
Introduction Syntax and Semantics Support for Generic Reasoning with Loop$ Warrant Hypotheses Evaluation Limitations, Future Work, and Conclusion

Iteration in ACL2

Matt Kaufmann
The University of Texas at Austin

Dept. of Computer Science

ACL2 Seminar, April 19, 2019

Joint work with J Moore

1/34

Introduction Syntax and Semantics Support for Generic Reasoning with Loop$ Warrant Hypotheses Evaluation Limitations, Future Work, and Conclusion

OUTLINE

Introduction

Syntax and Semantics

Support for Generic Reasoning with Loop$

Warrant Hypotheses

Evaluation

Limitations, Future Work, and Conclusion

2/34

Introduction Syntax and Semantics Support for Generic Reasoning with Loop$ Warrant Hypotheses Evaluation Limitations, Future Work, and Conclusion

OUTLINE

Introduction

Syntax and Semantics

Support for Generic Reasoning with Loop$

Warrant Hypotheses

Evaluation

Limitations, Future Work, and Conclusion

3/34

Introduction Syntax and Semantics Support for Generic Reasoning with Loop$ Warrant Hypotheses Evaluation Limitations, Future Work, and Conclusion

INTRODUCTION

I Recursion is natural for equational logic.

I Iteration is natural for programming.
I Loop$ provides both in ACL2;

analogous to Common Lisp loop

ACL2 !>(loop$ for x in '(1 2 3 4) sum (* x x))
30
ACL2 !>:q

Exiting the ACL2 read-eval-print loop....
? (loop for x in '(1 2 3 4) sum (* x x))
30
?

4/34

Introduction Syntax and Semantics Support for Generic Reasoning with Loop$ Warrant Hypotheses Evaluation Limitations, Future Work, and Conclusion

INTRODUCTION

I Recursion is natural for equational logic.
I Iteration is natural for programming.

I Loop$ provides both in ACL2;
analogous to Common Lisp loop

ACL2 !>(loop$ for x in '(1 2 3 4) sum (* x x))
30
ACL2 !>:q

Exiting the ACL2 read-eval-print loop....
? (loop for x in '(1 2 3 4) sum (* x x))
30
?

4/34

Introduction Syntax and Semantics Support for Generic Reasoning with Loop$ Warrant Hypotheses Evaluation Limitations, Future Work, and Conclusion

INTRODUCTION

I Recursion is natural for equational logic.
I Iteration is natural for programming.
I Loop$ provides both in ACL2;

analogous to Common Lisp loop

ACL2 !>(loop$ for x in '(1 2 3 4) sum (* x x))
30
ACL2 !>:q

Exiting the ACL2 read-eval-print loop....
? (loop for x in '(1 2 3 4) sum (* x x))
30
?

4/34

Introduction Syntax and Semantics Support for Generic Reasoning with Loop$ Warrant Hypotheses Evaluation Limitations, Future Work, and Conclusion

INTRODUCTION

I Recursion is natural for equational logic.
I Iteration is natural for programming.
I Loop$ provides both in ACL2;

analogous to Common Lisp loop

ACL2 !>(loop$ for x in '(1 2 3 4) sum (* x x))
30
ACL2 !>:q

Exiting the ACL2 read-eval-print loop....
? (loop for x in '(1 2 3 4) sum (* x x))
30
?

4/34

Introduction Syntax and Semantics Support for Generic Reasoning with Loop$ Warrant Hypotheses Evaluation Limitations, Future Work, and Conclusion

INTRODUCTION (2)

Today I will discuss:

I how to use loop$. . .

I but see :DOC loop$ for details; and

I a bit about the implementation of loop$

I but see the ACL2 source code if you want details,
notably the “Essay on Loop$” and the “Essay on
Evaluation of Apply$ and Loop$ Calls During
Proofs”.

This talk will draw from a paper on this topic (in preparation).
Examples may be found in community book
projects/apply/loop-tests.lisp.

5/34

http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____LOOP_42

Introduction Syntax and Semantics Support for Generic Reasoning with Loop$ Warrant Hypotheses Evaluation Limitations, Future Work, and Conclusion

INTRODUCTION (2)

Today I will discuss:

I how to use loop$. . .

I but see :DOC loop$ for details; and

I a bit about the implementation of loop$

I but see the ACL2 source code if you want details,
notably the “Essay on Loop$” and the “Essay on
Evaluation of Apply$ and Loop$ Calls During
Proofs”.

This talk will draw from a paper on this topic (in preparation).
Examples may be found in community book
projects/apply/loop-tests.lisp.

5/34

http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____LOOP_42

Introduction Syntax and Semantics Support for Generic Reasoning with Loop$ Warrant Hypotheses Evaluation Limitations, Future Work, and Conclusion

INTRODUCTION (2)

Today I will discuss:

I how to use loop$. . .

I but see :DOC loop$ for details; and

I a bit about the implementation of loop$

I but see the ACL2 source code if you want details,
notably the “Essay on Loop$” and the “Essay on
Evaluation of Apply$ and Loop$ Calls During
Proofs”.

This talk will draw from a paper on this topic (in preparation).
Examples may be found in community book
projects/apply/loop-tests.lisp.

5/34

http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____LOOP_42

Introduction Syntax and Semantics Support for Generic Reasoning with Loop$ Warrant Hypotheses Evaluation Limitations, Future Work, and Conclusion

INTRODUCTION (2)

Today I will discuss:

I how to use loop$. . .

I but see :DOC loop$ for details; and

I a bit about the implementation of loop$

I but see the ACL2 source code if you want details,
notably the “Essay on Loop$” and the “Essay on
Evaluation of Apply$ and Loop$ Calls During
Proofs”.

This talk will draw from a paper on this topic (in preparation).
Examples may be found in community book
projects/apply/loop-tests.lisp.

5/34

http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____LOOP_42

Introduction Syntax and Semantics Support for Generic Reasoning with Loop$ Warrant Hypotheses Evaluation Limitations, Future Work, and Conclusion

INTRODUCTION (2)

Today I will discuss:

I how to use loop$. . .

