
A Hierarchical Approach to Formal Modeling and
Verification of Asynchronous Circuits

Cuong Chau
ckcuong@cs.utexas.edu

Department of Computer Science
The University of Texas at Austin

March 15, 2019

C. Chau (UT Austin) Async Circuit Modeling and Verification March 15, 2019 1 / 28

mailto:ckcuong@cs.utexas.edu

Outline

1 Overview

2 DE System

3 Modeling and Verification Approach

4 Case Studies

5 Future Work and Conclusions

C. Chau (UT Austin) Async Circuit Modeling and Verification March 15, 2019 2 / 28

Outline

1 Overview

2 DE System

3 Modeling and Verification Approach

4 Case Studies

5 Future Work and Conclusions

C. Chau (UT Austin) Async Circuit Modeling and Verification March 15, 2019 2 / 28

Synchronous vs. Asynchronous
Synchronous circuits (or clocked circuits): changes in the state of storage
elements are synchronized by a global clock signal.

Asynchronous circuits (or self-timed circuits): no global clock signal. The
communications between storage elements are performed via local
communication protocols.

C. Chau (UT Austin) Async Circuit Modeling and Verification March 15, 2019 3 / 28

Motivation

Many efforts in verifying self-timed circuit implementations concern
circuit-level timing properties or communication properties.

Most verification methods for self-timed circuits have concentrated on
small-size circuits.

We are not aware of any previous scalable formal methods for validating
functional properties of self-timed systems.

Scalable methods for self-timed system verification are highly desirable.

C. Chau (UT Austin) Async Circuit Modeling and Verification March 15, 2019 4 / 28

Goals and Impact

Goals:
Develop scalable methods for reasoning about the functional
correctness of self-timed circuits and systems, while abstracting
away circuit-level timing constraints.
Implement those methods using the ACL2 theorem proving system,
providing a useful automated framework with associated libraries to
support the mechanical analysis of general-purpose, self-timed circuit
designs.

Impact:
Advance the state-of-the-art in self-timed circuit specification and
verification, and provide a means to support building reliable
complex hardware systems using the self-timed paradigm; and thus,
Support a computing paradigm where systems can proceed at their
best rate and no longer require clock signals.

C. Chau (UT Austin) Async Circuit Modeling and Verification March 15, 2019 5 / 28

Goals and Impact

Goals:
Develop scalable methods for reasoning about the functional
correctness of self-timed circuits and systems, while abstracting
away circuit-level timing constraints.
Implement those methods using the ACL2 theorem proving system,
providing a useful automated framework with associated libraries to
support the mechanical analysis of general-purpose, self-timed circuit
designs.

Impact:
Advance the state-of-the-art in self-timed circuit specification and
verification, and provide a means to support building reliable
complex hardware systems using the self-timed paradigm; and thus,
Support a computing paradigm where systems can proceed at their
best rate and no longer require clock signals.

C. Chau (UT Austin) Async Circuit Modeling and Verification March 15, 2019 5 / 28

Approach
Extend the DE-based, synchronous-style verification system1 to one that is
capable of analyzing self-timed system models.

Apply the link-joint model2 to modeling self-timed circuit designs.

Develop a hierarchical (compositional) reasoning approach that is
amenable to verifying correctness of large, non-deterministic systems
without a large growth of the time complexity.

Avoid exploring the operations internal to a verified submodule as
well as their interleavings.
The input-output relationship of a verified submodule is determined
based on the communication signals at the submodule’s input and
output ports, while abstracting away all execution paths internal
to that submodule.

1W. A. Hunt Jr. “The DE Language”. In: Computer-Aided Reasoning: ACL2 Case
Studies. Springer US, 2000. Chap. 10, pp. 151–166.

2M. Roncken et al. “Naturalized Communication and Testing”. In: ASYNC-2015,
pp. 77–84.

C. Chau (UT Austin) Async Circuit Modeling and Verification March 15, 2019 6 / 28

Approach
Extend the DE-based, synchronous-style verification system1 to one that is
capable of analyzing self-timed system models.

Apply the link-joint model2 to modeling self-timed circuit designs.

Develop a hierarchical (compositional) reasoning approach that is
amenable to verifying correctness of large, non-deterministic systems
without a large growth of the time complexity.

