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Abstract. In this paper! we present an exercise in compiler source level
verification. Actually, the source and target language and the compiler
have already been used in our article for the ACL2 Case Studies book
[Goe00a)], where we prove that source level correctness is not at all suf-
ficient to prove compiler executables correct. However, the proof is in-
teresting for itself and the fact, that the compiler used in [Goe00a] is
indeed proved correct, is essential for the message of that article. So we
want to give a more detailed documentation of that proof. The main
point is that we use ACL2 to formally and mechanically prove preserva-
tion of partial program correctness, which is a very practically motivated
implementation correctness notion that allows for trusted machine pro-
gram execution even if the source program is not proved to be totally
correct. As far as we know, a mechanical proof of preservation of partial
correctness has not yet been documented, at least not in ACL2.

1 Introduction

Compilers are sequential transformational programs. A compiler takes a (syn-
tactical representation of) a source program m € SL as input and sometimes it
successfully terminates and returns a target program m € TL. If so, we hope
that m has something to do with .

We want m to be a correct implementation of w. But this needs further
explanation and we will go into detail on the precise meaning of correct imple-
mentation later (section 2). A practical compiler, however, will fail in most cases.
Actually, it will fail on nearly every source program (with the precise mathemat-
ical meaning of nearly every). There are usually infinitely many and arbitrarily
large source programs, whereas the compiler will run on a finite machine with
hard resource restrictions.

Thus, with trusted execution on a real machine in mind, we can not hope to
be able to prove that a compiler (executable) will succeed on every proper source
program. But we can prove that if it succeeds and returns a machine program
m, then m is a correct implementation of .

The intuition behind this kind of requirement is crucial to many other trans-
formational programs as well, like proof checkers, model or equivalence checkers,

! The work reported here has been supported by the Deutsche Forschungsgemeinschaft
(DFG) in the Verifiz and VerComp projects on Correct Compilers and Techniques
for Compiler Implementation Verification



batch runs that move our money from one to another account and so on. We
accept failures, but we do not want to see incorrect non-erroneous results [Pol81].

Probably most of the readers will feel quite comfortable if we could give a
guarantee that a program at most returns correct results. This is in fact what
we often depend on. Not more. In our every day experience using programs we
observe them to fail with a segmentation fault or bus error, for instance due to
lack of memory, a programmer’s error, a compiler bug, or a misuse of an opti-
mizing compiler under wrong assumptions. Although very annoying, we all live
with software errors, but we all hope that the application programmers, compiler
constructors, operating system designers and even hardware engineers have been
sensible enough to detect and signal any such runtime error. Undetected errors
might have harmful consequences, in particular if they are intentional, in which
case we would call them a wvirus or Trojan Horse [Goe00a].

As a compiler constructor, we can not relieve the application programmer
entirely from the burden to prove his or her application correct. We can not
guarantee correctness of implementations for incorrect source programs. Actu-
ally we have to construct the compiler without any knowledge about the intended
meaning of source programs. On the other hand, a compiler can not preserve ev-
ery property of the source program. We have to negotiate on a contract between
user, language designer and implementor that involves the concrete description
of the concrete language to be implemented, the concrete description of the tar-
get machine, definitions of both which are sufficiently mathematically exact so
that user and implementor can agree on them without misunderstanding.

Once such a contract has been negotiated, however, all bets are off for prop-
erties of programs not mentioned in that contract.

Thesis: We can trust machine program execution if we can guarantee par-
tial correctness [Hoa69] for the machine program with sufficient math-
ematical rigor. In this context, to be undefined means not to return a
non-erroneous result, i.e., to abort with a runtime error or not to termi-
nate at all.

Our intuitive compiler correctness requirement is to guarantee partial correct-
ness of the generated machine program. But we did not yet say what kind of
correctness property we expect for the source program in order to be able to give
such a guarantee. This question actually opens up a deep and subtle discussion
on source program properties which we want to preserve or need for instance for
optimization (see for instance [MOW99]).

However, as long as we do not really depend on sophisticated optimizations,
or on the guarantee that termination of the source program is preserved, partial
source program correctness is sufficient as well. Hence, our intuitive require-
ment for a correct compiler program will be, that it preserves partial program
correctness [GDG196, MO97, GH98b, Goe00a] (cf. section 2).

This paper is to formally and mechanically prove preservation of partial cor-
rectness for a compiler from a subset SL of ACL2 to the machine code TL of an
abstract machine. We use M. Kaufmann’s and J Moore’s ACL2 logic and theo-
rem prover [KM94] to formalize the SL semantics (section 3) and the abstract
stack machine (section 4). And we mechanically prove a Lisp (SL) compiler
(section 5) to preserve partial correctness (L-simulation [Eng97]) (section 6).



2 Compiler Correctness for Transformational Programs

Before we actually start proving source level correctness for a concrete compiler,
let us first give a general definition of correct implementation and preservation
of partial correctness as we understand these notions for (sequential) transfor-
mational programs, i.e., for programming languages equipped with a semantics
definition that maps programs to input/output relations (or, as in our case,
to partial functions mapping input values to result values). This section is to
define these notions. Correct implementation indeed preserves partial program
correctness (Theorem 3 below).