I but see :DOC loop$ for details; and

I a bit about the implementation of loop$

I but see the ACL2 source code if you want details,
notably the “Essay on Loop$” and the “Essay on
Evaluation of Apply$ and Loop$ Calls During
Proofs”.

This talk will draw from a paper on this topic (in preparation).
Examples may be found in community book
projects/apply/loop-tests.lisp.

5/34

http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____LOOP_42

Introduction Syntax and Semantics Support for Generic Reasoning with Loop$ Warrant Hypotheses Evaluation Limitations, Future Work, and Conclusion

INTRODUCTION (2)

Today I will discuss:

I how to use loop$. . .

I but see :DOC loop$ for details; and

I a bit about the implementation of loop$

I but see the ACL2 source code if you want details,
notably the “Essay on Loop$” and the “Essay on
Evaluation of Apply$ and Loop$ Calls During
Proofs”.

This talk will draw from a paper on this topic (in preparation).
Examples may be found in community book
projects/apply/loop-tests.lisp.

5/34

http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____LOOP_42

Introduction Syntax and Semantics Support for Generic Reasoning with Loop$ Warrant Hypotheses Evaluation Limitations, Future Work, and Conclusion

INTRODUCTION (3)
Prior work: an Nqthm analogue to loop$ is FOR.

Much as loop$ depends on apply$, FOR depended on an
evaluator, V&C$.
That sort of universal evaluator isn’t possible for ACL2 because
of local.

(encapsulate
()
(local (defun f (x) x))
(defthm lemma-1 (equal (some-eval '(f 3)) 3)))

(defun f (x) (1+ x))
(defthm lemma-2 (equal (some-eval '(f 3)) 4))
(thm nil :hints (("Goal"

:in-theory nil
:use (lemma-1 lemma-2))))

6/34

http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____LOCAL

Introduction Syntax and Semantics Support for Generic Reasoning with Loop$ Warrant Hypotheses Evaluation Limitations, Future Work, and Conclusion

INTRODUCTION (3)
Prior work: an Nqthm analogue to loop$ is FOR.
Much as loop$ depends on apply$, FOR depended on an
evaluator, V&C$.

That sort of universal evaluator isn’t possible for ACL2 because
of local.

(encapsulate
()
(local (defun f (x) x))
(defthm lemma-1 (equal (some-eval '(f 3)) 3)))

(defun f (x) (1+ x))
(defthm lemma-2 (equal (some-eval '(f 3)) 4))
(thm nil :hints (("Goal"

:in-theory nil
:use (lemma-1 lemma-2))))

6/34

http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____LOCAL

Introduction Syntax and Semantics Support for Generic Reasoning with Loop$ Warrant Hypotheses Evaluation Limitations, Future Work, and Conclusion

INTRODUCTION (3)
Prior work: an Nqthm analogue to loop$ is FOR.
Much as loop$ depends on apply$, FOR depended on an
evaluator, V&C$.
That sort of universal evaluator isn’t possible for ACL2 because
of local.

(encapsulate
()
(local (defun f (x) x))
(defthm lemma-1 (equal (some-eval '(f 3)) 3)))

(defun f (x) (1+ x))
(defthm lemma-2 (equal (some-eval '(f 3)) 4))
(thm nil :hints (("Goal"

:in-theory nil
:use (lemma-1 lemma-2))))

6/34

http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____LOCAL

Introduction Syntax and Semantics Support for Generic Reasoning with Loop$ Warrant Hypotheses Evaluation Limitations, Future Work, and Conclusion

INTRODUCTION (3)
Prior work: an Nqthm analogue to loop$ is FOR.
Much as loop$ depends on apply$, FOR depended on an
evaluator, V&C$.
That sort of universal evaluator isn’t possible for ACL2 because
of local.

(encapsulate
()
(local (defun f (x) x))
(defthm lemma-1 (equal (some-eval '(f 3)) 3)))

(defun f (x) (1+ x))
(defthm lemma-2 (equal (some-eval '(f 3)) 4))
(thm nil :hints (("Goal"

:in-theory nil
:use (lemma-1 lemma-2))))

6/34

http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____LOCAL

Introduction Syntax and Semantics Support for Generic Reasoning with Loop$ Warrant Hypotheses Evaluation Limitations, Future Work, and Conclusion

OUTLINE

Introduction

Syntax and Semantics

Support for Generic Reasoning with Loop$

Warrant Hypotheses

Evaluation

Limitations, Future Work, and Conclusion

7/34

Introduction Syntax and Semantics Support for Generic Reasoning with Loop$ Warrant Hypotheses Evaluation Limitations, Future Work, and Conclusion

OUTLINE

Introduction

Syntax and Semantics

Support for Generic Reasoning with Loop$

Warrant Hypotheses

Evaluation

Limitations, Future Work, and Conclusion

8/34

Introduction Syntax and Semantics Support for Generic Reasoning with Loop$ Warrant Hypotheses Evaluation Limitations, Future Work, and Conclusion

SYNTAX AND SEMANTICS
Semantics are given by translating loop$ expressions into the
ACL2 logic.