Avoid exploring the operations internal to a verified submodule as
well as their interleavings.
The input-output relationship of a verified submodule is determined
based on the communication signals at the submodule’s input and
output ports, while abstracting away all execution paths internal
to that submodule.

1W. A. Hunt Jr. “The DE Language”. In: Computer-Aided Reasoning: ACL2 Case
Studies. Springer US, 2000. Chap. 10, pp. 151–166.

2M. Roncken et al. “Naturalized Communication and Testing”. In: ASYNC-2015,
pp. 77–84.

C. Chau (UT Austin) Async Circuit Modeling and Verification March 15, 2019 6 / 28

Approach
Extend the DE-based, synchronous-style verification system1 to one that is
capable of analyzing self-timed system models.

Apply the link-joint model2 to modeling self-timed circuit designs.

Develop a hierarchical (compositional) reasoning approach that is
amenable to verifying correctness of large, non-deterministic systems
without a large growth of the time complexity.

Avoid exploring the operations internal to a verified submodule as
well as their interleavings.
The input-output relationship of a verified submodule is determined
based on the communication signals at the submodule’s input and
output ports, while abstracting away all execution paths internal
to that submodule.

1W. A. Hunt Jr. “The DE Language”. In: Computer-Aided Reasoning: ACL2 Case
Studies. Springer US, 2000. Chap. 10, pp. 151–166.

2M. Roncken et al. “Naturalized Communication and Testing”. In: ASYNC-2015,
pp. 77–84.

C. Chau (UT Austin) Async Circuit Modeling and Verification March 15, 2019 6 / 28

Approach
Extend the DE-based, synchronous-style verification system1 to one that is
capable of analyzing self-timed system models.

Apply the link-joint model2 to modeling self-timed circuit designs.

Develop a hierarchical (compositional) reasoning approach that is
amenable to verifying correctness of large, non-deterministic systems
without a large growth of the time complexity.

Avoid exploring the operations internal to a verified submodule as
well as their interleavings.
The input-output relationship of a verified submodule is determined
based on the communication signals at the submodule’s input and
output ports, while abstracting away all execution paths internal
to that submodule.

1W. A. Hunt Jr. “The DE Language”. In: Computer-Aided Reasoning: ACL2 Case
Studies. Springer US, 2000. Chap. 10, pp. 151–166.

2M. Roncken et al. “Naturalized Communication and Testing”. In: ASYNC-2015,
pp. 77–84.

C. Chau (UT Austin) Async Circuit Modeling and Verification March 15, 2019 6 / 28

Accomplishments

Extended the DE system to modeling self-timed circuit designs.

Extended the DE primitive database with a new primitive that
coordinates the means to update the state of a (storage) link.

Developed a hierarchical verification approach that scales well even as
circuit size increases.

Developed lemma libraries and strategies for reasoning about
non-deterministic circuit behavior efficiently.

Successfully applied our modeling and verification approach to a variety of
self-timed circuit models.

Data-loop-free circuits [2]
Iterative circuits [1]
Circuits involving non-deterministically arbitrated merges [1]

C. Chau (UT Austin) Async Circuit Modeling and Verification March 15, 2019 7 / 28

Accomplishments

Extended the DE system to modeling self-timed circuit designs.

Extended the DE primitive database with a new primitive that
coordinates the means to update the state of a (storage) link.

Developed a hierarchical verification approach that scales well even as
circuit size increases.

Developed lemma libraries and strategies for reasoning about
non-deterministic circuit behavior efficiently.

Successfully applied our modeling and verification approach to a variety of
self-timed circuit models.

Data-loop-free circuits [2]
Iterative circuits [1]
Circuits involving non-deterministically arbitrated merges [1]

C. Chau (UT Austin) Async Circuit Modeling and Verification March 15, 2019 7 / 28

Accomplishments

Extended the DE system to modeling self-timed circuit designs.

Extended the DE primitive database with a new primitive that
coordinates the means to update the state of a (storage) link.

Developed a hierarchical verification approach that scales well even as
circuit size increases.

Developed lemma libraries and strategies for reasoning about
non-deterministic circuit behavior efficiently.

Successfully applied our modeling and verification approach to a variety of
self-timed circuit models.

