Knuth’s Generalization of Takeuchi’s Tarai
Function: Preliminary Report

Tom Bailey John Cowles
{tbailey, cowles}@Quwyo.edu

Department of Computer Science
University of Wyoming
Laramie, WY 82071.

Abstract
Donald E. Knuth of Stanford University raises, in [2] and [3, chap-
ter 22], intriguing open questions about his generalization of the tarai
function and proposes an interesting candidate for machine verifica-
tion. We answer some of the open questions and explore the use of
ACL2 to meet Knuth’s challenge.

1 Takeuchi’s Tarai Function

Ikuo Takeuchi devised the following recursive function for benchmarking
LISP systems. The recursion can take a long time to terminate without
generating large intermediate numerical values. Knuth comments [3, chapter
22]: “Takeuchi called his function tarai, from the word ‘taraimawashi,” which
connotes passing an unpleasant object from one person to another.”
For integer inputs, z,y, z,
t(z,y,2) & if 2 <y then y (1)
else t(t(m -1y, Z)7 t(y -1,z .I), t(Z -1z, y))
John McCarthy proved that this recursion terminates and that ¢ can be
computed without any recursion,
t(z,y,2) = if x <y then y (2)
else if y <z then z

else z.



J Moore [5] discovered a simpler measure than the one used by McCarthy
and used the early Boyer-Moore theorem prover, THM, to verify termination
and that ¢ satisfies the simpler nonrecursive equation.

2 Knuth’s Generalization

Knuth generalizes the tarai function to higher dimensions: For integer inputs,
T1,T2,-- -, T,

(1, %o,y Try) & if x, <z then zo
else t(t(x1 —1,29,...,Tm),
t(.’l)’g — 1,.’L’3, vy Ty, .’L’l),
t(.'I,'m — 1,.’1)1, c. ,.’Emfl)).

Knuth raises two questions about this recursive definition.

1. Are there total functions on the integers that satisfy the recursive
equations based on the definition? That is, are there total functions

f(z1,29,...,2,) on the integers that satisfy the equation
f(x1,29,...,2p) = if zy <z9 then xzo (3)
else f(f(xy—1,29,...,2m),
f(l‘g - 1,.%‘3, . ,.Z‘m,.Tl),
f(l'm - 1: Ty 7xm—1))?

2. Does the recursion terminate for all integer inputs?

If the answer to the second question is yes, then the answer to the first
question must also be yes. But, Knuth points out, [2] and [3, chapter 22],
“...we have not demonstrated that termination will occur, and there is no
obvious ordering on the integer m-tuples (z1,...,z,) that will yield such a
proof.”



Question 1: Can the recursive equation be satisfied?
Knuth notes that when m = 4, the function
t(z1, o, T3, T4) &€ if z; <z, then
else if zo < x3 then x3
elseif z3 < x4 then x4
else ;.
satisfies the equation
t(z1, 9, x3,24) = if 3 < 1z9 then xo
else t( t(x1 — 1,29, 13, 24),
¢(
&(

t(.’L‘4 - 1, T1,T2, $3))

)
To — 1, T3, T4, $1),
)

T3 — 15'/'54::61,'7;2 )

This, together with similar results for m = 3 discussed earlier [see (1) and
(2)], makes it natural to conjecture that the m-dimensional equation (3) is
satisfied by
f(z1,29, ..., Tm) & if (Fk <m)(z1 > 29 >+ > x) < Tpy1) then zpiq

else .
Things are not quite so simple, as shown by the following counterexample,
due to Knuth, for m = 5. For the f just defined, with inputs 5, 3, 2,0, 1, the
left side of equation (3) clearly yields f(5,3,2,0,1) = 1, while the right side,
after some computation, produces 2.
Knuth modifies the definition of f in the following way.
flxy, 2o, zm) & i Fk<m)(zr >z0> - >ap < app1)  (4)
then g(z1,9,..., Tx41)
else x.
Here g is a “function” that takes a variable number (at least two) of integer
inputs.
9(r1,29,...,1;) & if j=2 then z
else if 1 =25+ 1 then g(zo,...,z;)
else if 2o =23+ 1 then max(xzs,z;)

else x;.