For example,

(loop$ for x in '(1 2 3 4) sum (* x x))

essentially translates to the term

(sum$ '(LAMBDA (X) (BINARY-* X X))
'(1 2 3 4))

where essentially — notice apply$:

(defun sum$ (fn lst)
(if (endp lst)

0
(+ (apply$ fn (list (car lst)))

(sum$ fn (cdr lst)))))

9/34

http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____TERM

Introduction Syntax and Semantics Support for Generic Reasoning with Loop$ Warrant Hypotheses Evaluation Limitations, Future Work, and Conclusion

SYNTAX AND SEMANTICS
Semantics are given by translating loop$ expressions into the
ACL2 logic. For example,

(loop$ for x in '(1 2 3 4) sum (* x x))

essentially translates to the term

(sum$ '(LAMBDA (X) (BINARY-* X X))
'(1 2 3 4))

where essentially — notice apply$:

(defun sum$ (fn lst)
(if (endp lst)

0
(+ (apply$ fn (list (car lst)))

(sum$ fn (cdr lst)))))

9/34

http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____TERM

Introduction Syntax and Semantics Support for Generic Reasoning with Loop$ Warrant Hypotheses Evaluation Limitations, Future Work, and Conclusion

SYNTAX AND SEMANTICS
Semantics are given by translating loop$ expressions into the
ACL2 logic. For example,

(loop$ for x in '(1 2 3 4) sum (* x x))

essentially translates to the term

(sum$ '(LAMBDA (X) (BINARY-* X X))
'(1 2 3 4))

where essentially — notice apply$:

(defun sum$ (fn lst)
(if (endp lst)

0
(+ (apply$ fn (list (car lst)))

(sum$ fn (cdr lst)))))

9/34

http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____TERM

Introduction Syntax and Semantics Support for Generic Reasoning with Loop$ Warrant Hypotheses Evaluation Limitations, Future Work, and Conclusion

SYNTAX AND SEMANTICS (2)

Here is a more complex example showing introduction of
loop$ scions collect$, when$, and until$.

ACL2 !>(loop$ for i from 0 to 100 by 5
until (> i 30)
when (evenp i) collect (* i i))

(0 100 400 900)
ACL2 !>

The translation of this loop$ expression is essentially:

(COLLECT$ '(LAMBDA (I) (BINARY-* I I))
(WHEN$ '(LAMBDA (I) (EVENP I))

(UNTIL$ '(LAMBDA (I) (< '30 I))
(FROM-TO-BY '0 '100 '5))))

10/34

Introduction Syntax and Semantics Support for Generic Reasoning with Loop$ Warrant Hypotheses Evaluation Limitations, Future Work, and Conclusion

SYNTAX AND SEMANTICS (2)

Here is a more complex example showing introduction of
loop$ scions collect$, when$, and until$.

ACL2 !>(loop$ for i from 0 to 100 by 5
until (> i 30)
when (evenp i) collect (* i i))

(0 100 400 900)
ACL2 !>

The translation of this loop$ expression is essentially:

(COLLECT$ '(LAMBDA (I) (BINARY-* I I))
(WHEN$ '(LAMBDA (I) (EVENP I))

(UNTIL$ '(LAMBDA (I) (< '30 I))
(FROM-TO-BY '0 '100 '5))))

10/34

Introduction Syntax and Semantics Support for Generic Reasoning with Loop$ Warrant Hypotheses Evaluation Limitations, Future Work, and Conclusion

SYNTAX AND SEMANTICS (3)
The actual translation using :trans (see the paper):
(RETURN-LAST
'PROGN
'(LOOP$ FOR I FROM 0 TO 100 BY 5 UNTIL (> I 30)

WHEN (EVENP I)
COLLECT (* I I))

(COLLECT$ '(LAMBDA (I)
(DECLARE (IGNORABLE I))
(RETURN-LAST 'PROGN

'(LAMBDA$ (I) (* I I))
(BINARY-* I I)))

(WHEN$ '(LAMBDA (I)
(DECLARE (IGNORABLE I))
(RETURN-LAST 'PROGN

'(LAMBDA$ (I) (EVENP I))
(EVENP I)))

(UNTIL$ '(LAMBDA (I)
(DECLARE (IGNORABLE I))
(RETURN-LAST 'PROGN

'(LAMBDA$ (I)
(> I 30))

(< '30 I)))
(FROM-TO-BY '0 '100 '5)))))

11/34

Introduction Syntax and Semantics Support for Generic Reasoning with Loop$ Warrant Hypotheses Evaluation Limitations, Future Work, and Conclusion

OUTLINE

Introduction

Syntax and Semantics

Support for Generic Reasoning with Loop$

Warrant Hypotheses

Evaluation

Limitations, Future Work, and Conclusion

12/34

Introduction Syntax and Semantics Support for Generic Reasoning with Loop$ Warrant Hypotheses Evaluation Limitations, Future Work, and Conclusion

OUTLINE

Introduction

Syntax and Semantics

Support for Generic Reasoning with Loop$

Warrant Hypotheses

Evaluation

Limitations, Future Work, and Conclusion

13/34

Introduction Syntax and Semantics Support for Generic Reasoning with Loop$ Warrant Hypotheses Evaluation Limitations, Future Work, and Conclusion

SUPPORT FOR GENERIC REASONING WITH LOOP$
Loop$ supports not only concise programming but also
concise reasoning. Here’s an example.

(defun sum-lengths (lst)
(loop$ for x in lst sum (length x)))

; Lemmas? Step 2 [joke]

(thm (equal (sum-lengths (reverse x))
(sum-lengths x)))

14/34

Introduction Syntax and Semantics Support for Generic Reasoning with Loop$ Warrant Hypotheses Evaluation Limitations, Future Work, and Conclusion

SUPPORT FOR GENERIC REASONING WITH LOOP$
Loop$ supports not only concise programming but also
concise reasoning. Here’s an example.
(defun sum-lengths (lst)
(loop$ for x in lst sum (length x)))

; Lemmas? Step 2 [joke]

(thm (equal (sum-lengths (reverse x))
(sum-lengths x)))

14/34

Introduction Syntax and Semantics Support for Generic Reasoning with Loop$ Warrant Hypotheses Evaluation Limitations, Future Work, and Conclusion

SUPPORT FOR GENERIC REASONING WITH LOOP$
Loop$ supports not only concise programming but also
concise reasoning. Here’s an example.
(defun sum-lengths (lst)
(loop$ for x in lst sum (length x)))

(defthm sum$-revappend ; need shown by checkpoint
(equal (sum$ fn (revappend x y))

(+ (sum$ fn x) (sum$ fn y))))
(thm (equal (sum-lengths (reverse x))

(sum-lengths x)))

(defun sum-acl2-counts (lst)
(loop$ for x in lst sum (acl2-count x)))

; This is now automatic; no new lemma is required.
(thm (equal (sum-acl2-counts (reverse x))

(sum-acl2-counts x)))

If the two functions were defined in the usual way, we would
need a lemma about revappend for each one.

