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INTRODUCTION

I Recursion is natural for equational logic.

I Iteration is natural for programming.
I Loop$ provides both in ACL2;

analogous to Common Lisp loop

ACL2 !>(loop$ for x in '(1 2 3 4) sum (* x x))
30
ACL2 !>:q

Exiting the ACL2 read-eval-print loop....
? (loop for x in '(1 2 3 4) sum (* x x))
30
?
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INTRODUCTION (2)

Today I will discuss:

I how to use loop$ . . .

I but see :DOC loop$ for details; and

I a bit about the implementation of loop$ . . ..

I but see the ACL2 source code if you want details,
notably the “Essay on Loop$” and the “Essay on
Evaluation of Apply$ and Loop$ Calls During
Proofs”.

This talk will draw from a paper on this topic (in preparation).
Examples may be found in community book
projects/apply/loop-tests.lisp.

5/34
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INTRODUCTION (3)
Prior work: an Nqthm analogue to loop$ is FOR.

Much as loop$ depends on apply$, FOR depended on an
evaluator, V&C$.
That sort of universal evaluator isn’t possible for ACL2 because
of local.

(encapsulate
()
(local (defun f (x) x))
(defthm lemma-1 (equal (some-eval '(f 3)) 3)))

(defun f (x) (1+ x))
(defthm lemma-2 (equal (some-eval '(f 3)) 4))
(thm nil :hints (("Goal"

:in-theory nil
:use (lemma-1 lemma-2))))

6/34
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SYNTAX AND SEMANTICS
Semantics are given by translating loop$ expressions into the
ACL2 logic.

For example,

(loop$ for x in '(1 2 3 4) sum (* x x))

essentially translates to the term

(sum$ '(LAMBDA (X) (BINARY-* X X))
'(1 2 3 4))

where essentially — notice apply$:

(defun sum$ (fn lst)
(if (endp lst)

0
(+ (apply$ fn (list (car lst)))

(sum$ fn (cdr lst)))))

9/34
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SYNTAX AND SEMANTICS (2)

Here is a more complex example showing introduction of
loop$ scions collect$, when$, and until$.

ACL2 !>(loop$ for i from 0 to 100 by 5
until (> i 30)
when (evenp i) collect (* i i))

(0 100 400 900)
ACL2 !>

The translation of this loop$ expression is essentially:

(COLLECT$ '(LAMBDA (I) (BINARY-* I I))
(WHEN$ '(LAMBDA (I) (EVENP I))

(UNTIL$ '(LAMBDA (I) (< '30 I))
(FROM-TO-BY '0 '100 '5))))

10/34
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SYNTAX AND SEMANTICS (3)
The actual translation using :trans (see the paper):
(RETURN-LAST
'PROGN
'(LOOP$ FOR I FROM 0 TO 100 BY 5 UNTIL (> I 30)

WHEN (EVENP I)
COLLECT (* I I))

(COLLECT$ '(LAMBDA (I)
(DECLARE (IGNORABLE I))
(RETURN-LAST 'PROGN

'(LAMBDA$ (I) (* I I))
(BINARY-* I I)))

(WHEN$ '(LAMBDA (I)
(DECLARE (IGNORABLE I))
(RETURN-LAST 'PROGN

'(LAMBDA$ (I) (EVENP I))
(EVENP I)))

(UNTIL$ '(LAMBDA (I)
(DECLARE (IGNORABLE I))
(RETURN-LAST 'PROGN

'(LAMBDA$ (I)
(> I 30))

(< '30 I)))
(FROM-TO-BY '0 '100 '5)))))

11/34
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SUPPORT FOR GENERIC REASONING WITH LOOP$
Loop$ supports not only concise programming but also
concise reasoning. Here’s an example.

(defun sum-lengths (lst)
(loop$ for x in lst sum (length x)))

; Lemmas? Step 2 [joke]

(thm (equal (sum-lengths (reverse x))
(sum-lengths x)))

14/34
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Loop$ supports not only concise programming but also
concise reasoning. Here’s an example.
(defun sum-lengths (lst)
(loop$ for x in lst sum (length x)))

(defthm sum$-revappend ; need shown by checkpoint
(equal (sum$ fn (revappend x y))

(+ (sum$ fn x) (sum$ fn y))))
(thm (equal (sum-lengths (reverse x))

(sum-lengths x)))

(defun sum-acl2-counts (lst)
(loop$ for x in lst sum (acl2-count x)))

; This is now automatic; no new lemma is required.
(thm (equal (sum-acl2-counts (reverse x))

(sum-acl2-counts x)))

If the two functions were defined in the usual way, we would
need a lemma about revappend for each one.