3



An Open Problem raised in [2] is to: Prove the following theorem by computer.
Knuth writes in [3, chapter 22|, “Indeed, I have checked the proof by hand
twice, and I believe it is correct, but I do not want to have to check it again!”

Theorem 1 The function [ defined by (4) satisfies the m-dimensional tarai
recurrence (3).

In February 2000, Tom Bailey found a counterexample with m = 6:
f(8,6,4,3,1,2) = 2 while expanding the right side of (3) finds it equal to
f£(3,2,3,2,2,8) = 3. Knuth’s reaction [4] to the counterexample: “This is
certainly a great way to make me believe in mechanical verification.” Knuth
further writes in [3, chapter 22| that the theorem “...is apparently correct
when m = 5, although mechanical verification is still pending (and now im-
perative!). The behavior of the tarai recurrence in six or more dimensions
remains unknown.”

We have a proof that has been checked by hand many times for the
following (but mechanical verification is not yet complete).

Conjecture 1 The function f, defined by modifying (4) by replacing the
call to g(x1, %o, ..., Tkr1) with a call to gy(x1, T, ..., Try1), satisfies the m-
dimensional tarai recurrence (3).

Here gy, like g, takes a variable number of integer inputs.

gp(x1, T2, . .., Z5) & if j <3 then z;
elseif ;=29 +1o0ray >23+1
then gy(zo,...,2;)

else max(z3, ;).

Question 2: Does the recursion terminate?

Knuth points out, [2] and [3, chapter 22], that the answer to this question may
very well depend on which recursive calls we insist on fully evaluating: “...a
call-by-need technique will always terminate when applied to the recursive
equation for t(z1,...,2m). I 21 > 29 > -+ > 1 < Tpyq, the values y; =
t(x; — 1,231, ...,2; 1) need be expanded only for 1 < i < k + 1, and this
will be sufficient to determine the value of ¢(y1,...,Ym) = t(z1,...,2y) in
a finite number of steps.” Knuth’s argument for this depends on the faulty
proof given for Theorem 1.
Mechanical verification for the following is not yet complete.

4



Conjecture 2 The recursion for computing t(x1, ..., Ty,) always terminates
using the following version of Knuth’s call-by-need. If x1 > x9 > --- > x5 <
Ty1, it 1s sufficient to expand the values y; = t(x; — 1, Tiy1, ..., x;_1) only for
1 <i < k (note the change from k +1 to k in this range for i), to determine
the value of t(y1,...,Ym) = t(z1,...,Tm).

Knuth continues, [2] and [3, chapter 22]: “Therefore we come to a final
question, which will perhaps prove to be the most interesting aspect of the
present investigation, particularly if it has a negative answer. ...If so, the
tarai recurrence would be an extremely interesting example to include in all
textbooks about recursion.”

Open Problem. “Does the m-dimensional tarai recursive equation define a
total function, for all m > 3, if it is expanded fully (without call-by-need)?”

The answer to this open problem was shown, by Tom Bailey, Jim Cald-
well, and John Cowles, in January 2000, to be, “no.” Form = 4,1(3,2,1,5) =
e =1(2,1,5,4) =---=1(1,5,4,1(3,2,1,5)).

3 Progress Using ACL2

Applying ACL2, in an inelegant way with brute force, verifies the following:

1. For 2 < m < 7, the function f of Conjecture 1 (with Knuth’s g replaced
with g,) satisfies the m-dimensional tarai recurrence (3). Thus ACL2
verifies Conjecture 1 for 2 < m < 7.

2. For 2 < m < 5, Knuth’s version of f, defined by (4), computes the
same values as the version of f given in Conjecture 1 (with g replaced
with g,). Together with item 1, this finishes the mechanical verification
that Knuth’s f satisfies the recursive equation (3), for m = 5 (as well
as for 2 <m < 4).

3. For 2 < m <7, the function f of Conjecture 1 (with Knuth’s g replaced
with gp) is the unique total function on the integers that satisfies the
m-dimensional tarai recurrence (3).