15/34

Introduction Syntax and Semantics Support for Generic Reasoning with Loop$ Warrant Hypotheses Evaluation Limitations, Future Work, and Conclusion

SUPPORT FOR GENERIC REASONING WITH LOOP$
Loop$ supports not only concise programming but also
concise reasoning. Here’s an example.
(defun sum-lengths (lst)
(loop$ for x in lst sum (length x)))

(defthm sum$-revappend ; need shown by checkpoint
(equal (sum$ fn (revappend x y))

(+ (sum$ fn x) (sum$ fn y))))
(thm (equal (sum-lengths (reverse x))

(sum-lengths x)))

(defun sum-acl2-counts (lst)
(loop$ for x in lst sum (acl2-count x)))

; This is now automatic; no new lemma is required.
(thm (equal (sum-acl2-counts (reverse x))

(sum-acl2-counts x)))

If the two functions were defined in the usual way, we would
need a lemma about revappend for each one.

15/34

Introduction Syntax and Semantics Support for Generic Reasoning with Loop$ Warrant Hypotheses Evaluation Limitations, Future Work, and Conclusion

SUPPORT FOR GENERIC REASONING WITH LOOP$
Loop$ supports not only concise programming but also
concise reasoning. Here’s an example.
(defun sum-lengths (lst)
(loop$ for x in lst sum (length x)))

(defthm sum$-revappend ; need shown by checkpoint
(equal (sum$ fn (revappend x y))

(+ (sum$ fn x) (sum$ fn y))))
(thm (equal (sum-lengths (reverse x))

(sum-lengths x)))

(defun sum-acl2-counts (lst)
(loop$ for x in lst sum (acl2-count x)))

; This is now automatic; no new lemma is required.
(thm (equal (sum-acl2-counts (reverse x))

(sum-acl2-counts x)))

If the two functions were defined in the usual way, we would
need a lemma about revappend for each one. 15/34

Introduction Syntax and Semantics Support for Generic Reasoning with Loop$ Warrant Hypotheses Evaluation Limitations, Future Work, and Conclusion

OUTLINE

Introduction

Syntax and Semantics

Support for Generic Reasoning with Loop$

Warrant Hypotheses

Evaluation

Limitations, Future Work, and Conclusion

16/34

Introduction Syntax and Semantics Support for Generic Reasoning with Loop$ Warrant Hypotheses Evaluation Limitations, Future Work, and Conclusion

OUTLINE

Introduction

Syntax and Semantics

Support for Generic Reasoning with Loop$

Warrant Hypotheses

Evaluation

Limitations, Future Work, and Conclusion

17/34

Introduction Syntax and Semantics Support for Generic Reasoning with Loop$ Warrant Hypotheses Evaluation Limitations, Future Work, and Conclusion

WARRANT HYPOTHESES

Loop$ scions invoke apply$, which is a function with weak
constraints.

Key property needed for applying a user-defined function, F:
a warrant hypothesis, (apply$-warrant-F), which implies:

(equal (apply$ 'F (list t1 . . . tn))
(F t1 . . . tn)).

More background on apply$ is in our JAR paper [1]. Aside:
(apply$-warrant-F) is sometimes written
(warrant F).

We illustrate reasoning about loop$ with an example....

18/34

Introduction Syntax and Semantics Support for Generic Reasoning with Loop$ Warrant Hypotheses Evaluation Limitations, Future Work, and Conclusion

WARRANT HYPOTHESES

Loop$ scions invoke apply$, which is a function with weak
constraints.

Key property needed for applying a user-defined function, F:
a warrant hypothesis, (apply$-warrant-F), which implies:

(equal (apply$ 'F (list t1 . . . tn))
(F t1 . . . tn)).

More background on apply$ is in our JAR paper [1]. Aside:
(apply$-warrant-F) is sometimes written
(warrant F).

We illustrate reasoning about loop$ with an example....

18/34

Introduction Syntax and Semantics Support for Generic Reasoning with Loop$ Warrant Hypotheses Evaluation Limitations, Future Work, and Conclusion

WARRANT HYPOTHESES

Loop$ scions invoke apply$, which is a function with weak
constraints.

Key property needed for applying a user-defined function, F:
a warrant hypothesis, (apply$-warrant-F), which implies:

(equal (apply$ 'F (list t1 . . . tn))
(F t1 . . . tn)).

More background on apply$ is in our JAR paper [1].

Aside:
(apply$-warrant-F) is sometimes written
(warrant F).

We illustrate reasoning about loop$ with an example....

18/34

Introduction Syntax and Semantics Support for Generic Reasoning with Loop$ Warrant Hypotheses Evaluation Limitations, Future Work, and Conclusion

WARRANT HYPOTHESES

Loop$ scions invoke apply$, which is a function with weak
constraints.

Key property needed for applying a user-defined function, F:
a warrant hypothesis, (apply$-warrant-F), which implies:

(equal (apply$ 'F (list t1 . . . tn))
(F t1 . . . tn)).

More background on apply$ is in our JAR paper [1]. Aside:
(apply$-warrant-F) is sometimes written
(warrant F).

We illustrate reasoning about loop$ with an example....

18/34

Introduction Syntax and Semantics Support for Generic Reasoning with Loop$ Warrant Hypotheses Evaluation Limitations, Future Work, and Conclusion

WARRANT HYPOTHESES

Loop$ scions invoke apply$, which is a function with weak
constraints.

Key property needed for applying a user-defined function, F:
a warrant hypothesis, (apply$-warrant-F), which implies:

(equal (apply$ 'F (list t1 . . . tn))
(F t1 . . . tn)).

More background on apply$ is in our JAR paper [1]. Aside:
(apply$-warrant-F) is sometimes written
(warrant F).

We illustrate reasoning about loop$ with an example....