15/34
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WARRANT HYPOTHESES

Loop$ scions invoke apply$, which is a function with weak
constraints.

Key property needed for applying a user-defined function, F:
a warrant hypothesis, (apply$-warrant-F), which implies:

(equal (apply$ 'F (list t1 . . . tn))
(F t1 . . . tn)).

More background on apply$ is in our JAR paper [1]. Aside:
(apply$-warrant-F) is sometimes written
(warrant F).

We illustrate reasoning about loop$ with an example....

18/34
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WARRANT HYPOTHESES (2)
NOTE: use this include-book for apply$ or loop$
reasoning.

(include-book "projects/apply/top" :dir :system)
(defun$ square (n)
(declare (xargs :guard (integerp n)))
(* n n))

The defun$ form above provides the defun and the warrant:

ACL2 !>:trans1 (defun$ square (n)
(declare (xargs :guard (integerp n)))
(* n n))

(PROGN (DEFUN SQUARE (N)
(DECLARE (XARGS :GUARD (INTEGERP N)))
(* N N))

(DEFWARRANT SQUARE))
ACL2 !>

19/34
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WARRANT HYPOTHESES (3)

Here is the key property of the warrant hypothesis for square,
(apply$-warrant-square).

(DEFTHM APPLY$-SQUARE
(IMPLIES (FORCE (APPLY$-WARRANT-SQUARE))

(AND (EQUAL (BADGE 'SQUARE)
'(APPLY$-BADGE 1 1 . T))

(EQUAL (APPLY$ 'SQUARE ARGS)
(SQUARE (CAR ARGS)))))

:HINTS ...)

It is forced so that a proof can proceed (to a forcing round) even
when the warrant hypothesis is missing from the conjecture.

Continuing with our example....

20/34
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(DEFTHM APPLY$-SQUARE
(IMPLIES (FORCE (APPLY$-WARRANT-SQUARE))

(AND (EQUAL (BADGE 'SQUARE)
'(APPLY$-BADGE 1 1 . T))

(EQUAL (APPLY$ 'SQUARE ARGS)
(SQUARE (CAR ARGS)))))

:HINTS ...)

It is forced so that a proof can proceed (to a forcing round) even
when the warrant hypothesis is missing from the conjecture.

Continuing with our example....
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WARRANT HYPOTHESES (4)

(defun f2 (lower upper)
(declare (xargs :guard (and (integerp lower)

(integerp upper))))
(loop$ for i of-type integer from lower to upper

collect (square i)))

(assert-event (equal (f2 3 5) '(9 16 25)))

(thm (implies
(and (warrant square) ; required

(natp k1) (natp k2) (natp k3)
(<= k1 k2) (<= k2 k3))

(member (* k2 k2) (f2 k1 k3))))
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WARRANT HYPOTHESES (5)
Let’s look at a simplifed the base case in the induction proof.
Note: (lambda$...) is essentially just ’(lambda ...), but
lambda$ allows untranslated terms.

(IMPLIES
(AND (APPLY$-WARRANT-SQUARE) ; warrant hypothesis

(INTEGERP K3) (INTEGERP K1)
(<= 0 K1) (<= K1 K3))

(MEMBER-EQUAL (* K1 K1)
(COLLECT$ (LAMBDA$ (I)

(DECLARE ...)
(SQUARE I))

(FROM-TO-BY K1 K3 1))))

Follows from this simplification, by the warrant hypothesis:

(APPLY$ 'SQUARE (LIST K1)) = (* K1 K1).
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EVALUATION
Common Lisp loop is run when evaluating loop$ expressions
under guard-verified function calls.

The paper has an example illustrating an order of magnitude
speed-up in this case, compared to evaluation of loop$ using
loop$ scions. Consider the following example.