Data-loop-free circuits [2]
Iterative circuits [1]
Circuits involving non-deterministically arbitrated merges [1]

C. Chau (UT Austin) Async Circuit Modeling and Verification March 15, 2019 7 / 28

Outline

1 Overview

2 DE System

3 Modeling and Verification Approach

4 Case Studies

5 Future Work and Conclusions

C. Chau (UT Austin) Async Circuit Modeling and Verification March 15, 2019 8 / 28

DE System

DE is a formal occurrence-oriented hardware description language
developed in ACL2 for describing Mealy machines.

The semantics of the DE language is given by a simulator that computes
the outputs and next state for a module from the module’s current
inputs and current state.

In our self-timed modeling approach, we invoke the DE simulator whenever
any primary input changes.

Allow the design to proceed at a rate moderated by oracle values —
extra input values modeling non-determinacy — that can cause any
part of the logic to delay an arbitrary amount.

We extend the DE primitive database with a new primitive that models
the validity of data stored in a communication link.

C. Chau (UT Austin) Async Circuit Modeling and Verification March 15, 2019 9 / 28

DE System

DE is a formal occurrence-oriented hardware description language
developed in ACL2 for describing Mealy machines.

The semantics of the DE language is given by a simulator that computes
the outputs and next state for a module from the module’s current
inputs and current state.

In our self-timed modeling approach, we invoke the DE simulator whenever
any primary input changes.

Allow the design to proceed at a rate moderated by oracle values —
extra input values modeling non-determinacy — that can cause any
part of the logic to delay an arbitrary amount.

We extend the DE primitive database with a new primitive that models
the validity of data stored in a communication link.

C. Chau (UT Austin) Async Circuit Modeling and Verification March 15, 2019 9 / 28

DE System

DE is a formal occurrence-oriented hardware description language
developed in ACL2 for describing Mealy machines.

The semantics of the DE language is given by a simulator that computes
the outputs and next state for a module from the module’s current
inputs and current state.

In our self-timed modeling approach, we invoke the DE simulator whenever
any primary input changes.

Allow the design to proceed at a rate moderated by oracle values —
extra input values modeling non-determinacy — that can cause any
part of the logic to delay an arbitrary amount.

We extend the DE primitive database with a new primitive that models
the validity of data stored in a communication link.

C. Chau (UT Austin) Async Circuit Modeling and Verification March 15, 2019 9 / 28

DE System

DE is a formal occurrence-oriented hardware description language
developed in ACL2 for describing Mealy machines.

The semantics of the DE language is given by a simulator that computes
the outputs and next state for a module from the module’s current
inputs and current state.

In our self-timed modeling approach, we invoke the DE simulator whenever
any primary input changes.

Allow the design to proceed at a rate moderated by oracle values —
extra input values modeling non-determinacy — that can cause any
part of the logic to delay an arbitrary amount.

We extend the DE primitive database with a new primitive that models
the validity of data stored in a communication link.

C. Chau (UT Austin) Async Circuit Modeling and Verification March 15, 2019 9 / 28

Outline

1 Overview

2 DE System

3 Modeling and Verification Approach

4 Case Studies

5 Future Work and Conclusions

C. Chau (UT Austin) Async Circuit Modeling and Verification March 15, 2019 10 / 28

Link-Joint Model
We model self-timed systems as Mealy machines representing networks
of communication links and computation joints.

L0

L1

J0

L2

L3

L4

J1 L5

Links communicate with each other locally via joints using the link-joint
model.

Links are communication channels in which data are stored along
with a full/empty signal.
Joints are handshake components that implement data operations
and flow control.
A link connects exactly to one input and one output joint.

Necessary conditions for a joint-action to fire: all input and output links
of that action are full and empty, respectively.

C. Chau (UT Austin) Async Circuit Modeling and Verification March 15, 2019 11 / 28

Link-Joint Model
We model self-timed systems as Mealy machines representing networks
of communication links and computation joints.

L0

L1

J0

L2

L3

L4

J1 L5

Links communicate with each other locally via joints using the link-joint
model.

Links are communication channels in which data are stored along
with a full/empty signal.
Joints are handshake components that implement data operations
and flow control.
A link connects exactly to one input and one output joint.

