An Introduction to Agda

Curtis Dunham February 1, 2019

Agenda

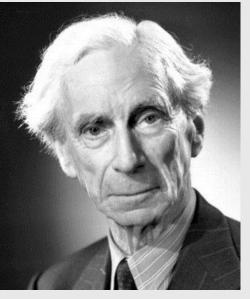
- History
- Agda
 - What it is
 - Why it's interesting
 - Some basic definitions and proofs
- Demo
 - Emacs interaction
 - Typed holes
 - Short proofs

Intuitionistic Type Theory: The Forefathers

Brouwer

Intuitionism

Russell



Types

Intuitionism

- Briefly: mathematics <u>without</u>
 The Law of the Excluded Middle (LEM)
- LEM: All propositions are either true or false;
 ∀ P, P ∨ ¬P.
- Demands construction of witnesses:
 ∃x : P(x) can only be proven by *constructing* an object x such that P(x).

Russell's Types

- Russell's Paradox:
 - "the set of all sets that do not contain themselves"
- Self-reference is problematic
- Types enforce a hierarchy in which self-reference is impossible

BHK Interpretation₁

- The <u>Brouwer-Heyting-Kolmogorov Interpretation</u>: interpretation of the logical operators in intuitionistic logic
- A \wedge B requires a proof of A and a proof of B
- A v B requires a proof of A or a proof of B

BHK Interpretation₂

- A \rightarrow B requires a construction that transforms any proof of A into a proof of B
 - *i.e.* evidence a : A transformed by function f such that f(a) : B
- ⊥ (absurdity) has no proof
- ¬A means A $\rightarrow \bot$

Curry-Howard Correspondence

- and \Leftrightarrow pairing
- or \Leftrightarrow tagged union
- $implication \Leftrightarrow function application$
- false/absurdity ⇔ type with no members

Intuitionistic Type Theory

 Per Martin–Löf: Martin–Löf Type Theory (MLTT) (1972)

Some key contributions towards Agda:

Calculus of Constructions, Coquand

- Calculus of Inductive Constructions, Paulin-Mohring
- UTT, Luo
- Agda 2, Ulf Norell

What is Agda?

From the website ^[1]:

- A dependently-typed functional programming language
- A proof assistant

A product of Sweden – Chalmers, Gothenburg University

[1] <u>http://wiki.portal.chalmers.se/agda/</u>

Similar Systems

- Coq (CIC), Ocaml
- Matita (CIC), Ocaml
- Lean (CIC), C++
- Idris, Haskell

Agda and Haskell

Agda is...

- Written in Haskell
- Compiles to Haskell
- Liberally borrows Haskell syntax

Haskell influence brings:

- Fancy lambda calculus with pattern matching
- Significant indentation

Normal dependently typed features

- Types and terms share hierarchy of universes
 - Terms in types, types in terms "full lambda cube"
 Type functions
- "Propositions as Types", "Proofs are Programs"
 - A theorem is the type of its proofs
 - A proof "proves" the theorem by inhabiting/having the type
- Dependent product (Π), dependent sum (Σ)
 Constructive "for all" and "there exists" quantifiers
- Type inference: arguments can often be inferred

Programming Language or Prover? Recall: Agda is both

- A dependently-typed functional programming language
- A proof assistant

In this logical system, **type checking = proof checking**

When using Agda as a prover, programs are not "compiled"; type checking is sufficient.

Distinct features

- Interactive editing of typed holes in Emacs
- Unicode
- Proof terms deBruijn criterion
 - Unlike tactic-oriented provers (*e.g.* Coq, HOL), in Agda the proof terms are written **directly**
 - A brief aside for the next few slides:
 This attribute receives undeserved negative prejudice

Proof Terms

- Back in 2010, Ben Delaware gave a Coq introduction to this audience
- He suggested that writing proof terms (as in Agda) is unpleasant

e.g. proof of associativity of list append:

```
Definition app_assoc :=
list_ind
(fun ao : list A => forall b c : list A, ao ++ b ++ c = (ao ++ b) ++ c)
(fun b c : list A => refl_equal (b ++ c))
(fun (ao : A) (a1 : list A)
(IHa : forall b c : list A, a1 ++ b ++ c = (a1 ++ b) ++ c)
(b c : list A) =>
let H :=
eq_ind_r (fun I : list A => ao :: (a1 ++ b) ++ c = ao :: l)
(refl_equal (ao :: (a1 ++ b) ++ c)) (IHa b c) in
eq_ind_r (fun I : list A => ao :: a1 ++ b ++ c = l)
(eq_ind_r (fun I : list A => ao :: l = ao :: l)
(refl_equal (ao :: (a1 ++ b) ++ c)) (IHa b c) H) a
```