4. For 2 < m < 7, the function f of Conjecture 1 (with Knuth’s g replaced
with g;) satisfies the m-dimensional restricted tarai recurrence:



flzy, 29, ..., 2p) = if 27 <zy then xzo (5)
else f(f(x1—1,29,...,2Zm),

f($2 - ]-ax?n"'axmaxl)a

f(xk - Lag,... ,33]9,1)).

Note the k& and %' in the last line of this equation. Here k' stands
for (k4 1) mod’m (where ¢ mod’ m is the unique j € {1,...,m} such
that i = j mod m) and k is the integer such that 1 < k& < m and
X1 > g > -+ > xp < . This definition requires that f, like g and gy,
be a “function” that takes a variable number (at least two) of integer
inputs.

. For 2 < m <7, the function f of Conjecture 1 (with Knuth’s g replaced
with gp) is the unique total function on the integers that satisfies the
m-dimensional restricted tarai recurrence (5).

. For 2 < m < 7, the recursive calls on the right side of equation (5),
defining the m-dimensional restricted tarai recurrence, always termi-
nate. Thus ACL2 verifies Conjecture 2 for 2 < m < 7.

Coping with a variable number of inputs

Lisp provides an obvious way of dealing with functions, like g, g5, and the
restricted tarai recurrence, that take a variable number of inputs: Form the
inputs into a list and use that list as the single input to the function.

The ACL2 versions of the functions f and g, mentioned in Conjecture 1

are now straight forward:

(defun

Fb (1st)
"The input 1lst is intended to be a nonempty
list of integers."
(declare (xargs :guard (and (integer-listp 1lst)
(consp 1st))))
(if (decreasing-p 1lst)



(first 1st)
(Gb (first-non-decrease 1lst))))

(defun
Gb (1st)
"The input 1lst is intended to be a nonempty
list of integers."
(declare (xargs :guard (and (integer-listp 1lst)
(consp 1st))))
(cond ((consp (nthcdr 3 1st)) ;; (len 1st) > 3
(if (or (equal (first 1lst)
(+ (second 1lst) 1))
(> (second 1lst)
(+ (third 1st) 1)))
(Gb (rest 1st))
(max (third 1st)
(last-el 1st))))

(t (last-el 1st)))) ;; (len 1st) <= 3
Here
(decreasing-p (21,9, ..., %)) returns true if and only if 1 > 25 > -+ >
xm?
(first-non-decrease (z1,s,...,Zy)) returns (x1, T, ..., Tk, Txr1) Where

k is the index such that z; > x5 > -+ - > 1 < x4,

(last-el 1st) returns the last element in the list 1st.

The tarai recurrences are both satisfiable

The following functions provide one way of formally stating in ACL2 that Fb
satisfies both the tarai (3) and restricted tarai (5) recurrences.

(Fb-1st 1st) returns the list obtained by applying Fb to each element of
1st (which should be a list of lists),

(dec-front-len (xi, 9, ..., %n)) returns the k such that x; > zo > --- >
x < xp. Here k' equals (kK 4+ 1) mod’ m.



(Ist-rotates-with-minus-1 n (x1,Zs, ..., Z,)) returns the list of the first
n + 1 elements in this list of lists:

(1 — 1,29, ..., Tm),
(1?2 — 1,l‘3, e ,.’L‘m,$1),
(.’Em — 1,.{171, .. .,Hfm,l),

(1 — 1,29, ..., Zp),

The following theorems are proved by exhaustive consideration of cases. The
case for m = 7, using a machine with a 600 MHz pentium processor, requires
time, as reported by ACL2, of over 3.85 hours to complete. The first theorem
formally states that for 2 < m < 7, Fb satisfies the tarai (3) recurrence and
the second says that Fb also satisfies the restricted tarai (5) recurrence.

