Major Section: MISCELLANEOUS
So far none of our computed hints have used the
:COMPUTED-HINT-REPLACEMENT
feature. We now illustrate that.
The :computed-hint-replacement
feature can easily lead to loops.
So as you experiment with the examples in this section and your own
hints using this feature, be ready to interrupt the theorem prover
and abort!
A non-looping use of the :computed-hint-replacement
feature
would be a hint like this:
(if (certain-terms-present clause) '(:computed-hint-replacement t :in-theory (enable lemma25)) '(:computed-hint-replacement t :in-theory (disable lemma25)))In this hint, if certain terms are present in
clause
, as determined
by the function with the obvious name (here undefined), then this
hint enables lemma25
and otherwise disables it. Lemma25
might be
a very expensive lemma, e.g., one that matches frequently and has an
expensive and rarely established hypothesis. One might wish it enabled
only under certain conditions. Recall that theories are inherited by
children. So once lemma25
is enabled it ``stays'' enabled for the
children, until disabled; and vice versa. If the
:computed-hint-replacement
feature were not present and computed
hints were always deleted after they had been used, then lemma25
would be left enabled (or disabled) for all the childen produced by the
first firing of the hint. But with the arrangement here, every subgoal
gets a theory deemed suitable by the hint, and the hint persists.Now we will set up a toy to allow us to play with computed hints to understand them more deeply. To follow the discussion it is best to execute the following events.
(defstub wrapper (x) t) (defaxiom wrapper-axiom (wrapper x) :rule-classes nil)Now submit the following event and watch what happens.
(thm (equal u v) :hints (`(:use (:instance wrapper-axiom (x a)))))The theorem prover adds
(wrapper a)
to the goal
and then abandons the proof attempt because it cannot prove the
subgoal. Since the computed hint is deleted upon use, the
hint is not applied to the subgoal (i.e., the child of the goal).What happens if we do the following?
(thm (equal u v) :hints (`(:computed-hint-replacement t :use (:instance wrapper-axiom (x a)))))One might expect this to loop forever: The hint is applied to the child and adds the hypothesis again. However, when the hint fires, nothing is actually changed, since
(wrapper a)
is already in the
subgoal. The theorem prover detects this and stops. (Careful
inspection of the output will reveal that the hint actually did fire
a second time without apparent effect.)
So let's change the experiment a little. Let's make the hint
add the hypothesis (wrapper p)
where is the first literal of the
clause. This is silly but it allows us to explore the behavior of
computed hints a little more.
(thm (equal u v) :hints (`(:use (:instance wrapper-axiom (x ,(car clause))))))So in this case, the theorem prover changes the goal to
(IMPLIES (WRAPPER (EQUAL U V)) (EQUAL U V))which then simplifies to
(IMPLIES (WRAPPER NIL) (EQUAL U V))because the concluding equality can be assumed false in the hypothesis (e.g., think of the contrapositive version). Nothing else happens because the hint has been removed and so is not applicable to the child.
Now consider the following -- and be ready to interrupt it and abort!
(thm (equal u v) :hints (`(:computed-hint-replacement t :use (:instance wrapper-axiom (x ,(car clause))))))This time the hint is not removed and so is applied to the child. So from
Goal
we get
Goal' (IMPLIES (WRAPPER (EQUAL U V)) (EQUAL U V))and then
Goal'' (IMPLIES (AND (WRAPPER (NOT (WRAPPER (EQUAL U V)))) (WRAPPER (EQUAL U V))) (EQUAL U V))etc.
First, note that the hint is repeatedly applied to its children.
That is because we wrote :computed-hint-replacement t
.
But second, note that Goal'
is not even being simplified
before Goal''
is produced from it. If it were being simplified,
the (equal u v)
's in the hypotheses would be replaced by nil
.
This is a feature. It means after a computed hint has fired, other
hints are given a chance at the result, even the hint itself unless
it is removed from the list of hints.
As an exercise, let's arrange for the hint to stay around and be applied indefinitely but with a simplification between each use of the the hint. To do this we need to pass information from one application of the hint to the next, essentially to say ``stay around but don't fire.''
First, we will define a function to use in the hint. This is more than a mere convenience; it allows the hint to ``reproduce itself'' in the replacement.