18/34

Introduction Syntax and Semantics Support for Generic Reasoning with Loop$ Warrant Hypotheses Evaluation Limitations, Future Work, and Conclusion

WARRANT HYPOTHESES (2)
NOTE: use this include-book for apply$ or loop$
reasoning.

(include-book "projects/apply/top" :dir :system)
(defun$ square (n)
(declare (xargs :guard (integerp n)))
(* n n))

The defun$ form above provides the defun and the warrant:

ACL2 !>:trans1 (defun$ square (n)
(declare (xargs :guard (integerp n)))
(* n n))

(PROGN (DEFUN SQUARE (N)
(DECLARE (XARGS :GUARD (INTEGERP N)))
(* N N))

(DEFWARRANT SQUARE))
ACL2 !>

19/34

Introduction Syntax and Semantics Support for Generic Reasoning with Loop$ Warrant Hypotheses Evaluation Limitations, Future Work, and Conclusion

WARRANT HYPOTHESES (2)
NOTE: use this include-book for apply$ or loop$
reasoning.

(include-book "projects/apply/top" :dir :system)
(defun$ square (n)
(declare (xargs :guard (integerp n)))
(* n n))

The defun$ form above provides the defun and the warrant:

ACL2 !>:trans1 (defun$ square (n)
(declare (xargs :guard (integerp n)))
(* n n))

(PROGN (DEFUN SQUARE (N)
(DECLARE (XARGS :GUARD (INTEGERP N)))
(* N N))

(DEFWARRANT SQUARE))
ACL2 !>

19/34

Introduction Syntax and Semantics Support for Generic Reasoning with Loop$ Warrant Hypotheses Evaluation Limitations, Future Work, and Conclusion

WARRANT HYPOTHESES (3)

Here is the key property of the warrant hypothesis for square,
(apply$-warrant-square).

(DEFTHM APPLY$-SQUARE
(IMPLIES (FORCE (APPLY$-WARRANT-SQUARE))

(AND (EQUAL (BADGE 'SQUARE)
'(APPLY$-BADGE 1 1 . T))

(EQUAL (APPLY$ 'SQUARE ARGS)
(SQUARE (CAR ARGS)))))

:HINTS ...)

It is forced so that a proof can proceed (to a forcing round) even
when the warrant hypothesis is missing from the conjecture.

Continuing with our example....

20/34

http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____FORCE

Introduction Syntax and Semantics Support for Generic Reasoning with Loop$ Warrant Hypotheses Evaluation Limitations, Future Work, and Conclusion

WARRANT HYPOTHESES (3)

Here is the key property of the warrant hypothesis for square,
(apply$-warrant-square).

(DEFTHM APPLY$-SQUARE
(IMPLIES (FORCE (APPLY$-WARRANT-SQUARE))

(AND (EQUAL (BADGE 'SQUARE)
'(APPLY$-BADGE 1 1 . T))

(EQUAL (APPLY$ 'SQUARE ARGS)
(SQUARE (CAR ARGS)))))

:HINTS ...)

It is forced so that a proof can proceed (to a forcing round) even
when the warrant hypothesis is missing from the conjecture.

Continuing with our example....

20/34

http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____FORCE

Introduction Syntax and Semantics Support for Generic Reasoning with Loop$ Warrant Hypotheses Evaluation Limitations, Future Work, and Conclusion

WARRANT HYPOTHESES (3)

Here is the key property of the warrant hypothesis for square,
(apply$-warrant-square).

(DEFTHM APPLY$-SQUARE
(IMPLIES (FORCE (APPLY$-WARRANT-SQUARE))

(AND (EQUAL (BADGE 'SQUARE)
'(APPLY$-BADGE 1 1 . T))

(EQUAL (APPLY$ 'SQUARE ARGS)
(SQUARE (CAR ARGS)))))

:HINTS ...)

It is forced so that a proof can proceed (to a forcing round) even
when the warrant hypothesis is missing from the conjecture.

Continuing with our example....

20/34

http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____FORCE

Introduction Syntax and Semantics Support for Generic Reasoning with Loop$ Warrant Hypotheses Evaluation Limitations, Future Work, and Conclusion

WARRANT HYPOTHESES (3)

Here is the key property of the warrant hypothesis for square,
(apply$-warrant-square).

(DEFTHM APPLY$-SQUARE
(IMPLIES (FORCE (APPLY$-WARRANT-SQUARE))

(AND (EQUAL (BADGE 'SQUARE)
'(APPLY$-BADGE 1 1 . T))

(EQUAL (APPLY$ 'SQUARE ARGS)
(SQUARE (CAR ARGS)))))

:HINTS ...)

It is forced so that a proof can proceed (to a forcing round) even
when the warrant hypothesis is missing from the conjecture.

Continuing with our example....

20/34

http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____FORCE

Introduction Syntax and Semantics Support for Generic Reasoning with Loop$ Warrant Hypotheses Evaluation Limitations, Future Work, and Conclusion

WARRANT HYPOTHESES (4)

(defun f2 (lower upper)
(declare (xargs :guard (and (integerp lower)

(integerp upper))))
(loop$ for i of-type integer from lower to upper

collect (square i)))

(assert-event (equal (f2 3 5) '(9 16 25)))

(thm (implies
(and (warrant square) ; required

(natp k1) (natp k2) (natp k3)
(<= k1 k2) (<= k2 k3))

(member (* k2 k2) (f2 k1 k3))))

21/34

Introduction Syntax and Semantics Support for Generic Reasoning with Loop$ Warrant Hypotheses Evaluation Limitations, Future Work, and Conclusion

WARRANT HYPOTHESES (5)
Let’s look at a simplifed the base case in the induction proof.
Note: (lambda$...) is essentially just ’(lambda ...), but
lambda$ allows untranslated terms.

(IMPLIES
(AND (APPLY$-WARRANT-SQUARE) ; warrant hypothesis

(INTEGERP K3) (INTEGERP K1)
(<= 0 K1) (<= K1 K3))

(MEMBER-EQUAL (* K1 K1)
(COLLECT$ (LAMBDA$ (I)

(DECLARE ...)
(SQUARE I))

(FROM-TO-BY K1 K3 1))))

Follows from this simplification, by the warrant hypothesis:

(APPLY$ 'SQUARE (LIST K1)) = (* K1 K1).