Informally, we call a (machine) program m a correct implementation of a
(source) program T, if every non-erroneous result of m is also a possible re-
sult of 7. The machine may fail, but it will never return an unexpected non-
erroneous result. We call this property Preservation of partial program correct-
ness [GDGT96, MO96]. In case of non-determinism, it additionally allows the
target program to be more deterministic than the source program.

Consequently, we call a compiler, e.g., our compiler compile-program from
section 5, correct or say that it preserves partial correctness, if it at most gener-
ates correct implementations m of source programs = in the above sense.

Target program execution either returns the correct result, or signals an error,
or it returns no result at all. Preservation of partial correctness is very close to
the every day programmer’s intuition. And it is sufficient to prove full compiler
correctness [Goe00b].

Correct Implementation

Let us give precise definitions. For that, let (SL, Mgy (-)) and (TL, Nt () )
be (transformational) source and target languages, equipped with input domain
& (resp. D), output domain DgY (resp. D), and with semantics
Msy (-):SL — (Dg, — Dgy') and
Nrp(+) : TL — (Dfy — DiY).

Thus, we assume the semantical functionals Msy, and ANty to map programs
to input/output transformations, i.e., to relations between input and output
domains, which in our case will be the s-expressions on source level, and stacks
containing s-expressions on top on target level. We use (A — B) to denote the
domain of binary relations between A and B, and as usual, “;” denotes relational
composition, i.e., if 11 C A x B and ro C B x C then r1; 79 =4 { (a,¢)| b €
B s.t. (a,b) €r1 A (b,c) €12}

Let pi, € D& — D&% and poy € DY — DS54 be the corresponding
data representation relations. In our case both p;, € Dg"L — D%‘L and poyut €
D&yt — D4 map s-expressions (or s-expression tuples) to stacks containing the
s-expressions (or s-expression lists) on top (in reverse order).

Definition 1. (Correct Implementation or L-simulation, cf. Figure 1 below). Let
7 and m denote source and target programs, respectively. Then we say that m
correctly implements (or L-simulates) , if

pin; N1 (m) C MsL (1) ; pout-



That is to say: If the target program m is defined on the representation of a
regular source program input, then the source program = can return a corre-
sponding result as well. In our deterministic ACL2 setting we will prove that 7
returns the corresponding result.

) MsL (m)|lp CQ

st 2 P )| ~ Ql2 C D&Y
Pin O/ / Pout

i D P, Qpd2 C DY

NrL(m)|p, € @,

Fig. 1. Correct implementation or preservation of partial correctness. @ 2 denotes the
2nd projection of Q). This diagram shows the definition of correct implementation, i.e.,
pin; NoL (m) C Mst (7) ; pout- Since MsL(w) |p C @ exactly is partial correctness
of # w.r.t. P and Q, it also shows the idea of the proof of “—>” in theorem 3 below

Compared to specification refinement in VDM [Jon90], or to former work on
compiler verification using ACL2 resp. its predecessor Nqthm ([Moo88, Fla92,
Mo096]), there is a subtle difference to our notion of correct compilation: In
[Mo096] for instance J Moore proves, that every non-erroneous result of (the
Piton machine on) 7 will also be computed by m (on the FM9001), that m is
more defined than 7. This allows for optimizations, but trusted execution of m
requires total correctness of 7. Definedness of the source program is preserved for
the machine executable. But note: How could we ever guarantee, that for instance
a compiler executable on a finite machine is well-defined for any (arbitrarily
large) source program? For source languages with full recursion and/or dynamic
data types we need to relax requirements and to allow the machine to fail.

However, strongly speaking the word “relax” above is misleading. The two
notions are incompatible. Neither of them implies the other. If source and target
program semantics are both defined, however, then there is no difference: both
programs then are proved to return corresponding results.

But if the source program is undefined for a given argument, either due to a
finite error or because it does not terminate, preservation of partial correctness
guarantees, that the machine executable is undefined as well. So the crucial
difference is that we allow for executing target programs with a well-placed trust
in their results, even if the source program is not totally correct. As a drawback,
however, “pure” preservation of partial correctness requires for instance complete
runtime error checking.

Preservation of Partial Correctness

If P C D¥ (the precondition) and @ C D& x Dg¥ (the postcondition) are
predicates, then P and @ induce predicates P,,, (P, for short) and Q. p...



(Q, for short) on the target language input and output domains by

Pp —def Pznl(P) - D'zIZLL
Qp =aet Pipy, 3 @5 Pout © Dy, X D’(i‘ulif'

P, is the image of P under p;,, and with p = (pin, pout) We can say that @, is the
image of Q under p, the set { (iz,02) | (i1,%2) € pinA(i1,01) € QA(01,02) € Pous }-

Definition 2. (Preservation of partial correctness). We say that implementing
m by m preserves partial correctness, if { P} 7 {Q } implies { P, } m{Q,} for
any precondition P and postcondition ).

An implementation step 7 — m preserves partial correctness, if partial correct-
ness of 7 with respect to P and () implies partial correctness of m with respect
to P, and @,. Actually, correct implementation (L-simulation) and preservation
of partial correctness are the same.