(defthm
Fb-sat-tarai-def
(implies (and (integer-listp 1lst)

(consp (rest 1st)) ;3 (len 1st) > 1
(not (consp (nthcdr 7 1st)))
) ;; (len 1st) <=7

(equal (Fb 1lst)
(if (<= (first 1st)
(second 1lst))
(second 1st)
(Fb (Fb-1st (lst-rotates-with-minus-1
(- (LEN 1st) 1)
1st))))))

(defthm
Fb-sat-tarai-def-a
(implies (and (integer-listp 1lst)

(consp (rest 1st)) ;3 (len 1st) > 1
(not (consp (nthcdr 7 1st)))
) ;; (len 1st) <=7

(equal (Fb 1lst)



(if (<= (first 1st)
(second 1lst))
(second 1lst)
(Fb (Fb-1lst (lst-rotates-with-minus-1
(- (DEC-FRONT-LEN 1st) 1)
1st))))))

The tarai recurrences are both uniquely satisfiable

Encapsulate, using Fb as the witness, is used to consistently axiomatize four
functions tarai, tarai-1st, rTarai, and rTarai-1st so that

e tarai is a total function that satisfies the axiom obtained by replacing
Fb, in the theorem, Fb-sat-tarai-def, of the previous section, with
tarai.

e tarai returns an integer whenever the input is a list of integers of
length 2 or more.

e rTarai is a total function that satisfies the axiom obtained by replacing
Fb, in the theorem, Fb-sat-tarai-def-a, of the previous section, with
rTarai.

Thus the axioms specifically restrict their validity to input lists of lengths
2-T.

The following theorems are proved by cases, one case for each list length
from 2—7. Induction is used to prove each case.

(defthm
tarai=Fb
(implies (and (integer-listp 1lst)
(consp (rest 1st)) ;3 (len 1st) > 1
(not (consp (nthcdr 7 1lst)))
) ;; (len 1st) <=7
(equal (tarai 1st) (Fb 1st)))
.2)
(defthm
rTarai=Fb-7



(implies (and (integer-listp 1lst)
(consp (nthcdr 1 1st)) ;; (len 1st) > 1
(not
(consp (nthcdr 7 1st))));; (len 1st) <=7
(equal (rTarai 1st)(Fb 1st)))
.2

The measure of lists of integers (x1, s, ..., Zy), used for the induction,
is based on the lexicographical ordering on pairs (k,nfix(z; — z3)), where k&
is the integer such that 1 > 25 > --- > 2 < 2 (K’ equals (k+ 1) mod’ m).

For example, here is the induction scheme used to prove tarai=Fb when
1st is the 4 element list (LIST FIRST SECOND THIRD FOURTH).

(AND (IMPLIES (NOT (INTEGER-LISTP (LIST FIRST SECOND
THIRD FOURTH)))
(:P FIRST SECOND THIRD FOURTH))
(IMPLIES (AND (INTEGER-LISTP (LIST FIRST SECOND
THIRD FOURTH))
(<= FIRST SECOND))
(:P FIRST SECOND THIRD FOURTH))
(IMPLIES (AND (INTEGER-LISTP (LIST FIRST SECOND
THIRD FOURTH))
(< SECOND FIRST)
(< THIRD SECOND)
(< FOURTH THIRD)
(+ -1 FIRST) SECOND THIRD FOURTH)
(+ -1 SECOND) THIRD FOURTH FIRST)
(+ -1 THIRD) FOURTH FIRST SECOND)
(+ -1 FOURTH) FIRST SECOND THIRD)
(FB (LIST (+ -1 FIRST) SECOND
THIRD FOURTH))
(FB (LIST (+ -1 SECOND) THIRD
FOURTH FIRST))
(FB (LIST (+ -1 THIRD) FQOURTH
FIRST SECOND))
(FB (LIST (+ -1 FOURTH) FIRST
SECOND THIRD))))
(:P FIRST SECOND THIRD FOURTH))
(IMPLIES (AND (INTEGER-LISTP (LIST FIRST SECOND