22/34

Introduction Syntax and Semantics Support for Generic Reasoning with Loop$ Warrant Hypotheses Evaluation Limitations, Future Work, and Conclusion

WARRANT HYPOTHESES (5)
Let’s look at a simplifed the base case in the induction proof.
Note: (lambda$...) is essentially just ’(lambda ...), but
lambda$ allows untranslated terms.

(IMPLIES
(AND (APPLY$-WARRANT-SQUARE) ; warrant hypothesis

(INTEGERP K3) (INTEGERP K1)
(<= 0 K1) (<= K1 K3))

(MEMBER-EQUAL (* K1 K1)
(COLLECT$ (LAMBDA$ (I)

(DECLARE ...)
(SQUARE I))

(FROM-TO-BY K1 K3 1))))

Follows from this simplification, by the warrant hypothesis:

(APPLY$ 'SQUARE (LIST K1)) = (* K1 K1).

22/34

Introduction Syntax and Semantics Support for Generic Reasoning with Loop$ Warrant Hypotheses Evaluation Limitations, Future Work, and Conclusion

WARRANT HYPOTHESES (5)
Let’s look at a simplifed the base case in the induction proof.
Note: (lambda$...) is essentially just ’(lambda ...), but
lambda$ allows untranslated terms.

(IMPLIES
(AND (APPLY$-WARRANT-SQUARE) ; warrant hypothesis

(INTEGERP K3) (INTEGERP K1)
(<= 0 K1) (<= K1 K3))

(MEMBER-EQUAL (* K1 K1)
(COLLECT$ (LAMBDA$ (I)

(DECLARE ...)
(SQUARE I))

(FROM-TO-BY K1 K3 1))))

Follows from this simplification, by the warrant hypothesis:

(APPLY$ 'SQUARE (LIST K1)) = (* K1 K1).

22/34

Introduction Syntax and Semantics Support for Generic Reasoning with Loop$ Warrant Hypotheses Evaluation Limitations, Future Work, and Conclusion

WARRANT HYPOTHESES (5)
Let’s look at a simplifed the base case in the induction proof.
Note: (lambda$...) is essentially just ’(lambda ...), but
lambda$ allows untranslated terms.

(IMPLIES
(AND (APPLY$-WARRANT-SQUARE) ; warrant hypothesis

(INTEGERP K3) (INTEGERP K1)
(<= 0 K1) (<= K1 K3))

(MEMBER-EQUAL (* K1 K1)
(COLLECT$ (LAMBDA$ (I)

(DECLARE ...)
(SQUARE I))

(FROM-TO-BY K1 K3 1))))

Follows from this simplification, by the warrant hypothesis:

(APPLY$ 'SQUARE (LIST K1)) = (* K1 K1).

22/34

Introduction Syntax and Semantics Support for Generic Reasoning with Loop$ Warrant Hypotheses Evaluation Limitations, Future Work, and Conclusion

OUTLINE

Introduction

Syntax and Semantics

Support for Generic Reasoning with Loop$

Warrant Hypotheses

Evaluation

Limitations, Future Work, and Conclusion

23/34

Introduction Syntax and Semantics Support for Generic Reasoning with Loop$ Warrant Hypotheses Evaluation Limitations, Future Work, and Conclusion

OUTLINE

Introduction

Syntax and Semantics

Support for Generic Reasoning with Loop$

Warrant Hypotheses

Evaluation

Limitations, Future Work, and Conclusion

24/34

Introduction Syntax and Semantics Support for Generic Reasoning with Loop$ Warrant Hypotheses Evaluation Limitations, Future Work, and Conclusion

EVALUATION
Common Lisp loop is run when evaluating loop$ expressions
under guard-verified function calls.

The paper has an example illustrating an order of magnitude
speed-up in this case, compared to evaluation of loop$ using
loop$ scions. Consider the following example.

(include-book "projects/apply/top" :dir :system)

(defun sum-acl2-counts (lst)
(declare (xargs :guard (true-listp lst)

:verify-guards nil))
(loop$ for x in lst sum (acl2-count x)))

(defconst *lst* '(a (b c) "hello"))

(trace$ sum$)

25/34

http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____GUARD

Introduction Syntax and Semantics Support for Generic Reasoning with Loop$ Warrant Hypotheses Evaluation Limitations, Future Work, and Conclusion

EVALUATION
Common Lisp loop is run when evaluating loop$ expressions
under guard-verified function calls.
The paper has an example illustrating an order of magnitude
speed-up in this case, compared to evaluation of loop$ using
loop$ scions. Consider the following example.

(include-book "projects/apply/top" :dir :system)

(defun sum-acl2-counts (lst)
(declare (xargs :guard (true-listp lst)

:verify-guards nil))
(loop$ for x in lst sum (acl2-count x)))

(defconst *lst* '(a (b c) "hello"))

(trace$ sum$)

25/34

http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____GUARD

Introduction Syntax and Semantics Support for Generic Reasoning with Loop$ Warrant Hypotheses Evaluation Limitations, Future Work, and Conclusion

EVALUATION
Common Lisp loop is run when evaluating loop$ expressions
under guard-verified function calls.
The paper has an example illustrating an order of magnitude
speed-up in this case, compared to evaluation of loop$ using
loop$ scions. Consider the following example.