Theorem 3. (Preservation of partial correctness is correct implementation). An
implementation step m — m preserves partial correctness, if and only if m is a
correct implementation of ©, i.e.,

VPQ:({P}m{Q} = {F}m{Q,})
<> pin; NoL (m) C Mgy (7); pout

Hence, our notion of correct implementation exactly characterizes preservation
of partial correctness. We do not want to prove this theorem here; a proof can
be found in [Goe00b], and Figure 1 gives an idea at least of “=", which is the
more important direction. Instead we want to make all this concrete in ACL2
now, define source and target language, their operational semantics, a compiler,
and prove that it preserves partial correctness (section 6).

3 The Source Language SL

SL is a small subset of ACL2 Lisp, with a few built in Lisp functions and a
restricted syntax. It is similar to the language L3 [LS87] of first order mutually
recursive functions, but with s-expressions as dynamic (or recursive) data type.
It is exactly the source language as defined in [Goe00a]. A program is a list of
function definitions, followed by a list of input variables and a main program
expression which may use the input variables.

pu=((dy ... dp) (1 ... Tg) €)

d:= (defun f (z1 ... z,) e)

ex=cl|lxz| Qf erexez) | (fer ... en) |
(op e1 ... ey)

Expressions e (forms) are either constants ¢, variables x (symbols not equal
to nil or t), conditional expressions, user defined function or operator calls.
Functions and operators have a fixed number of arguments. Operators (op) are
23 of the Lisp standard operators as listed in the definition of function evlop
below. Operators are restricted to have a fixed number of arguments. So for
instance the well-known factorial program would read as:



(((defun fact (n)

(if (equal n 0) 1 (* n (fact (1- n))))))
(n)
(fact n))

We assume that programs are well-formed, i.e., that variables are bound, func-
tions are defined, and any function or operator call has the correct number of
argument expressions. We prove correct compilation only for well-formed pro-
grams. Otherwise the compiler (Section 5) would generate semantically incorrect
code, for instance for an expression like (cons 3). A definition of well-formedness
is given in the appendix (see section A).

Environments

We use association lists to represent environments. Environment lookup will be
a call to the function assoc. The function bind extends a given environment
and associates every variable in the list vars of variables with the corresponding
value from the list args.

(defun bind (vars args env)
(if (endp vars) env
(cons (cons (car vars) (car args))
(bind (cdr vars) (cdr args) env))))

It subsequently adds pairs (x . v) to the association list env. If the number
of elements in vars and args do not agree, some of the values are ignored or
some of the variables will be bound to nil. Well-formedness of programs and
expressions assures, however, that this will never happen. Variable environemnts
are lists of the form

p=env=(_(zy . v1) (@2 . v2) ... (T2 . v2))

Since assoc will return the left-most (first) pair that it finds for a given variable,
earlier bindings for variables with the same name are hidden. This is the standard
and would also be correct if we had block nesting.

SL Semantics

We define an operational semantics for SL and also for the machine code TL.
It is given by an interpreter function and hence operational (cf. [Sto77], chapter
13, page 338).

The semantics (evaluate) of an SL program is as follows: the top-level ex-
pression is evaluated after binding the input variables to some (given) inputs.
Functions may not terminate, so the semantics of a program in general is a par-
tial mapping from the inputs to the program result. The ACL2 formalization
requires to add a termination argument, a natural number n, to define evaluate
as a total ACL2 function making partiality explicit. The functions either return
a list containing the value, or ’error, if evaluation exhausts n.

The semantics of a form is defined by the mutually recursive interpreter
functions evl and evlist. It depends on a function environment genv mapping



function names to parameter lists and a body expression, a local environment
env mapping free variables to values, and the termination argument n which
decreases if and only if the body of a user defined function is interpreted. The
function evlop evaluates operator calls.

(defun evlop (op args genv env n)
(cond
((equal op ’CAR) (list (CAR (car args))))

&k;qual op ’CONS) (1list (CONS (car args) (cadr args))))))

and so forth for the remaining unary and binary operators CDR, CADR, CADDR, CADAR,
CADDAR, CADDDR, 1+, 1-, LEN, SYMBOLP, CONSP, ATOM, EQUAL, APPEND, MEMBER, ASSOC, +,
-, %, LIST1, and LIST2 with their standard ACL2 semantics.

(mutual-recursion
(defun evl (form genv env n)
(cond
((zp n) ’error)
((equal form ’nil) (list nil))
((equal form ’t) (list t))
((symbolp form) (list (cdr (assoc form env))))
((atom form) (list form))
((equal (car form) ’QUOTE) (list (cadr form)))
((equal (car form) ’IF)
(let ((cond (evl (cadr form) genv env n)))
(if (defined cond)
(if (car cond)
(evl (caddr form) genv env n)
(evl (cadddr form) genv env n))
’error)))
(t (let ((args (evlist (cdr form) genv env n)))
(if (defined args)
(if (operatorp (car form))
(evlop (car form) args genv env n)
(evl (caddr (assoc (car form) genv))
genv
(bind (cadr (assoc (car form) genv)) args env)
(1- n)))

’error)))))

(defun evlist (forms genv env n)
(cond ((zp n) ’error)

((endp forms) nil)

(t (let ((f (evl (car forms) genv env n))
(r (evlist (cdr forms) genv env n)))

(if (and (defined f) (defined r))
(cons (car f) r)
’error)))))



Note, that — for strictness reasons — the functions evlop, evl, and evaluate
either return a (one element) list with their return value(s), or the symbol error,
i.e., the semantics (result value) of a form or program is defined if it is a true
list, and undefined, if it is error.

