st),
n − 1)
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Single-Step-Update Property

Specify the input-output relationship after one execution step.

Introduce an extraction function for each self-timed module, extract(st),
that returns a sequence of values computed from valid data residing in
state st.

Applying extract to step will compute the one-step update on the output
sequence given the current inputs and current state. Note that extract
and step are defined hierarchically.

Single-step-update property:
extract(step(inputs, st)) = extracted-step(inputs, st)

where extracted-step is the specification for the one-step update on the
output sequence.
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Single-Step-Update Property

Example: Let in-act and out-act denote the communication signals at
the input and output ports respectively (Assume that the corresponding
module has one input and one output ports).

extracted-step(inputs, st) :=
extract(st), if in-act = nil ∧ out-act = nil
[op(inputs.data)] ++ extract(st), if in-act = t ∧ out-act = nil
remove-last(extract(st)), if in-act = nil ∧ out-act = t
[op(inputs.data)] ++ remove-last(extract(st)), otherwise

where
++ is the concatenation operator;
remove-last(l) returns list l except for its last element; and
op is the functional specification for the module.
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Multi-Step Input-Output Relationship

We verify the functional correctness of self-timed circuits in terms of the
relationship between their input and output sequences.

Our formalization considers a general case where:
the initial state may contain some valid data; and
there can be some valid data remaining in the final state.

Example:

extract(run(inputs-seq, st, n)) ++ out-seq =
op-map(in-seq) ++ extract(st)

The functional correctness theorem is a direct corollary of the multi-step
input-output relationship that is stated in terms of the de-n function,
while that relationship is formalized in terms of the run function.
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A FIFO Queue of Two Links

L0 L1
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Arbitrated Merge

Arbitrated merge is a well-known self-timed circuit model that provides
mutually exclusive access to a shared resource.

Produce non-deterministic output sequences due to arbitrary arrival times
of requests.

We formalize an arbitrated merge joint that provides mutually exclusive
access to its output link from its two input links on a
first-come-first-served basis1.

1M. Roncken et al. “How to Think about Self-Timed Systems”. In: Proc of the
Fifty First IEEE Asilomar Conference on Signals, Systems, and Computers
(Asilomar-2017). 2017, pp. 1597–1604.
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Circuits Performing Arbitrated Merges

in0

in1

Q’20a

Q’20b

A

arbitrated merge

outinterl

interl
in0

in1
L gcd out

2n
�

2n
�

2n
�

2n
�

n
�interl-gcd

interl0
in0

in1
L0

interl1
in2

in3
L1

interl2 outcomp-interl

C. Chau (UT Austin) Self-Timed Circuit Verification November 30, 2018 14 / 19



Verification Flow

Single-step-update
properties

Multi-step
input-output
relationship

Value and
state lemmas

Multi-step
state lemma

Functional
correctness

Induction

Induction

step run

Hierarchical reasoning
& induction

C. Chau (UT Austin) Self-Timed Circuit Verification November 30, 2018 15 / 19



Verification Flow

Single-step-update
properties

Multi-step
input-output
relationship

Value and
state lemmas

Multi-step
state lemma

Functional
correctness

Induction

Induction

step run

Hierarchical reasoning
& induction

C. Chau (UT Austin) Self-Timed Circuit Verification November 30, 2018 15 / 19



Arbitrated Merge Verification

Define two extraction functions for each arbitrated merge, one for each
input stream.

Single-step-update properties:
extract0(step(inputs, st)) = extracted0-step(inputs, st)
extract1(step(inputs, st)) = extracted1-step(inputs, st)
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Arbitrated Merge Verification
The multi-step input-output relationship is established using the
membership relation (∈) and the interleaving operation (⊗).

in0

in1

Q’20a

Q’20b

A

arbitrated merge

outinterl

interl$extract0 and interl$extract1 extract valid data from two complex
links Q′

20a and Q′
20b, respectively.

let stf := interl$run(inputs-seq, st, n),
∀x ∈

(
interl$extract0(stf )⊗ interl$extract1(stf )

)
.

(x ++ out-seq) ∈
((

in0-seq ++ interl$extract0(st)
)
⊗(

in1-seq ++ interl$extract1(st)
))
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Conclusion

Reviewed our ACL2 verification framework for self-timed circuit designs.

Illustrated the framework through two examples.
a self-timed circuit with deterministic outputs: a FIFO queue of two
links; and
a self-timed circuit with non-deterministic outputs: a circuit
performing arbitrated merges.
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Questions?
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