N AN A A A
' ' 'u U 9

10



THIRD FOURTH))
(< SECOND FIRST)
(< THIRD SECOND)
(<= THIRD FOURTH)
(:P (+ -1 FIRST) SECOND THIRD FOURTH)
(:P (+ -1 SECOND) THIRD FOURTH FIRST)
(:P (+ -1 THIRD) FOURTH FIRST SECOND)
(:P (FB (LIST (+ -1 FIRST) SECOND
THIRD FOURTH))
(FB (LIST (+ -1 SECOND) THIRD
FOURTH FIRST))
(FB (LIST (+ -1 THIRD) FQOURTH
FIRST SECOND))
(TARAI (LIST (+ -1 FOURTH) FIRST
SECOND THIRD))))
(:P FIRST SECOND THIRD FOURTH))
(IMPLIES (AND (INTEGER-LISTP (LIST FIRST SECOND
THIRD FOURTH))
(< SECOND FIRST)
(<= SECOND THIRD)
(:P (+ -1 FIRST) SECOND THIRD FOURTH)
(+ -1 SECOND) THIRD FOURTH FIRST)
(FB (LIST (+ -1 FIRST) SECOND
THIRD FOURTH))
(FB (LIST (+ -1 SECOND) THIRD
FOURTH FIRST))
(TARAI (LIST (+ -1 THIRD) FQURTH
FIRST SECOND))
(TARAI (LIST (+ -1 FOURTH) FIRST
SECOND THIRD))))
(:P FIRST SECOND THIRD FOURTH))).

Knuth’s f matches Fb for 2 <m <5
Knuth’s version of f is straight forward to formalize.

(defun
Fk (1lst)

11



"Knuth’s f.
The input 1lst is intended to be a nonempty
list of integers."
(declare (xargs :guard (and (integer-listp lst)
(consp 1st))))
(if (decreasing-p 1lst)
(first 1lst)
(Gk (first-non-decrease 1lst))))

(defun
Gk (1st)
"Knuth’s g function.
The input 1lst is intended to be a nonempty
list of integers."
(declare (xargs :guard (and (integer-listp 1lst)
(consp 1st))))
(cond ((consp (nthcdr 2 1st)) ;5 (len 1st) > 2
(cond ((equal (first 1lst)
(+ (second 1lst) 1))
(Gk (rest 1st)))
((equal (second 1st)
(+ (third 1st) 1))
(max (third 1st)
(last-el 1st)))
(t (last-el 1st))))
(t (last-el 1st)))) ;3 (len 1st) <= 2

The following theorem is proved by considering all the cases.

(defthm
Fk=Fb-0-5
(implies (and (integer-listp 1lst)
(not (consp (nthcdr 5 1st))))
;; (len 1st) <=5
(equal (Fk 1st) (Fb 1st)))
o)

Direct computation verifies the example showing that Fk and Fb can
return different results for m = 6.

12



(defthm
Fk<>Fb-6-example
(let ((1st °(8 6 4 31 2)))
(and (equal (Fk 1lst) 2)
(equal (Fb 1lst) 3)
(not (equal (Fk 1st)(Fb 1st))))))

The restricted tarai recursion halts

The measure mentioned earlier is used to demonstrate that the recursion ter-
minates. The recursive calls in the definition of the restricted tarai function
all occur within this call to rTarai

(rTarai (rTarai-lst (1lst-rotates-with-minus-1
(- (DEC-FRONT-LEN 1st) 1)
1st))).

In addition to the explicit call to rTarai shown above, several calls to rTarai
are required to compute

(rTarai-1lst (lst-rotates-with-minus-1
(- (DEC-FRONT-LEN 1st) 1)
1st)).

The calls to rTarai required to compute the call to rTarai-1st all have
input lists with smaller measure than the original input list, at least for lists
of lengths 2-7.

(defthm
e0-ord-<-measure-rotates
(implies
(and (integer-listp 1st)
(consp (nthedr 1 1st)) ;3 (len 1st) > 1
(not (consp (nthcdr 7 1st))) ;; (lemn 1lst) <=7
(> (first 1st) (second 1st))
(member-equal rlst (lst-rotates-with-minus-1
(- (DEC-FRONT-LEN 1st) 1)
1st)))
(e0-ord-< (measure rlst)
(measure 1lst)))

13



The input list to the explicit call to rTarai shown above also has smaller
measure than the original input list.