Also note, that mutually recursive functions have to be declared as such in
ACL2, and our semantics is an ACL2 definition, not an SL program. The func-
tion construct-genv below constructs a true association list from the list defs
of function definitions, mapping the function names to their extended bodies:

(defun construct-genv (defs)
(if (consp defs)
(cons (cons (cadar defs) (cddar defs)) ;; same as (cdar defs)
(construct-genv (cdr defs)))
nil))

(defun evaluate (defs vars main inputs n)
(evl main (construct-genv defs) (bind vars inputs nil) n))

The function evaluate takes an SL program consisting of the declarations defs,
the input variable list vars, the main expression main, and returns the value
of main after binding vars to inputs and constructing (construct-genv) the
function environment (genv).

The semantics functions evl, evlist, and evaluate are strict in error and
partial due to the termination argument n. Of course, they are not partial in the
sense of ACL2.

4 The Target Machine and Code TL

The target machine is an abstract stack machine. Its configuration consists of
a code part and a separate state (or memory) stack, which is a data stack
containing Lisp s-expressions. The code is never changed. The machine is exactly
as defined in [Goe00a]. However, we repeat the definition here for this article to
be self-contained.

The machine has six machine instructions. We can push a constant ¢ onto
the stack (PUSHC ¢), push the stack content (the variable) at a particular stack
position (PUSHV ¢), pop the n stack elements below the top (POP n). There is a
subroutine call (CALL f), that executes the code associated to a subroutine name
within code, and the (OPR op) instruction applies an operator to the topmost (one
or two) stack cell(s). Moreover, we have a structured (IF then else) instruction,
that removes the top of stack and executes the instruction sequence else if the
top has been NIL, then otherwise.

Machine programs (m) are sequences of (mutually recursive) subroutine dec-
larations (d) together with a main instruction sequence which is to be executed
on an initial stack after downloading the list of declarations into code.

mu=(d; ... d, (insy ... insy))
d ::= (defcode f (insy ... insg))

As an example, the stack code for the factorial program above would be the
following stack machine program, which is exactly the program generated by
the compiler (below):



((defcode fac
((PUSHV 0)
(PUSHC 0)
(OPR EQUAL)
(IF ((PUSHC 1))
((PUSHV 0)
(PUSHV 1)
(OPR 1-)
(CALL fac)
(OPR *)))
(POP 1)))
((PUSHV 0) (CALL fac) (POP 1))))

Machine Semantics

The function opr applies operators to the one or two topmost stack cells. For
the stack we use a list that grows to the left, i.e., we use cons to push an item
onto the stack, and nth or nthedr to read the contents or pop elements. The
function download downloads the declarations into code, which is constructing
a true association list from dcls. Again we add a termination argument, a nat-
ural number n, in order to force the machine to stop execution after at most n
subroutine calls.

(defun opr (op code stack)
(cond
((equal op ’CAR) (cons (MCAR (car stack)) (cdr stack)))

((equal op ’CONS)
(cons (MCONS (cadr stack) (car stack)) (cddr stack)))))

and so forth for the remaining operators (cf. section 3). Note, that the machine
operators MCAR, MCONS etc. are proved to be semantically equivalent to the cor-
responding ACL2 operators CAR, CONS etc., but for guard verification reasons
they are explicitly defined as total functions (with guard t) respecting the ACL2
semantics. This is irrelevant for the proof, but necessary to efficiently execute
machine programs, so for instance to bootstrap the compiler on the machine (cf.
[Goe00a] for details, in particular the supporting ACL2 book compiler.1lisp of
the ACL2 distribution).

(mutual-recursion
(defun mstep (form code stack n)
(cond
((or (zp n) (not (true-listp stack))) ’error)
((equal (car form) ’PUSHC) (cons (cadr form) stack))
((equal (car form) ’PUSHV) (cons (nth (cadr form) stack) stack))
((equal (car form) ’CALL)

(msteps (cdr (assoc (cadr form) code)) code stack (1- n)))
((equal (car form) ’0PR) (opr (cadr form) code stack))
((equal (car form) ’IF)

(if (car stack)



(msteps (cadr form) code (cdr stack) n)
(msteps (caddr form) code (cdr stack) n)))
((equal (car form) ’POP)
(cons (car stack) (nthcdr (cadr form) (cdr stack))))))

(defun msteps (seq code stack n)
(cond ((or (zp n) (not (true-listp stack))) ’error)
((endp seq) stack)
(t (msteps (cdr seq) code (mstep (car seq) code stack n) n))))
)

(defun download (dcls)
(if (comsp dcls)
(cons (cons (cadar dcls) (caddar dcls))
(download (cdr dcls)))
nil))

(defun execute (prog stack n)
(let ((code (download (butlst prog))))
(msteps (car (last prog)) code stack n)))

5 Compiling SL to TL

The compiler generates stack machine code according to the stack principle,
i.e., arguments are passed on the stack and a given expression e is compiled to a
sequence of machine instructions pushing the value of e onto the stack. Functions
or operators consume (pop) their arguments and push the result.

