Major Section: ACL2 Documentation
General Form: a true list of rule class objects as defined belowACL2 provides users with the ability to create a number of different kinds of rules, including (conditional) rewrite rules but also including others. Don't be put off by the long description to follow; usually, you'll probably want to use rewrite rules. More on this below.Special Cases: a symbol abbreviating a single rule class object
A rule class object is either one of the :class
keywords or else is
a list of the form shown below. Those fields marked with ``(!)''
are required when the :class
is as indicated.
(:class :COROLLARY term :TRIGGER-FNS (fn1 ... fnk) ; provided :class = :META (!) :TRIGGER-TERMS (t1 ... tk) ; provided :class = :FORWARD-CHAINING ; or :class = :LINEAR :TYPE-SET n ; provided :class = :TYPE-SET-INVERTER :TYPED-TERM term ; provided :class = :TYPE-PRESCRIPTION :CLIQUE (fn1 ... fnk) ; provided :class = :DEFINITION (!) :CONTROLLER-ALIST alist ; provided :class = :DEFINITION (!) :LOOP-STOPPER alist ; provided :class = :REWRITE :PATTERN term ; provided :class = :INDUCTION (!) :CONDITION term ; provided :class = :INDUCTION :SCHEME term ; provided :class = :INDUCTION (!) :HINTS hints ; provided instrs = nil :INSTRUCTIONS instrs ; provided hints = nil :OTF-FLG flg)When rule class objects are provided by the user, most of the fields are optional and their values are computed in a context sensitive way. When a
:class
keyword is used as a rule class
object, all relevant fields are determined contextually. Each rule
class object in :rule-classes
causes one or more rules to be added
to the data base. The :class
keywords are documented individually
under the following names. Note that when one of these names is used
as a :class
, it is expected to be in the keyword package (i.e., the
names below should be preceded by a colon but the ACL2 documentation
facilities do not permit us to use keywords below).
:meta
rule (a hand-written simplifier)
:rewrite
rules (possibly conditional ones)
:
type-prescription
and
:
forward-chaining
rules for ``type-theoretic'' rules, especially
ones whose top-level function symbol is a common one like
true-listp
or consp
; see type-prescription and
see forward-chaining. However, the rest of the rule classes
are really not intended for widespread use, but rather are mainly
for experts.
We expect that we will write more about the question of which kind
of rule to use. For now: when in doubt, use a :
rewrite
rule.
:Rule-classes
is an optional keyword argument of the defthm
(and
defaxiom
) event. In the following, let name
be the name of the
event and let thm
be the formula to be proved or added as an axiom.
If :rule-classes
is not specified in a defthm
(or defaxiom
) event,
it is as though :rule-classes
((:rewrite))
had been used. Use
:rule-classes
nil
to specify that no rules are to be generated.
If :rule-classes
class is specified, where class is a non-nil
symbol, it is as though :rule-classes
((class))
had been used.
Thus, :rule-classes
:
forward-chaining
is equivalent to :rule-classes
((:forward-chaining))
.
We therefore now consider :rule-classes
as a true list. If any
element of that list is a keyword, replace it by the singleton list
containing that keyword. Thus, :rule-classes
(:rewrite :elim)
is
the same as :rule-classes
((:rewrite) (:elim))
.
Each element of the expanded value of :rule-classes
must be a true
list whose car
is one of the rule class keyword tokens listed above,
e.g., :
rewrite
, :
elim
, etc., and whose cdr
is a ``keyword alist''
alternately listing keywords and values. The keywords in this alist
must be taken from those shown below. They may be listed in any
order and most may be omitted, as specified below.
Once
:
Corollary
-- its value,term
, must be a term. If omitted, this field defaults tothm
. The:
corollary
of a rule class object is the formula actually used to justify the rule created and thus determines the form of the rule. Nqthm provided no similar capability: each rule was determined bythm
, the theorem or axiom added. ACL2 permitsthm
to be stated ``elegantly'' and then allows the:
corollary
of a rule class object to specify how that elegant statement is to be interpreted as a rule. For the rule class object to be well-formed, its (defaulted):
corollary
,term
, must follow fromthm
. Unlessterm
is trivially implied bythm
, using little more than propositional logic, the formula(implies thm term)
is submitted to the theorem prover and the proof attempt must be successful. During that proof attempt the values of:
hints
,:
instructions
, and:
otf-flg
, as provided in the rule class object, are provided as arguments to the prover. Such auxiliary proofs give the sort of output that one expects from the prover. However, as noted above, corollaries that follow trivially are not submitted to the prover; thus, such corollaries cause no prover output.Note that before
term
is stored, all calls of macros in it are expanded away. See trans.