(include-book "projects/apply/top" :dir :system)

(defun sum-acl2-counts (lst)
(declare (xargs :guard (true-listp lst)

:verify-guards nil))
(loop$ for x in lst sum (acl2-count x)))

(defconst *lst* '(a (b c) "hello"))

(trace$ sum$)

25/34

http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____GUARD

Introduction Syntax and Semantics Support for Generic Reasoning with Loop$ Warrant Hypotheses Evaluation Limitations, Future Work, and Conclusion

EVALUATION (2)
; Not in a function body: calls sum$
(loop$ for x in *lst* sum (acl2-count x))

; In non-guard-verified function body: calls sum$
(sum-acl2-counts *lst*)

(verify-guards sum-acl2-counts)

; In guard-verified function body:
; DOES NOT call sum$
(sum-acl2-counts *lst*)

; In a proof: calls sum$
; (even though the function is guard-verified)
(thm (equal (sum-acl2-counts *lst*) 7))

26/34

Introduction Syntax and Semantics Support for Generic Reasoning with Loop$ Warrant Hypotheses Evaluation Limitations, Future Work, and Conclusion

EVALUATION (2)
; Not in a function body: calls sum$
(loop$ for x in *lst* sum (acl2-count x))

; In non-guard-verified function body: calls sum$
(sum-acl2-counts *lst*)

(verify-guards sum-acl2-counts)

; In guard-verified function body:
; DOES NOT call sum$
(sum-acl2-counts *lst*)

; In a proof: calls sum$
; (even though the function is guard-verified)
(thm (equal (sum-acl2-counts *lst*) 7))

26/34

Introduction Syntax and Semantics Support for Generic Reasoning with Loop$ Warrant Hypotheses Evaluation Limitations, Future Work, and Conclusion

EVALUATION (2)
; Not in a function body: calls sum$
(loop$ for x in *lst* sum (acl2-count x))

; In non-guard-verified function body: calls sum$
(sum-acl2-counts *lst*)

(verify-guards sum-acl2-counts)

; In guard-verified function body:
; DOES NOT call sum$
(sum-acl2-counts *lst*)

; In a proof: calls sum$
; (even though the function is guard-verified)
(thm (equal (sum-acl2-counts *lst*) 7))

26/34

Introduction Syntax and Semantics Support for Generic Reasoning with Loop$ Warrant Hypotheses Evaluation Limitations, Future Work, and Conclusion

EVALUATION (2)
; Not in a function body: calls sum$
(loop$ for x in *lst* sum (acl2-count x))

; In non-guard-verified function body: calls sum$
(sum-acl2-counts *lst*)

(verify-guards sum-acl2-counts)

; In guard-verified function body:
; DOES NOT call sum$
(sum-acl2-counts *lst*)

; In a proof: calls sum$
; (even though the function is guard-verified)
(thm (equal (sum-acl2-counts *lst*) 7))

26/34

Introduction Syntax and Semantics Support for Generic Reasoning with Loop$ Warrant Hypotheses Evaluation Limitations, Future Work, and Conclusion

EVALUATION (2)
; Not in a function body: calls sum$
(loop$ for x in *lst* sum (acl2-count x))

; In non-guard-verified function body: calls sum$
(sum-acl2-counts *lst*)

(verify-guards sum-acl2-counts)

; In guard-verified function body:
; DOES NOT call sum$
(sum-acl2-counts *lst*)

; In a proof: calls sum$
; (even though the function is guard-verified)
(thm (equal (sum-acl2-counts *lst*) 7))

26/34

Introduction Syntax and Semantics Support for Generic Reasoning with Loop$ Warrant Hypotheses Evaluation Limitations, Future Work, and Conclusion

EVALUATION (3)

There is a subtlety for evaluation during proofs:

Warrant hypotheses may be required!
(Attachments aren’t allowed during proofs.)

The solution involves tracking the required warrants and then
forcing them when necessary.

27/34

http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____FORCE

Introduction Syntax and Semantics Support for Generic Reasoning with Loop$ Warrant Hypotheses Evaluation Limitations, Future Work, and Conclusion

EVALUATION (3)

There is a subtlety for evaluation during proofs:

Warrant hypotheses may be required!
(Attachments aren’t allowed during proofs.)

The solution involves tracking the required warrants and then
forcing them when necessary.

27/34

http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____FORCE

Introduction Syntax and Semantics Support for Generic Reasoning with Loop$ Warrant Hypotheses Evaluation Limitations, Future Work, and Conclusion

EVALUATION (3)

There is a subtlety for evaluation during proofs:

Warrant hypotheses may be required!
(Attachments aren’t allowed during proofs.)

The solution involves tracking the required warrants and then
forcing them when necessary.

27/34

http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____FORCE

Introduction Syntax and Semantics Support for Generic Reasoning with Loop$ Warrant Hypotheses Evaluation Limitations, Future Work, and Conclusion

EVALUATION (4)
Time permitting, I may say a few words about the
implementation.

#-acl2-loop-only
(defmacro loop$ (&whole loop$-form &rest args)
(let ((term

(or (loop$-alist-term
loop$-form

hcomp-loop$-alist)
(loop$-alist-term
loop$-form
(global-val 'loop$-alist

(w *the-live-state*))))))
`(cond (*aokp*

(loop ,@(remove-loop$-guards args)))
(t ,(or term

'(error "...."))))))

28/34

Introduction Syntax and Semantics Support for Generic Reasoning with Loop$ Warrant Hypotheses Evaluation Limitations, Future Work, and Conclusion

OUTLINE

Introduction

Syntax and Semantics

Support for Generic Reasoning with Loop$

Warrant Hypotheses

Evaluation

Limitations, Future Work, and Conclusion

29/34

Introduction Syntax and Semantics Support for Generic Reasoning with Loop$ Warrant Hypotheses Evaluation Limitations, Future Work, and Conclusion

OUTLINE

Introduction

Syntax and Semantics

Support for Generic Reasoning with Loop$

Warrant Hypotheses

Evaluation

Limitations, Future Work, and Conclusion

30/34

Introduction Syntax and Semantics Support for Generic Reasoning with Loop$ Warrant Hypotheses Evaluation Limitations, Future Work, and Conclusion

LIMITATIONS AND FUTURE WORK

I Apply$ restrictions

I Logic mode, tame functions
(defun foo (x) ; illegal: foo isn't yet tame

(if (atom x)
(list x)

(loop$ for y in x append (foo y))))

I No state or stobjs

I Common Lisp loop supports more general forms than
loop$, e.g.:

? (loop for x in '(2 20 5 50 3 30) by #'cddr
maximize x)

5
? (loop for i from 11/2 downto 1 by 2 collect i)
(11/2 7/2 3/2)
?