Necessary conditions for a joint-action to fire: all input and output links
of that action are full and empty, respectively.

C. Chau (UT Austin) Async Circuit Modeling and Verification March 15, 2019 11 / 28

Link-Joint Model
We model self-timed systems as Mealy machines representing networks
of communication links and computation joints.

L0

L1

J0

L2

L3

L4

J1 L5

Links communicate with each other locally via joints using the link-joint
model.

Links are communication channels in which data are stored along
with a full/empty signal.
Joints are handshake components that implement data operations
and flow control.
A link connects exactly to one input and one output joint.

Necessary conditions for a joint-action to fire: all input and output links
of that action are full and empty, respectively.

C. Chau (UT Austin) Async Circuit Modeling and Verification March 15, 2019 11 / 28

Details of the Link-Joint Model

5

1. F D /

fullin

actdrain

0. F D /

fill

emptyout

JointLink Link

L0 L1

GO

The green boxes represent instances of our new DE link-control primitive.
When a joint acts, three tasks will be executed in parallel:

transfer data computed from the input links to the output links;
fill (possibly a subset of) the output links, leaving them full;
drain (possibly a subset of) the input links, leaving them empty.
C. Chau (UT Austin) Async Circuit Modeling and Verification March 15, 2019 12 / 28

Details of the Link-Joint Model (GO = 0)

5

1. F D /

fullin

actdrain

0. F D /

fill

emptyout

JointLink Link

L0 L1

GO

0
0

7

0

The green boxes represent instances of our new DE link-control primitive.
When a joint acts, three tasks will be executed in parallel:

transfer data computed from the input links to the output links;
fill (possibly a subset of) the output links, leaving them full;
drain (possibly a subset of) the input links, leaving them empty.
C. Chau (UT Austin) Async Circuit Modeling and Verification March 15, 2019 12 / 28

Details of the Link-Joint Model (GO = 0)

5

1. F D /

fullin

actdrain

0. F D /

fill

emptyout

JointLink Link

L0 L1

GO

0
0

7

0

1 0

0

5 5 x

The green boxes represent instances of our new DE link-control primitive.
When a joint acts, three tasks will be executed in parallel:

transfer data computed from the input links to the output links;
fill (possibly a subset of) the output links, leaving them full;
drain (possibly a subset of) the input links, leaving them empty.
C. Chau (UT Austin) Async Circuit Modeling and Verification March 15, 2019 12 / 28

Details of the Link-Joint Model (GO = 1)

5

1. F D /

fullin

actdrain

0. F D /

fill

emptyout

JointLink Link

L0 L1

GO

0
0

7

1

The green boxes represent instances of our new DE link-control primitive.
When a joint acts, three tasks will be executed in parallel:

transfer data computed from the input links to the output links;
fill (possibly a subset of) the output links, leaving them full;
drain (possibly a subset of) the input links, leaving them empty.
C. Chau (UT Austin) Async Circuit Modeling and Verification March 15, 2019 12 / 28

Details of the Link-Joint Model (GO = 1)

5

1. F D /

fullin

actdrain

0. F D /

fill

emptyout

JointLink Link

L0 L1

GO

0
0

7

1

1 0

1

5 5 5

The green boxes represent instances of our new DE link-control primitive.
When a joint acts, three tasks will be executed in parallel:

transfer data computed from the input links to the output links;
fill (possibly a subset of) the output links, leaving them full;
drain (possibly a subset of) the input links, leaving them empty.
C. Chau (UT Austin) Async Circuit Modeling and Verification March 15, 2019 12 / 28

Details of the Link-Joint Model (GO = 1)

5

1. F D /

fullin

actdrain

0. F D /

fill

emptyout

JointLink Link

L0 L1

GO

0
0

7

1

1 0

1

5 5 5

0. F D / 1. F D /

5

The green boxes represent instances of our new DE link-control primitive.
When a joint acts, three tasks will be executed in parallel:

transfer data computed from the input links to the output links;
fill (possibly a subset of) the output links, leaving them full;
drain (possibly a subset of) the input links, leaving them empty.
C. Chau (UT Austin) Async Circuit Modeling and Verification March 15, 2019 12 / 28

