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Agenda 

• History 
• Agda 

– What it is 
– Why it’s interesting 
– Some basic definitions and proofs 

• Demo 
– Emacs interaction 
– Typed holes 
– Short proofs 
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Intuitionistic Type Theory: 
The Forefathers 
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Intuitionism Types 

Brouwer Russell 



Intuitionism 

• Briefly: mathematics without 
The Law of the Excluded Middle (LEM) 
 

• LEM: All propositions are either true or false; 
∀ P, P ∨ ¬P. 

• Demands construction of witnesses: 
∃x : P(x) can only be proven by constructing an 
object x such that P(x). 
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Russell’s Types 

• Russell’s Paradox: 
“the set of all sets that do not contain themselves” 
 

• Self-reference is problematic 
 

• Types enforce a hierarchy in which self-reference is 
impossible 
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BHK Interpretation1 

• The Brouwer-Heyting-Kolmogorov Interpretation: 
interpretation of the logical operators in 
intuitionistic logic 
 

• A ∧ B requires a proof of A and a proof of B 
• A ∨ B requires a proof of A or a proof of B 
… 
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BHK Interpretation2 

• A → B requires a construction that transforms any 
proof of A into a proof of B 
– i.e. evidence a : A transformed by function f 

such that f(a) : B 

• ⊥ (absurdity) has no proof 
• ¬A means A → ⊥ 
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Curry-Howard Correspondence 

• and ⟺ pairing 
• or ⟺ tagged union 
• implication⟺ function application 
• false/absurdity ⟺ type with no members 
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Intuitionistic Type Theory 

• Per Martin-Löf: 
Martin-Löf Type Theory (MLTT) (1972) 
 

Some key contributions towards Agda: 
• Calculus of Constructions, Coquand 
• Calculus of Inductive Constructions, Paulin-Mohring 
• UTT, Luo 
• Agda 2, Ulf Norell 
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What is Agda? 

From the website [1] : 
• A dependently-typed functional programming language 
• A proof assistant 

 
A product of Sweden – Chalmers, Gothenburg University 

 
 

[1] http://wiki.portal.chalmers.se/agda/ 
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Similar Systems 

• Coq (CIC), Ocaml 
• Matita (CIC), Ocaml 
• Lean (CIC), C++ 
• Idris, Haskell 
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Agda and Haskell 

Agda is… 
• Written in Haskell 
• Compiles to Haskell 
• Liberally borrows Haskell syntax 

 
Haskell influence brings: 
• Fancy lambda calculus with pattern matching 
• Significant indentation 
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Normal dependently typed features 

• Types and terms share hierarchy of universes 
– Terms in types, types in terms – “full lambda cube” 
– Type functions 

• “Propositions as Types”, “Proofs are Programs” 
• A theorem is the type of its proofs 
• A proof “proves” the theorem by inhabiting/having the type 

• Dependent product (Π), dependent sum (Σ) 
– Constructive “for all” and “there exists” quantifiers 

• Type inference: arguments can often be inferred 
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Programming Language or Prover? 

Recall: Agda is both 
• A dependently-typed functional programming language 
• A proof assistant 
 
In this logical system, type checking = proof checking 
 
When using Agda as a prover, programs are not “compiled”; 
type checking is sufficient. 
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How? 



Distinct features 

• Interactive editing of typed holes in Emacs 
• Unicode 

 
• Proof terms – deBruijn criterion ✓ 

– Unlike tactic-oriented provers (e.g. Coq, HOL), 
in Agda the proof terms are written directly 

– A brief aside for the next few slides: 
This attribute receives undeserved negative prejudice 
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Proof Terms 

• Back in 2010, Ben Delaware gave a Coq introduction 
to this audience 

• He suggested that writing proof terms (as in Agda) 
is unpleasant 

e.g. proof of associativity of list append: 

16 

Definition app_assoc := 
list_ind 
 (fun a0 : list A => forall b c : list A, a0 ++ b ++ c = (a0 ++ b) ++ c) 
 (fun b c : list A => refl_equal (b ++ c)) 
 (fun (a0 : A) (a1 : list A) 
 (IHa : forall b c : list A, a1 ++ b ++ c = (a1 ++ b) ++ c) 
 (b c : list A) => 
 let H := 
 eq_ind_r (fun l : list A => a0 :: (a1 ++ b) ++ c = a0 :: l) 
 (refl_equal (a0 :: (a1 ++ b) ++ c)) (IHa b c) in 
 eq_ind_r (fun l : list A => a0 :: a1 ++ b ++ c = l) 
 (eq_ind_r (fun l : list A => a0 :: l = a0 :: l) 
 (refl_equal (a0 :: (a1 ++ b) ++ c)) (IHa b c)) H) a 



Proof Tactics 

• But that proofs by tactics was more pleasant 
e.g. proof script for associativity of list append: 
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Lemma app_assoc : forall A (a b c : list A), a ++ (b ++ c) = (a ++ b) ++ c. 
 induction a; simpl; intros. 
 reflexivity. 
 cut (a :: (a0 ++ b) ++ c = a :: (a0 ++ b ++ c)). 
 intros; rewrite H; rewrite IHa; reflexivity. 
 rewrite IHa; reflexivity. 
Qed. 