(defun wrapper-challenge (clause parity) (if parity `(:computed-hint-replacement ((wrapper-challenge clause nil)) :use (:instance wrapper-axiom (x ,(car clause)))) `(:computed-hint-replacement ((wrapper-challenge clause t)))))Note that this function is not recursive, even though it uses its own name. That is because the occurrence of its name is in a quoted constant.
Now consider the following. What will it do?
(thm (equal u v) :hints ((wrapper-challenge clause t)))
First, observe that this is a legal hint because it is a term that
mentions only the free variable CLAUSE
. When defining hint functions
you may sometimes think their only arguments are the four variables
id
, clause
, world
, and stable-under-simplificationp
.
That is not so. But in your hints you must call those functions so that
those are the only free variables. Note also that the occurrence of
clause
inside the :computed-hint-replacement
is not an occurrence
of the variable clause but just a constant. Just store this note
away for a moment. We'll return to it momentarily.
Second, the basic cleverness of this hint is that every time it fires
it reproduces itself with the opposite parity. When the parity is
t
it actually changes the goal by adding a hypothesis. When
the parity is nil
it doesn't change the goal and so allows
simplification to proceed -- but it swaps the parity back to t
.
What you can see with this simply toy is that we can use the computed
hints to pass information from parent to child.
Ok, so what happens when the event above is executed? Try it. You will
see that ACL2 applied the hint the first time. It doesn't get around to
printing the output because an error is caused before it can print.
But here is a blow-by-blow description of what happens. The hint is
evaluated on Goal
with the clause
((equal u v))
. It produces
a hint exactly as though we had typed:
("Goal" :use (:instance wrapper-axiom (x (equal u v))))which is applied to this goal. In addition, it produces the new hints argument
:hints ((wrapper-challenge clause nil)).By applying the
"Goal"
hint we get the new subgoal
Goal' (implies (wrapper (equal u v)) (equal u v))but this is not printed because, before printing it, the theorem prover looks for hints to apply to it and finds
(wrapper-challenge clause nil)That is evaluated and produces a hint exactly as though we had typed:
("Goal'" )and the new hints argument:
:hints ((wrapper-challenge clause nil)).But if you supply the hint
("Goal'" )
, ACL2 will signal an error
because it does not allow you to specify an empty hint!
So the definition of wrapper-challenge
above is almost correct
but fatally flawed. We need a non-empty ``no-op'' hint. One such
hint is to tell the system to expand a term that will always be expanded
anyway. So undo wrapper-challenge
, redefine it, and try
the proof again. Now remember the observation about clause
that
we asked you to ``store'' above. The new definition of wrapper-challenge
illustrates what we meant. Note that the first formal parameter of
wrapper-challenge
, below, is no longer named clause
but is called
cl
instead. But the ``call'' of wrapper-challenge
in the
replacements is on clause
. This may seem to violate the rule that
a function definition cannot use variables other than the formals.
But the occurrences of clause
below are not variables but constants
in an object that will eventually be treated as hint term.
:ubt wrapper-challenge(defun wrapper-challenge (cl parity) (if parity `(:computed-hint-replacement ((wrapper-challenge clause nil)) :use (:instance wrapper-axiom (x ,(car cl)))) `(:computed-hint-replacement ((wrapper-challenge clause t)) :expand ((atom zzz)))))
(thm (equal u v) :hints ((wrapper-challenge clause t)))
This time, things go as you might have expected! Goal'
is produced
and simplified, to
Goal'' (implies (wrapper nil) (equal u v)).Simplification gets a chance because when the new hint
(wrapper-challenge clause nil)
is fired it does not change the
goal. But it does change the parity in the hints argument so that
before Goal''
is simplified again, the hint fires and adds the
hypothesis:
Goal''' (IMPLIES (AND (WRAPPER (NOT (WRAPPER NIL))) (WRAPPER NIL)) (EQUAL U V)).This simplifies, replacing the first
(NOT (WRAPPER NIL))
by NIL
,
since (WRAPPER NIL)
is known to be true here. Thus the goal
simplifies to
Goal'4' (IMPLIES (WRAPPER NIL) (EQUAL U V)).The process repeats indefinitely.
So we succeeded in getting a hint to fire indefinitely but allow a
full simplification between rounds.