Self-Timed Modules

L0

L1

J0

L2

L3

L4

J1 L5

Complex link

L0 L1

Complex joint: a queue of length two, Q2

C. Chau (UT Austin) Async Circuit Modeling and Verification March 15, 2019 13 / 28

Verification Flow

Gate-level netlist

Value and state lemmas,
Multi-step state lemma

Four-valued level

Single-step-update properties

Extraction level

Multi-step input-output relationship

Functional spec

C. Chau (UT Austin) Async Circuit Modeling and Verification March 15, 2019 14 / 28

Verification Flow

Gate-level netlist

Value and state lemmas,
Multi-step state lemma

Four-valued level

Single-step-update properties

Extraction level

Multi-step input-output relationship

Functional spec

C. Chau (UT Austin) Async Circuit Modeling and Verification March 15, 2019 14 / 28

Verification Flow

Gate-level netlist

Value and state lemmas,
Multi-step state lemma

Four-valued level

Single-step-update properties

Extraction level

Multi-step input-output relationship

Functional spec

C. Chau (UT Austin) Async Circuit Modeling and Verification March 15, 2019 14 / 28

Verification Flow

Gate-level netlist

Value and state lemmas,
Multi-step state lemma

Four-valued level

Single-step-update properties

Extraction level

Multi-step input-output relationship

Functional spec

C. Chau (UT Austin) Async Circuit Modeling and Verification March 15, 2019 14 / 28

Verification Flow

Gate-level netlist

Value and state lemmas,
Multi-step state lemma

Four-valued level

Single-step-update properties

Extraction level

Multi-step input-output relationship

Functional spec

C. Chau (UT Austin) Async Circuit Modeling and Verification March 15, 2019 14 / 28

Verification Steps

Single-step-update
properties

Multi-step
input-output
relationship

Value and
state lemmas

Multi-step
state lemma

Functional
correctness

Induction

Induction

step run

Hierarchical reasoning
& induction

C. Chau (UT Austin) Async Circuit Modeling and Verification March 15, 2019 15 / 28

Outline

1 Overview

2 DE System

3 Modeling and Verification Approach

4 Case Studies

5 Future Work and Conclusions

C. Chau (UT Austin) Async Circuit Modeling and Verification March 15, 2019 16 / 28

A FIFO Circuit Model

Q3

in

[1, 4, 3]
8 x 5

out
[1, 4, 3] ++ [8, 5]

in

1 x x

out

[4, 3, 8, 5]

[1] ++ [4, 3, 8, 5]

[1] ++ [4, 3, 8, 5] = [1, 4, 3] ++ [8, 5]

C. Chau (UT Austin) Async Circuit Modeling and Verification March 15, 2019 17 / 28

A FIFO Circuit Model

Q3

in

[1, 4, 3]
8 x 5

out
[1, 4, 3] ++ [8, 5]

in

1 x x

out

[4, 3, 8, 5]

[1] ++ [4, 3, 8, 5]

[1] ++ [4, 3, 8, 5] = [1, 4, 3] ++ [8, 5]

C. Chau (UT Austin) Async Circuit Modeling and Verification March 15, 2019 17 / 28

A FIFO Circuit Model

Q3

in

[1, 4, 3]
8 x 5

out
[1, 4, 3] ++ [8, 5]

in

1 x x

out

[4, 3, 8, 5]

[1] ++ [4, 3, 8, 5]

[1] ++ [4, 3, 8, 5] = [1, 4, 3] ++ [8, 5]

C. Chau (UT Austin) Async Circuit Modeling and Verification March 15, 2019 17 / 28

A FIFO Circuit Model

The relationship between Q3’s in-seq and out-seq.

q3$extract(q3$run(inputs-seq, st, n)) ++ out-seq =
in-seq ++ q3$extract(st)

in-seq is the sequence of input data extracted from inputs-seq that are
accepted by Q3.

The extraction function q3$extract(st) extracts valid data from state st
of Q3, i.e., extracts data from links that are full at state st.

out-seq = in-seq when the initial and final states contain no valid data.

C. Chau (UT Austin) Async Circuit Modeling and Verification March 15, 2019 18 / 28

A FIFO Circuit Model

The relationship between Q3’s in-seq and out-seq.

q3$extract(q3$run(inputs-seq, st, n)) ++ out-seq =
in-seq ++ q3$extract(st)

in-seq is the sequence of input data extracted from inputs-seq that are
accepted by Q3.