Proof Tactics

• But that proofs by tactics was more pleasant e.g. proof <u>script</u> for associativity of list append:

```
Lemma app_assoc : forall A (a b c : list A), a ++ (b ++ c) = (a ++ b) ++ c.
induction a; simpl; intros.
reflexivity.
cut (a :: (a0 ++ b) ++ c = a :: (a0 ++ b ++ c)).
intros; rewrite H; rewrite IHa; reflexivity.
rewrite IHa; reflexivity.
Qed.
```

Counterpoint

- This distinction *is* true of Coq
 - Avoid writing Gallina proof terms directly
 - Ltac (tactic language) is dirty, but expedient
- But in Agda ...
 - Writing proofs as Agda functions isn't so bad...
 - Typed holes provide equivalent interactivity!

Why?

Associativity of append in Agda

From the Agda standard library (agda-stdlib):

module _ {a} {A : Set a} where

```
++-assoc : Associative {A = List A} \equiv _++_
++-assoc [] ys zs = refl
++-assoc (x :: xs) ys zs = cong (x ::_) (++-assoc xs ys zs)
```

Some Definitional Backchaining...

-- Algebra/FunctionProperties.agda module Algebra.FunctionProperties $\{a \ l\} \{A : Set \ a\} (_\approx_ : Rel \ A \ l) where$ $Associative : Op_2 A \to Set __$ $Associative _• = \forall x y z \to ((x • y) • z) \approx (x • (y • z))$

-- Algebra/FunctionProperties/Core.agda

$$Op_2 : \forall \{\ell\} \rightarrow Set \ \ell \rightarrow Set \ \ell$$

 $Op_2 A = A \rightarrow A \rightarrow A$

Definition of ++ (list concatenation)

-- Data/List/Base.agda

infixr 5 _++_

$$\begin{array}{ll} ++ & : \forall \{a\} \{A : Set a\} \rightarrow List A \rightarrow List A \rightarrow List A \\ \hline \\ ++ & ys = ys \\ (x :: xs) ++ & ys = x :: (xs ++ & ys) \end{array}$$

Definition of ≡ (equality)

- -- Agda/Builtin/Equality.agda
- infix 4 _=_ data _=_ {a} {A : Set a} (x : A) : A \rightarrow Set a where instance refl : x = x

Associativity of append, again₁

++-assoc : Associative {A = List A}
$$\equiv$$
 _++___

++-assoc (x :: xs) ys zs = cong (x ::_) (++-assoc xs ys zs)

After applying Associative, the type signature is roughly λ (x y z : List _) \rightarrow (x ++ y) ++ z \equiv x ++ (y ++ z)

Associativity of append, again₂

++-assoc : Associative {A = List A} _= __++__ ++-assoc [] ys zs = refl ++-assoc (x :: xs) ys zs = cong (x ::_) (++-assoc xs ys zs)

Proof proceeds by case analysis on the first argument.

Associativity of append, again₃

++-assoc : Associative $\{A = List A\} _ = _ ++_$

++-assoc [] ys zs = refl

++-assoc (x :: xs) ys zs = cong (x ::_) (++-assoc xs ys zs)

Base case is trivial ('refl' means proof by reflexivity): Recall that (by definition of ++), [] ++ ys \equiv ys. So ([] ++ y) ++ z \equiv [] ++ (y ++ z) y ++ z \equiv y ++ z refl (y ++ z)

Associativity of append, again₄

++-assoc : Associative {A = List A} \equiv _++_ ++-assoc [] ys zs = refl ++-assoc (x :: xs) ys zs = cong (x ::_) (++-assoc xs ys zs)

When using proof by induction, the proof is recursive!
(xs ++ ys) ++ zs
$$\equiv$$
 xs ++ (ys ++ zs)
x :: ((xs ++ ys) ++ zs) \equiv x :: (xs ++ (ys ++ zs))

Agenda

- Agda
 - What it is
 - Why it's interesting
 - Some basic definitions and proofs
- Demo
 - Emacs interaction
 - Typed holes
 - Short proofs

Agda Strengths

- Interactivity
- Brevity: Unicode, mixfix
- Proof terms

- Powerful formalism, direct Curry-Howard

Active community and developers

Agda Weaknesses

- Large body of background knowledge
- Poor error messages
- Proof automation functionality is minimal

 Counterpoint: mature Reflection API allows self service
- Incomplete documentation
- Slow

"Agda-Curious"?

- Programming Language Foundations in Agda
 - <u>https://plfa.github.io/</u>
 - Port of Software Foundations (Coq) by Pierce, et al.

Curtis Dunham

University of Texas at Austin and Arm Research

An Introduction to Agda

Thank you!

What questions do you have?

Backup / Slide Graveyard