:
Hints
,:
instructions
,:
otf-flg
-- the values of these fields must satisfy the same restrictions placed on the fields of the same names indefthm
. These values are passed to the recursive call of the prover used to establish that the:
corollary
of the rule class object follows from the theorem or axiomthm
.
:
Type-set
-- this field may be supplied only if the:class
is:
type-set-inverter
. When provided, the value must be a type-set, an integer in a certain range. If not provided, an attempt is made to compute it from the corollary. See type-set-inverter.
:Typed-term
-- this field may be supplied only if the:class
is:
type-prescription
. When provided, the value is the term for which the:
corollary
is a type-prescription lemma. If no:typed-term
is provided in a:
type-prescription
rule class object, we try to compute heuristically an acceptable term. See type-prescription.
:Trigger-terms
-- this field may be supplied only if the:class
is:
forward-chaining
or:
linear
. When provided, the value is a list of terms, each of which is to trigger the attempted application of the rule. If no:trigger-terms
is provided, we attempt to compute heuristically an appropriate set of triggers. See forward-chaining or see linear.
:Trigger-fns
-- this field must (and may only) be supplied if the:class
is:
meta
. Its value must be a list of function symbols. Terms with these symbols trigger the application of the rule. See meta.
:Clique
and:controller-alist
-- these two fields must (and may only) be supplied if the:class
is:
definition
. Suppose the:
corollary
of the rule is(implies hyp (equiv (fn a1 ... an) body))
. The value of the:clique
field should be a true list of function symbols, and if non-nil
must includefn
. These symbols are all the members of the mutually recursive clique containing this definition offn
. That is, a call of any function in:clique
is considered a ``recursive call'' for purposes of the expansion heuristics. The value of the:controller-alist
field should be an alist that maps each function symbol in the:clique
to a list oft
's andnil
's of length equal to the arity of the function. For example, if:clique
consists of just two symbols,fn1
andfn2
, of arities2
and3
respectively, then((fn1 t nil) (fn2 nil t t))
is a legal value of:controller-alist
. The value associated with a function symbol in this alist is a ``mask'' specifying which argument slots of the function ``control'' the recursion for heuristic purposes. Sloppy choice of:clique
or:controller-alist
can result in infinite expansion and stack overflow.
:
loop-stopper
-- this field may only be supplied if the class is:
rewrite
. Its value must be a list of entries each consisting of two variables followed by a (possibly empty) list of functions, for example((x y binary-+) (u v foo bar))
. It will be used to restrict application of rewrite rules by requiring that the list of instances of the second variables must be ``smaller'' than the list of instances of the first variables in a sense related to the corresponding functions listed; see loop-stopper. The list as a whole is allowed to benil
, indicating that no such restriction shall be made. Note that any such entry that contains a variable not being instantiated, i.e., not occurring on the left side of the rewrite rule, will be ignored. However, for simplicity we merely require that every variable mentioned should appear somewhere in the corresponding:
corollary
formula.
:pattern
,:condition
,:scheme
-- the first and last of these fields must (and may only) be supplied if the class is:
induction
.:Condition
is optional but may only be supplied if the class is:
induction
. The values must all be terms and indicate, respectively, the pattern to which a new induction scheme is to be attached, the condition under which the suggestion is to be made, and a term which suggests the new scheme. See induction.
thm
has been proved (in the case of defthm
) and each rule
class object has been checked for well-formedness (which might
require additional proofs), we consider each rule class object in
turn to generate and add rules. Let :class
be the class keyword
token of the i
th class object (counting from left to right).
Generate the rune (:class name . x)
, where x
is nil
if there is only
one class and otherwise x
is i
. Then, from the :
corollary
of that
object, generate one or more rules, each of which has the name
(:class name . x)
. See the :
doc
entry for each rule class to see
how formulas determine rules. Note that it is in principle possible
for several rules to share the same name; it happens whenever a
:
corollary
determines more than one rule. This in fact only occurs
for :
rewrite
, :
linear
, and :
forward-chaining
class rules and only
then if the :
corollary
is essentially a conjunction. (See the
documentation for rewrite, linear, or
forward-chaining for details.)