The extraction function q3$extract(st) extracts valid data from state st
of Q3, i.e., extracts data from links that are full at state st.

out-seq = in-seq when the initial and final states contain no valid data.

C. Chau (UT Austin) Async Circuit Modeling and Verification March 15, 2019 18 / 28

A FIFO Circuit Model

q3$extract(q3$run(inputs-seq, st, n)) ++ out-seq =
in-seq ++ q3$extract(st) (1)

Our ACL2 proof of (1) uses induction and the following
single-step-update property of Q3 as a supporting lemma,

q3$extract(q3$step(inputs, st)) = q3$extracted-step(inputs, st) (2)

where q3$extracted-step(inputs, st) :=
q3$extract(st), if in-act = nil ∧ out-act = nil
[inputs.data] ++ q3$extract(st), if in-act = t ∧ out-act = nil
remove-last(q3$extract(st)), if in-act = nil ∧ out-act = t
[inputs.data] ++ remove-last(q3$extract(st)), otherwise

C. Chau (UT Austin) Async Circuit Modeling and Verification March 15, 2019 19 / 28

A FIFO Circuit Model

q3$extract(q3$run(inputs-seq, st, n)) ++ out-seq =
in-seq ++ q3$extract(st) (1)

Our ACL2 proof of (1) uses induction and the following
single-step-update property of Q3 as a supporting lemma,

q3$extract(q3$step(inputs, st)) = q3$extracted-step(inputs, st) (2)

where q3$extracted-step(inputs, st) :=
q3$extract(st), if in-act = nil ∧ out-act = nil
[inputs.data] ++ q3$extract(st), if in-act = t ∧ out-act = nil
remove-last(q3$extract(st)), if in-act = nil ∧ out-act = t
[inputs.data] ++ remove-last(q3$extract(st)), otherwise

C. Chau (UT Austin) Async Circuit Modeling and Verification March 15, 2019 19 / 28

A Greatest-Common-Divisor (GCD) Circuit Model

0

1

S

L0

a 6= 0 &
b 6= 0 &
a 6= b

0

1

L1

a < b

a− b, b

b− a, a

0

1

L2

a, b gcd(a, b)
2n
� 2n

�

1
�

1
�

2n
�

1�

2n�

2n
�

1
�

2n
�

2n
�

2n
�

2n�

n
�

in

out

body

gcd-alg(a, b) :=
if (a = 0) then b
else if (b = 0) then a
else if (a = b) then a
else if (a < b) then gcd-alg(b − a, a)
else gcd-alg(a − b, b)

C. Chau (UT Austin) Async Circuit Modeling and Verification March 15, 2019 20 / 28

Hierarchical Reasoning

0

1

S

L0

a 6= 0 &
b 6= 0 &
a 6= b

0

1

L1swap

X0

X1

–

sub

X2

L2

a, b gcd(a, b)
2n
� 2n

�

1
�

1
�

2n
�

1�

2n�

2n
�

2n
�

n
�

2n
�

n
�

n
�

n
�2n

�

2n�

n
�

in

out

body

gcd-alg(a, b) :=
if (a = 0) then b
else if (b = 0) then a
else if (a = b) then a
else if (a < b) then gcd-alg(b − a, a)
else gcd-alg(a − b, b)

The module’s functionality still preserves when replacing its submodules
with functionally equivalent ones, without the need to rework proofs.

C. Chau (UT Austin) Async Circuit Modeling and Verification March 15, 2019 21 / 28

Arbitrated Merge

Arbitrated merge is a well-known self-timed circuit model that provides
mutually exclusive access to a shared resource.

Produce non-deterministic output sequences due to arbitrary arrival times
of requests.

We formalize an arbitrated merge joint that provides mutually exclusive
access to its output link from its two input links on a
first-come-first-served basis3.

3M. Roncken et al. “How to Think about Self-Timed Systems”. In: Asilomar-2017,
pp. 1597–1604.