T oo __lopofstack top auxiliary cells
Va
Vi1
7777777777777777777777777777777777 stack frame
7777777777777777 v n+l cells
1
VO
In order to execute a function call (f ey ... e;), we compute the argument
forms eg ... e, from left to right and push result by result onto the stack. After

invoking f and using top auxiliary variables, we find the value v; of the formal
parameter x; at position (top +n — i). Using the current formal parameter list
as a compile-time environment, we can find the variable positions and compute
their relative addresses.

Let get-stack-frame be the function which for a given compile time envi-
ronment cenv and a given top computes the stack frame for cenv with respect to
top, that is (get-stack-frame (z¢ ... ,) top s) = (Stop ---Stop+n)- Let rev
compute the reverse of a list, that is (rev (Stop ... Stop+n)) = (Stop+n - - - Stop) -
Then



env = (bind (zg...x,) (rev (get-stack-frame (zq...x,) top s)))
((1'0 . 3top+n) (-'L'n . Stop))

is the environment which binds the values in the stack frame of f to the formal
parameters of f. If we access the stack s at position top + n — 4, that is at the
relative address of x;, we will get the value associated with z; in env. If we push
Stop+n—i onto the stack s, then afterwards the stack contains the semantics of
z; in env on top. In a well-formed program variables are bound and hence any
variable will be such an z;:

Lemmad4. (Variable access). If (xg ... ©,) is a compile time environment,
genv a function environment, top a natural number, and s € SExpr* a stack
of s-expressions, and if env is the above association list representing the local
environment p, then

Stop+n—i - § = (car (evl z; genv env n)) -s

whenever n is sufficiently large (> 1) so that (evl z; genv env n) is defined.

The mechanical proof of this lemma needs some help. We talk about positions
of values in the stack and relate them to positions of variables in the environment
implicitly. We have to prove some lemmas in order to let the prover know about
this correspondence as well. We do not want to go into too much technical detail.

More important is the fact, that we actually proved that the TL machine
instruction (PUSHV top+|z; ... z,|—1) will push the value associated with z;
in (bind (zg... z,) (rev (get-stack-frame (zo...z,) top s))) onto the
stack, which is the semantics of x; in this environment.

Lemma5. (Constants). For any stack s € Sexpr* and any constant ¢ € SExpr
we have (forn >1)

¢+ s = (car (evl c genv env n))-s

This proves that the TL machine instruction (PUSHC c¢) pushes the semantics
of ¢ onto the stack.

Hence, the previous paragraphs characterize the conjecture that we are go-
ing to prove for any expression and its corresponding target code instruction
sequence (compiled with respect to cenv and top): If the program and hence the
expression e is well-formed (with respect to genv and the compile time environ-
ment cenv), if the machine succeeds in executing the code for the expression,
applied to a stack s, and returns a new stack s’, then the semantics of e in genv
and (bind cenv (rev (get-stack-frame cenv top s))) is a defined value v
as well and s’ is v - s. The machine pushes the value of e onto the stack.

We will prove this for the machine and the semantics applied to the same
value of the termination argument n. If n is greater than 0, variable access is
always defined for well-formed expressions, and the semantics of constants is as
well. Forn = 0 both the machine and the semantics are undefined. Therefore the
two previous lemmas prove the induction base case, provided that we compile
variables and constants to the instructions mentioned above.



Compiling expressions and programs

Constants are pushed onto the stack using PUSHC. For a variable we push the
content of the stack at its relative address using PUSHV. For a function or opera-
tor call we subsequently compile the argument forms, thereby incrementing the
number top of used stack cells, and then generate a CALL or OPR. For a condi-
tional, we compile the condition and then use the machine conditional containing
the compiled code for the two alternatives.

For a function definition, we compile the body in a new environment, which
is the formal parameter list, say of length n. The stack-frame will be on top
initially, so top is zero. The final instruction (POP n) removes the arguments
from the stack and leaves the result on top.

The function compile-program has three arguments corresponding to the
three parts of an SL program, defs, vars, and main. It compiles the definitions
in defs and appends the result to the compiled main expression. The final (POP
(len vars)) removes the program inputs; the compiled program either returns
a stack with the result on top, or an error.

The Compiler

(defun operatorp (name)
(member name ’(car cdr cadr caddr cadar caddar cadddr
1- 1+ len symbolp consp atom cons equal
append member assoc + — * listl list2)))

(defun compile-forms (forms env top)
(if (comsp forms)
(append (compile-form (car forms) env top)
(compile-forms (cdr forms) env (1+ top)))
nil))