(defthm
e0-ord-<-measure-rTarai-1lst
(implies

(and (integer-listp 1st)

(consp (nthcdr 1 1st)) ;; (len 1st) > 1

(not (consp (nthcdr 7 1st))) ;; (len 1lst) <=7

(> (first 1st) (second 1st)))

(e0-ord-< (measure (rTarai-lst
(1st-rotates-with-minus-1
(- (DEC-FRONT-LEN 1st) 1)
1st)))
(measure 1st)))

4 Current and Future Work

Use ACL2 to prove, in an elegant way, all items 1, 3-6 in section 3, for all
integers m > 2.

A formal proof, using ACL2, of Conjecture 1, is currently under con-
struction, but not yet complete. An informal proof, checked by hand, re-
quired consideration of many cases. To ensure that all possible input lists
of size two or more had been considered, regular expressions from formal
language theory were employed in the following way.

The proof depends not on the values of the individual components of
the input x4,...,x,,, but on the differences between adjacent pairs of input
values. With each input list z1,...,z,, associate another list sq,..., S;,—1,
where s; = ;.1 — z;. The s; are called steps. For example, associated with
the input list 4,2, 3,2, 2, 8 is the step list —2,1,—1,0, 6.

Step lists are encoded as strings of the following symbols with the indi-
cated meaning.

14



symbol meaning
R s; >0 a Rising step
U s; = —1 a Unit step down
D s; = —2 a Double step down
T s; < =3 a Tremendous step down
B(=D+T) | s; <—2 a Bigstep down
A(=U+B) | s; <=1 Any step down
C(=R+A) the Complete set of all possible steps

So the step list —2,1, —1, 0,6 can be encoded by several strings, two of which
are DRURR and BRARR.

Recall that a regular expression is a string of symbols representing a set
of strings. The operations union, concatenation, and Kleene closure, on sets
of strings, are represented, in expressions, respectively, by +, juxtaposition,
and the superscript .

With these definitions, the set of all possible input lists is represented by
the regular expression C'C*. Each case is a set of input lists represented by
a regular expression such as U*DUU*BB* RC*. This case includes all input
lists of length four or more having zero or more Unit steps, followed by a
Double step, followed by one or more Unit steps, followed by one or more
Big steps, followed by a Rising step, followed by zero or more additional
steps.

Our informal proof considers sixteen such cases. Using the algebra of reg-
ular expressions [1], it is possible to show that the sum of the sixteen regular
expressions representing our cases equals C'C*. This process revealed several
flaws in earlier proofs, including three new cases that had been overlooked.
The cases we considered are represented by

CC* = AA"+ A*RC*
uu* +
UU*BA* +
B+
BBA* +
BUU™ +
BUU*BA* +

RC* +

15



UU*RC* +

U*DRC* +
U*DUU*RC™ +
U*DUU*BB*RC* +
U*DUU*BB*UA*RC™ +
U*DBB*RC* +
U*DBB*UA*RC* +
U*TB*RC™ +
U*TB*UA*RC*

5 Conclusion

Our attempt to use ACL2 to meet Knuth’s machine verification challenge
about his generalization of Takeuchi’s tarai function led to a correction of
the original formulation of his theorem. ACL2 has verified the corrected
version of Knuth’s theorem for input lists of length m, when 2 < m < 7.
ACL2 is currently being used to formally check the proof of the theorem for
all m > 2.

References

[1] J. Hein. Discrete Structures, Logic, and Computability. Jones and
Bartlett, 1995, page 581.

[2] D.E. Knuth. Textbook Examples of Recursion. In V. Lifschitz, Editor,
Artificial Intelligence and Mathematical Theory of Computation: Papers
in Honor of John McCarthy, pages 207-230. Academic Press, 1991.

[3] D.E. Knuth. Selected Papers on the Analysis of Algorithms. CSLI Publi-
cations, Distributed by Cambridge University Press, 2000. Chapter 22 is
an update of [2].

[4] D.E. Knuth. Personal communication. 16 February 00.

[5] JS. Moore. “A Mechanical Proof of the Termination of Takeuchi’s Func-
tion”. Information Precessing Letters 9, 4 (1979), 176-181.

16