C. Chau (UT Austin) Async Circuit Modeling and Verification March 15, 2019 22 / 28

Circuits Performing Arbitrated Merges

in0

in1

Q’20a

Q’20b

A

arbitrated merge

outinterl

interl
in0

in1
L gcd out

2n
�

2n
�

2n
�

2n
�

n
�igcd

interl0
in0

in1
L0

interl1
in2

in3
L1

interl2 outcomp-interl

C. Chau (UT Austin) Async Circuit Modeling and Verification March 15, 2019 23 / 28

Arbitrated Merge Verification
The multi-step input-output relationship is established using the
membership relation (∈) and the interleaving operation (⊗).

in0

in1

Q’20a

Q’20b

A

arbitrated merge

outinterl

interl$extract0 and interl$extract1 extract valid data from two complex
links Q′

20a and Q′
20b, respectively.

let stf := interl$run(inputs-seq, st, n),
∀x ∈

(
interl$extract0(stf)⊗ interl$extract1(stf)

)
.

(x ++ out-seq) ∈
((

in0-seq ++ interl$extract0(st)
)
⊗(

in1-seq ++ interl$extract1(st)
))

C. Chau (UT Austin) Async Circuit Modeling and Verification March 15, 2019 24 / 28

Outline

1 Overview

2 DE System

3 Modeling and Verification Approach

4 Case Studies

5 Future Work and Conclusions

C. Chau (UT Austin) Async Circuit Modeling and Verification March 15, 2019 25 / 28

Future Work

Implement a syntactic checker that detects the link-joint topology
violation in self-timed circuit designs.

Enhance the effectiveness of our framework by increasing automation
through the further introduction of macros.

Automate the proofs of value and state lemmas.

Apply our methodology to modeling self-timed microprocessors and
verifying their functional properties.

Model and verify a self-timed version of the FM9001 microprocessor.

Develop methods for analyzing mixed self-timed, synchronous circuits and
systems.

C. Chau (UT Austin) Async Circuit Modeling and Verification March 15, 2019 26 / 28

Conclusions

We have presented a framework for formally modeling and verifying
self-timed circuit designs using the DE system.

This work resulted in an ACL2 library for analyzing self-timed systems.

We model self-timed systems as networks of links communicating with
each other locally via joints, using the link-joint model.

We model the non-determinism of event-ordering in self-timed circuits
by associating each joint with an external go signal that, when disabled,
prevents a joint from firing.

We have developed a hierarchical, mechanized methodology that is
capable of verifying the functional correctness of self-timed circuit
designs at scale.

C. Chau (UT Austin) Async Circuit Modeling and Verification March 15, 2019 27 / 28

Publications
1. Cuong Chau, Warren A. Hunt Jr., Matt Kaufmann, Marly Roncken,
and Ivan Sutherland
A Hierarchical Approach to Self-Timed Circuit Verification
ASYNC 2019. To appear.
2. Cuong Chau, Warren A. Hunt Jr., Matt Kaufmann, Marly Roncken,
and Ivan Sutherland
Data-Loop-Free Self-Timed Circuit Verification
ASYNC 2018, pp. 51-58.
3. Cuong Chau, Warren A. Hunt Jr., Marly Roncken, and Ivan Sutherland
A Framework for Asynchronous Circuit Modeling and Verification in ACL2
HVC 2017, pp. 3-18.
4. Marly Roncken, Ivan Sutherland, Chris Chen, Yong Hei, Warren Hunt
Jr., and Cuong Chau, with Swetha Mettala Gilla, Hoon Park, Xiaoyu
Song, Anping He, and Hong Chen
How to Think about Self-Timed Systems
Asilomar 2017, pp. 1597-1604.

C. Chau (UT Austin) Async Circuit Modeling and Verification March 15, 2019 28 / 28

Questions?

Complex Links

RR

−<

branch

I0I1
A0 Q2 A1

B0 Q3 B1

>−

merge

O0 O1

Abstracting two queues (A0 → Q2 → A1) and (B0 → Q3 → B1) as
two complex links makes reasoning more efficient by reducing case splits in
proving the invariant as well as the single-step-update property for RR.

The verification time of RR is reduced from more than 32.5 minutes to
22 seconds by using the complex links.

C. Chau (UT Austin) Async Circuit Modeling and Verification March 15, 2019 29 / 28

	Overview
	DE System
	Modeling and Verification Approach
	Case Studies
	Future Work and Conclusions