(defun compile-form (form env top)
(if (equal form ’nil) (listl ’(PUSHC NIL))
(if (equal form ’t) (1listl ’(PUSHC T))
(if (symbolp form)
(listl (1list2 °PUSHV (+ top (1- (len (member form env))))))
(if (atom form) (1listl (list2 ’PUSHC form))
(if (equal (car form) ’QUOTE) (1listl (1list2 ’PUSHC (cadr form)))
(if (equal (car form) ’IF)
(append (compile-form (cadr form) env top)
(list1l (coms ’IF
(list2 (compile-form (caddr form) env top)
(compile-form (cadddr form) env top)))))
(if (operatorp (car form))
(append (compile-forms (cdr form) env top)
(listl (1list2 °0PR (car form))))
(append (compile-forms (cdr form) env top)
(1ist1l (1list2 ’CALL (car form))))))))))))

(defun compile-def (def)



(listl (cons ’defcode
(1ist2 (cadr def)
(append (compile-form (cadddr def) (caddr def) 0)
(listl (list2 ’POP (len (caddr def)))))))))

(defun compile-defs (defs)
(if (consp defs)
(append (compile-def (car defs))
(compile-defs (cdr defs)))
nil))

(defun compile-program (defs vars main)
(append (compile-defs defs)
(listl (append (compile-form main vars 0)
(listl (1ist2 °POP (len vars)))))))

The function operatorp identifies operators. The two mutually recursive func-
tions compile-form and compile-forms compile expressions and expression
lists, respectively. Compile-forms iterates compile-form over forms, thereby
incrementing the number top of used stack cells. The function compile-def
generates a TL subroutine, and compile-defs maps compile-def over defs.
Finally, compile-program compiles the function definitions and appends them
to the compiled main program expression, which additionally pops the input
values off the stack.

6 Compiler Source Level Correctness

The previous three sections have been necessary to make this paper self-contained
and to formalize everything we need in ACL2, i.e., source language, target lan-
guage and compiler. Everything was quite common. Note that we defined se-
mantics to be strict in error. Let us now come back to the main topic of the
paper and make the general setting of section 2 concrete in our situation, and
formal in ACL2. We will prove that compile-program (cf. section 5) is a correct

(evaluate 7 - n)

(s1,---,8n) ESExpr* SExpr > s
Ptos O/ Ptos
(sn;...,sl,...) €Sexpr* Sexpr* > (s,...)

(execute m - n)

Fig. 2. compile-program preserves partial correctness.

compiler from SL to TL. We will prove that it preserves partial correctness with



respect to the SL semantics evaluate (cf. section 3) and to the TL semantics
execute (cf. section 4). The crucial part is to prove correctness of expression
compilation (section 7), but we want to start with the main result.

Theorem 6 below states that the diagram in (Figure 2) commutes in the sense
of L-simulation, given that the well-formed source program 7 is compiled to the
target program m.

The data representation relation ps,s maps s-expressions (or s-expression
lists) to target machine stacks which contain the s-expression (list) on top (in
reverse order). pys is a true relation, of course, but evaluate and execute are
partial functions in our case.

Theorem 6.

(defthm compiler-correctness-for-programs
(let ((new-stack (execute
(compile-program defs vars main)
(append (rev inputs) old-stack) n))
(value (car (evaluate defs vars main inputs n))))
(implies
(and (wellformed-program defs vars main)
(defined new-stack)
(true-listp inputs)
(equal (len vars) (len inputs)))
(equal new-stack (cons value old-stack)))))

The correctness theorem for programs is, after some technical lemmas, a simple
consequence of a similar theorem for correct expression compilation, applied to
the main expression of the program. If the source program is well-formed, and
if the target program (applied to an initial stack containing the correct number
of inputs in reverse order on top) returns a non-erroneous result on top (is
defined), then this result is equal to the semantics (evaluate) of the program
applied to the inputs.

Note that this theorem is stronger and hence implies that compile-program
preserves partial program correctness. It additionally proves, that old-stack
remains unchanged, which is of course a necessary invariant. The proof is me-
chanically checked and part of the ACL2 distribution [Goe00a]. The crucial part
of the proof, however, is to prove correctness of expression compilation.

7 Correctness Proof for Expression Compilation

The correctness proof for the translation from SL to TL crucially depends on
correct translation of expressions. The correctness theorem for programs is a
simple consequence, because the semantics of an SL program is defined by its
main expression, and the semantics of a TL program executes its main instruc-
tion sequence, which is the compiled code for the main expression in a compiled
program.

7.1 Compiling Correctness for Expressions

We will prove two theorems simultaneously by induction. The first is the cor-
rectness theorem for forms (or expressions), and the second is the theorem for



form lists. Both of them are very similar. Informally, for well-formed expressions
in well-formed programs we prove:

If the machine, executed on a compiled form (list), is defined on a stack for an
n, then the following three conjectures hold:

1. The semantics of the form (list) — in the given function environment and
with the free variables bound to their values in the current stack-frame — is
defined for the same n,

2. the machine returns a new stack with the value(s) of the form(s) on top (in
reverse order), and

3. the stack just below the result value(s) remaines unchanged.

or formally:

Theorem 7. (Transformation correctness for expressions).