(include-book "projects/apply/top" :dir :system)

(defun sum-acl2-counts (lst)
(declare (xargs :guard (true-listp lst)

:verify-guards nil))
(loop$ for x in lst sum (acl2-count x)))

(defconst *lst* '(a (b c) "hello"))

(trace$ sum$)
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EVALUATION (2)
; Not in a function body: calls sum$
(loop$ for x in *lst* sum (acl2-count x))

; In non-guard-verified function body: calls sum$
(sum-acl2-counts *lst*)

(verify-guards sum-acl2-counts)

; In guard-verified function body:
; DOES NOT call sum$
(sum-acl2-counts *lst*)

; In a proof: calls sum$
; (even though the function is guard-verified)
(thm (equal (sum-acl2-counts *lst*) 7))
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EVALUATION (3)

There is a subtlety for evaluation during proofs:

Warrant hypotheses may be required!
(Attachments aren’t allowed during proofs.)

The solution involves tracking the required warrants and then
forcing them when necessary.

27/34

http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____FORCE


Introduction Syntax and Semantics Support for Generic Reasoning with Loop$ Warrant Hypotheses Evaluation Limitations, Future Work, and Conclusion

EVALUATION (3)

There is a subtlety for evaluation during proofs:

Warrant hypotheses may be required!
(Attachments aren’t allowed during proofs.)

The solution involves tracking the required warrants and then
forcing them when necessary.

27/34

http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____FORCE


Introduction Syntax and Semantics Support for Generic Reasoning with Loop$ Warrant Hypotheses Evaluation Limitations, Future Work, and Conclusion

EVALUATION (3)

There is a subtlety for evaluation during proofs:

Warrant hypotheses may be required!
(Attachments aren’t allowed during proofs.)

The solution involves tracking the required warrants and then
forcing them when necessary.

27/34

http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____FORCE


Introduction Syntax and Semantics Support for Generic Reasoning with Loop$ Warrant Hypotheses Evaluation Limitations, Future Work, and Conclusion

EVALUATION (4)
Time permitting, I may say a few words about the
implementation.

#-acl2-loop-only
(defmacro loop$ (&whole loop$-form &rest args)
(let ((term

(or (loop$-alist-term
loop$-form

*hcomp-loop$-alist*)
(loop$-alist-term
loop$-form
(global-val 'loop$-alist

(w *the-live-state*))))))
`(cond (*aokp*

(loop ,@(remove-loop$-guards args)))
(t ,(or term

'(error "...."))))))
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LIMITATIONS AND FUTURE WORK

I Apply$ restrictions

I Logic mode, tame functions
(defun foo (x) ; illegal: foo isn't yet tame

(if (atom x)
(list x)

(loop$ for y in x append (foo y))))

I No state or stobjs

I Common Lisp loop supports more general forms than
loop$, e.g.:

? (loop for x in '(2 20 5 50 3 30) by #'cddr
maximize x)

5
? (loop for i from 11/2 downto 1 by 2 collect i)
(11/2 7/2 3/2)
?
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LIMITATIONS AND FUTURE WORK (2)

I Top-level evaluation does not use Common Lisp loop;
maybe insist on the use of top-level?

ACL2 !>(time$ (loop$ for i from 1 to 10000000 sum i))
; (EV-REC *RETURN-LAST-ARG3* ...) took
; 1.33 seconds realtime, 1.34 seconds runtime
; (320,039,824 bytes allocated).
50000005000000
ACL2 !>(time$

(top-level (loop$ for i from 1 to 10000000 sum i)))
50000005000000
; (EV-REC *RETURN-LAST-ARG3* ...) took
; 0.05 seconds realtime, 0.05 seconds runtime
; (235,648 bytes allocated).
ACL2 !>

Note: All bytes allocated in the second evaluation are from
the use of top-level; none is from the use of loop$.
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CONCLUSION

Despite these limitations, we have seen that loop$ provides
efficient execution and can make reasoning more succinct.

We expect to evolve its implementation as users tell us what
most needs improvement.

More details are (of course) in the paper — and in :DOC loop$
and the ACL2 sources.
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THANK YOU.

Reference for apply$:

M. Kaufmann and J S. Moore.
Limited second-order functionality in a first-order setting.
Journal of Automated Reasoning, 12 2018.
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