31/34

http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____LOGIC
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____TAME
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____STATE
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____STOBJ

Introduction Syntax and Semantics Support for Generic Reasoning with Loop$ Warrant Hypotheses Evaluation Limitations, Future Work, and Conclusion

LIMITATIONS AND FUTURE WORK

I Apply$ restrictions

I Logic mode, tame functions
(defun foo (x) ; illegal: foo isn't yet tame

(if (atom x)
(list x)

(loop$ for y in x append (foo y))))

I No state or stobjs

I Common Lisp loop supports more general forms than
loop$, e.g.:

? (loop for x in '(2 20 5 50 3 30) by #'cddr
maximize x)

5
? (loop for i from 11/2 downto 1 by 2 collect i)
(11/2 7/2 3/2)
?

31/34

http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____LOGIC
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____TAME
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____STATE
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____STOBJ

Introduction Syntax and Semantics Support for Generic Reasoning with Loop$ Warrant Hypotheses Evaluation Limitations, Future Work, and Conclusion

LIMITATIONS AND FUTURE WORK (2)

I Top-level evaluation does not use Common Lisp loop;
maybe insist on the use of top-level?

ACL2 !>(time$ (loop$ for i from 1 to 10000000 sum i))
; (EV-REC *RETURN-LAST-ARG3* ...) took
; 1.33 seconds realtime, 1.34 seconds runtime
; (320,039,824 bytes allocated).
50000005000000
ACL2 !>(time$

(top-level (loop$ for i from 1 to 10000000 sum i)))
50000005000000
; (EV-REC *RETURN-LAST-ARG3* ...) took
; 0.05 seconds realtime, 0.05 seconds runtime
; (235,648 bytes allocated).
ACL2 !>

Note: All bytes allocated in the second evaluation are from
the use of top-level; none is from the use of loop$.

32/34

http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____TOP-LEVEL

Introduction Syntax and Semantics Support for Generic Reasoning with Loop$ Warrant Hypotheses Evaluation Limitations, Future Work, and Conclusion

LIMITATIONS AND FUTURE WORK (2)

I Top-level evaluation does not use Common Lisp loop;
maybe insist on the use of top-level?

ACL2 !>(time$ (loop$ for i from 1 to 10000000 sum i))
; (EV-REC *RETURN-LAST-ARG3* ...) took
; 1.33 seconds realtime, 1.34 seconds runtime
; (320,039,824 bytes allocated).
50000005000000
ACL2 !>(time$

(top-level (loop$ for i from 1 to 10000000 sum i)))
50000005000000
; (EV-REC *RETURN-LAST-ARG3* ...) took
; 0.05 seconds realtime, 0.05 seconds runtime
; (235,648 bytes allocated).
ACL2 !>

Note: All bytes allocated in the second evaluation are from
the use of top-level; none is from the use of loop$.

32/34

http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____TOP-LEVEL

Introduction Syntax and Semantics Support for Generic Reasoning with Loop$ Warrant Hypotheses Evaluation Limitations, Future Work, and Conclusion

LIMITATIONS AND FUTURE WORK (2)

I Top-level evaluation does not use Common Lisp loop;
maybe insist on the use of top-level?

ACL2 !>(time$ (loop$ for i from 1 to 10000000 sum i))
; (EV-REC *RETURN-LAST-ARG3* ...) took
; 1.33 seconds realtime, 1.34 seconds runtime
; (320,039,824 bytes allocated).
50000005000000
ACL2 !>(time$

(top-level (loop$ for i from 1 to 10000000 sum i)))
50000005000000
; (EV-REC *RETURN-LAST-ARG3* ...) took
; 0.05 seconds realtime, 0.05 seconds runtime
; (235,648 bytes allocated).
ACL2 !>

Note: All bytes allocated in the second evaluation are from
the use of top-level; none is from the use of loop$.

32/34

http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____TOP-LEVEL

Introduction Syntax and Semantics Support for Generic Reasoning with Loop$ Warrant Hypotheses Evaluation Limitations, Future Work, and Conclusion

CONCLUSION

Despite these limitations, we have seen that loop$ provides
efficient execution and can make reasoning more succinct.

We expect to evolve its implementation as users tell us what
most needs improvement.

More details are (of course) in the paper — and in :DOC loop$
and the ACL2 sources.

33/34

http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____LOOP_42

Introduction Syntax and Semantics Support for Generic Reasoning with Loop$ Warrant Hypotheses Evaluation Limitations, Future Work, and Conclusion

CONCLUSION

Despite these limitations, we have seen that loop$ provides
efficient execution and can make reasoning more succinct.

We expect to evolve its implementation as users tell us what
most needs improvement.

More details are (of course) in the paper — and in :DOC loop$
and the ACL2 sources.

33/34

http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____LOOP_42

Introduction Syntax and Semantics Support for Generic Reasoning with Loop$ Warrant Hypotheses Evaluation Limitations, Future Work, and Conclusion

CONCLUSION

Despite these limitations, we have seen that loop$ provides
efficient execution and can make reasoning more succinct.

We expect to evolve its implementation as users tell us what
most needs improvement.

More details are (of course) in the paper — and in :DOC loop$
and the ACL2 sources.

33/34

http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____LOOP_42

Introduction Syntax and Semantics Support for Generic Reasoning with Loop$ Warrant Hypotheses Evaluation Limitations, Future Work, and Conclusion

THANK YOU.

Reference for apply$:

M. Kaufmann and J S. Moore.
Limited second-order functionality in a first-order setting.
Journal of Automated Reasoning, 12 2018.

34/34

	Introduction
	Syntax and Semantics
	Support for Generic Reasoning with Loop$
	Warrant Hypotheses
	Evaluation
	Limitations, Future Work, and Conclusion