(defthm compiler-correctness-form-forms
(let ((value
(evl form
(construct-genv dcls)
(bind cenv (rev (get-stack-frame cenv top stack)) env)
n))
(new-stack (msteps (compile-form form cenv top)
(download (compile-defs dcls)) stack n)))
(implies
(and (natp top)
(wellformed-defs dcls (construct-genv dcls))
(wellformed-form form (construct-genv dcls) cenv)
(defined new-stack))
(and (defined value)
(equal new-stack (cons (car value) stack))))))

That is to say: If top is a natural number, if the function declarations of the pro-
gram and the form are well-formed, and if the machine, applied to the compiled
expression after downloading the compiled function definitions of the program
is defined on a stack and for n, then the following two conjectures hold: (1)
The source language semantics of form in the appropriate function environment
and with the actual compile time environment bound to the reverse of the stack-
frame with respect to cenv and top is defined for the same n, and (2) the machine
returns a new stack which is as the old stack, but with the source code semantics
of form on top.

The theorem for form lists reads similarly, however we assume the machine
to be defined on the compiled code for the entire list of forms and prove (1) that
evlist is defined on the list of forms, and (2) that the resulting machine stack
will have the entire list of values on top in reverse order.

The Proof

The proof is actually a combined computational and structural induction on the
termination argument n and the structural depth of the expression. In ACL2



terminology this is a well-founded induction on the ordinals. However, since n
is a natural number, we stay underneath w*, and thus we can simply say that
it is an induction on the (well-founded) lexicographical ordering of pairs (n .
k), where n is the termination argument and k is the structural depth. That is
to say: We prove the theorem for n = 0, where everything is undefined, and for
n > 0, we use structural induction in any but the function-call case, where we
additionally need the induction hypothesis with n — 1 (computational induction)
for the function body.

The induction is suggested by a large admissible ACL2 function which ex-
plicitly lists the entire set of induction hypothesises that we need for the proof
to succeed. For instance for form lists we have to have the theorem for forms to
hold for the first element of the list (the car), and for the rest list the theorem
for form lists has to hold for top incremented by 1 and for the stack being the
result of executing the machine on the code of the first element of the list.

The boolean flag distinguishes whether we want to have the induction hy-
pothesis for the form theorem (flag = t) or for form lists (flag = nil). Thisis
technical, although necessary because we prove the two theorems simultaneously.

Definition 8. (Combined computational and structural induction).

(defun compiler-induction (flag x cenv env top dcls stack n)
(declare (xargs :measure (cons (1+ (acl2-count n)) (acl2-count x))))
(if (or (zp n) (atom x)) (list x cenv env top dcls stack n)

(if flag
(if (base-form x) (list x cenv env top dcls stack n)
(if (equal (car x) ’if)
(list (compiler-induction
t (cadr x) cenv env top dcls stack n)
(compiler-induction
t (caddr x) cenv env top dcls
(cdr (msteps (compile-form (cadr x) cenv top)
(download (compile-defs dcls))

stack n))
n)
(compiler-induction
t

(cadddr x) cenv env top dcls
(cdr (msteps (compile-form (cadr x) cenv top)
(download (compile-defs dcls))
stack n))
n))
(if (operatorp (car x))
(compiler-induction
nil (cdr x) cenv env top dcls stack n)
(list
(compiler-induction nil
(cdr x) cenv env top dcls stack n)
(compiler-induction
t
(get-body (car x) (construct-genv dcls))



(get-vars (car x) (construct-genv dcls))
(bind cenv (rev (get-stack-frame cenv top stack)) env)
0
dcls
(msteps (compile-forms (cdr x) cenv top)
(download (compile-defs dcls))
stack n)
(1- n))))))
(list (compiler-induction t (car x) cenv env top dcls stack n)
(compiler-induction
nil (cdr x) cenv env (1+ top) dcls
(msteps (compile-form (car x) cenv top)
(download (compile-defs dcls))
stack n)

n)))))

The argument x stands for the form (flag = t) or form list (flag = nil),
cenv and top determine the compile time environment, dcls contains the source
program function declarations, and env and stack come from source and target
program semantics, respectively.

As mentioned before, for function calls we need the induction hypothesises
for the list of argument expressions (flag = nil, structural induction), and for
the function body (flag = t) we assume it forn - 1 (computational induction),
which at the end makes the function compiler-induction admissible and hence
the induction well-founded.

The induction base case

The induction base case for constants and variable access is essentially the for-
malization of Lemma 4 and Lemma 5 from section 5. Actually, for the termina-
tion argument n = 0 the theorem is trivial, because the premise does not hold.
The machine is not defined for n = 0.

The induction step

For the induction step we need a lot of lemmas. Many of them are very tech-
nical. So for instance we have to prove that well-formedness of a form implies
well-formedness of the sub-forms, which again requires to prove that syntactical
correctness of a form implies syntactical correctness of the sub-forms.

But some of the lemmas are crucial, and we want to show a selection. First,
we need, as usual, that the stepwise execution of machine instructions distributes
over append:

Lemma9. (Stepwise execution distributes over instruction sequences).

(defthm msteps-distributes-over-append
(equal (msteps (append ml m2) code stack n)
(msteps m2 code (msteps ml code stack n) n)))

Then, we need to let the prover know that machine execution is strict:



Lemma 10. (The machine is strict in error).