Counterpoint 

• This distinction is true of Coq 
– Avoid writing Gallina proof terms directly 
– Ltac (tactic language) is dirty, but expedient 

 

• But in Agda … 
– Writing proofs as Agda functions isn’t so bad… 
– Typed holes provide equivalent interactivity! 
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Why? 



Associativity of append in Agda 

From the Agda standard library (agda-stdlib): 
 
module _ {a} {A : Set a} where 
 
  ++-assoc : Associative {A = List A} _≡_ _++_ 
  ++-assoc []         ys zs = refl 
  ++-assoc (x ∷ xs) ys zs = cong (x ∷_) (++-assoc xs ys zs) 
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Some Definitional Backchaining… 

-- Algebra/FunctionProperties.agda 
module Algebra.FunctionProperties 
  {a ℓ} {A : Set a} (_≈_ : Rel A ℓ) where 
Associative : Op₂ A → Set _ 
Associative _∙_ = ∀ x y z → ((x ∙ y) ∙ z) ≈ (x ∙ (y ∙ z)) 
 
-- Algebra/FunctionProperties/Core.agda 
Op₂ : ∀ {ℓ} → Set ℓ → Set ℓ 
Op₂ A = A → A → A 
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Definition of ++ (list concatenation) 

-- Data/List/Base.agda 
infixr 5 _++_ 
 
_++_ : ∀ {a} {A : Set a} → List A → List A → List A 
[]       ++ ys = ys 
(x ∷ xs) ++ ys = x ∷ (xs ++ ys) 
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Definition of ≡ (equality) 

-- Agda/Builtin/Equality.agda 
infix 4 _≡_ 
data _≡_ {a} {A : Set a} (x : A) : A → Set a where 
  instance refl : x ≡ x 
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Associativity of append, again1 

++-assoc : Associative {A = List A} _≡_ _++_ 
++-assoc []          ys zs = refl 
++-assoc (x ∷ xs) ys zs = cong (x ∷_) (++-assoc xs ys zs) 
 
After applying Associative, the type signature is roughly 
λ (x y z : List _) → (x ++ y) ++ z ≡ x ++ (y ++ z) 
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Associativity of append, again2 

++-assoc : Associative {A = List A} _≡_ _++_ 
++-assoc []          ys zs = refl 
++-assoc (x ∷ xs) ys zs = cong (x ∷_) (++-assoc xs ys zs) 
 
Proof proceeds by case analysis on the first argument. 
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Associativity of append, again3 

++-assoc : Associative {A = List A} _≡_ _++_ 
++-assoc []          ys zs = refl 
++-assoc (x ∷ xs) ys zs = cong (x ∷_) (++-assoc xs ys zs) 
 
Base case is trivial (‘refl’ means proof by reflexivity): 
Recall that (by definition of ++), [] ++ ys ≡ ys.  So 
([] ++ y) ++ z ≡ [] ++ (y ++ z) 
y ++ z ≡ y ++ z 
refl (y ++ z) 
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Associativity of append, again4 

++-assoc : Associative {A = List A} _≡_ _++_ 
++-assoc []          ys zs = refl 
++-assoc (x ∷ xs) ys zs = cong (x ∷_) (++-assoc xs ys zs) 
 
When using proof by induction, the proof is recursive! 
(xs ++ ys) ++ zs ≡ xs ++ (ys ++ zs) 
x ∷ ((xs ++ ys) ++ zs) ≡ x ∷ (xs ++ (ys ++ zs)) 
∎ 

26 



Agenda 

• Agda 
– What it is 
– Why it’s interesting 
– Some basic definitions and proofs 

• Demo 
– Emacs interaction 
– Typed holes 
– Short proofs 
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Agda Strengths 

• Interactivity 
 

• Brevity: Unicode, mixfix 
 

• Proof terms 
– Powerful formalism, direct Curry-Howard 

 
• Active community and developers 
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Agda Weaknesses 

• Large body of background knowledge 
• Poor error messages 
• Proof automation functionality is minimal 

– Counterpoint: mature Reflection API allows self service 

• Incomplete documentation 
• Slow 
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“Agda-Curious”? 

• Programming Language Foundations in Agda 
– https://plfa.github.io/ 
– Port of Software Foundations (Coq) by Pierce, et al. 
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