(defthm machine-strictness
(implies (defined (msteps m2 code (msteps ml code stack n) n))
(defined (msteps ml code stack n))))

For the induction step for conditionals we need for instance that the machine
code generated for the conditional works as expected. Recall that for a condi-
tional expression the compiler first generates the code for the condition and then
a machine conditional containing the code for the two alternatives. The follow-
ing lemma says that this code actually executes the code for the first alternative
after popping the value of the condition off the stack, if this value was not nil,
and the second alternative otherwise.

Lemma 11. (The machine conditional works correctly).

(defthm code-for-if-works-correctly
(implies
(defined
(msteps
(append ml (cons (list ’if m2 m3) m)) code stack n))
(equal
(msteps (cons (list ’if m2 m3) m) code (msteps ml code stack n) n)
(if (car (msteps ml code stack n))
(msteps (append m2 m) code (cdr (msteps ml code stack n)) n)
(msteps (append m3 m) code (cdr (msteps ml code stack n)) n)))))

It is interesting, that we actually have to prove the definedness of the source
code semantics and the correctness of the result of machine execution simulta-
neously as well. The reason is the conditional. The definedness of the conditional
inductively depends on the value of the condition. It needs not be strict in both
alternatives, and will not be for instance in recursive definitions. The conditional
has actually been the challenging case to find this proof, not the function applica-
tion as the reader might have expected. Function application is just captured by
computational induction, whereas the conditional crucially influences the proof
structure in the large.

8 Conclusions and Further Work

In this article we use ACL2 to formally and mechanically prove a compiler from
a subset SL of ACL2 to abstract stack machine code TL correct in the sense of
preservation of partial correctness. The proof is an interesting exercise in proving
compiler source level correctness, and it accomplishes the message of [Goe00a],
where we prove that source level compiler correctness is at the end not sufficient
to guarantee the correctness of compiler executables, even after any additional
precaution on source level. The proof is mechanically checked in ACL2, and it
is part of the new ACL2 distribution.

In the context of the Verifiz project on correct compilers [GDG196, GHI8b,
GZ99], this proof has been generalized to a mechanical PVS [ORS92] proof
of preservation of partial correctness for a larger imperative source language



[DGO0], using inductive relations to formalize partial functions. It is interesting,
that — despite of some more or less technical changes (some of them are due to
the PVS logic) and local adjustments — we can essentially reuse the proof idea
and proof structure of the ACL2 proof presented here. In our opinion, this is a
good news with respect to proof engineering.

We have to admit that our stack machine is quite abstract and far away from
a real processor. In that sense, our paper only presents an exercise. Further work
has to be done in order to mechanically verify subsequent compilation phases, so
for instance (b) to a stack machine with a linear heap store (data refinement),
(c) to linear assembly code, and (d) to real binary machine code of a concrete
processor [GHI8b].

However, the correctness of step (b) has already been proved manually, and
the mechanical proof is nearly completed [Goe0Ob]. And step (c¢) and (d) are
implemented [GH98b, GH98c, GH98a] and designed to preserve partial correct-
ness. Thus, in addition to being a nice exercise, our proof can be seen as part of
a medium to large scale proof effort to provide an initial fully verified compiler
executable that preserves partial source program correctness [GHI8b].
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A Well-formed Source Programs

We give the formal ACL2 definition of well-formedness for SL source programs.
The syntax — we refer to functions formp, form-1listp, and also definitionp,
definition-listp, and programp below — is defined by a set of (mutually re-
cursive) predicates on s-expressions and not shown here.

There are typical context conditions such as correct parameter passing that
have to be guaranteed for source programs. Otherwise, the compiler will generate
semantically incorrect code, for instance for the operator call (cons 3), the
code of which would consume an important previous stack entry. The language
is not strongly typed, so it is just the number of parameters of operator calls
and function calls (with respect to their formal parameter list) which have to
conform.

Note that the definitions below are not part of the compiler. We do not
check well-formedness, but use it as a pre-condition to the compiler correctness
conjectures.

A.1 Well-formed forms, definitions, and programs

The definition of well-formed expressions (wellformed-form) refers to a global
environment (genv), which is an association list mapping the defined function
names to their formal parameter lists and bodies. The second argument (env) is
a compile time environment, a list of bound variables (the list of input variables
for the main form and the current formal parameter list for function bodies). A
list of forms is well-formed, if every form is (wellformed-forms). The following
two functions are mutually recursive.

(mutual-recursion
(defun wellformed-form (form genv env)
(and
(formp form)
(if (equal form ’nil) t
(if (equal form ’t) t
(if (symbolp form) (member form env)
(if (atom form) t
(if (equal (car form) ’QUOTE) t
(if (equal (car form) ’IF)
(wellformed-forms (cdr form) genv env)
(if (operatorp (car form))
(or
(and
(member (car form)
>(CAR CDR CADR CADDR CADAR CADDAR CADDDR 1+ 1-
LEN SYMBOLP CONSP ATOM LIST1))
(consp (cdr form)) (wellformed-form (cadr form) genv env)
(null (cddr form)))
(and (member (car form) °’(CONS EQUAL APPEND MEMBER ASSOC
+ - * LIST2))
(consp (cdr form)) (wellformed-form (cadr form) genv env)
(consp (cddr form)) (wellformed-form (caddr form) genv env)



(null (cdddr form))))
(and (assoc (car form) genv)
(equal (len (cdr form))
(len (cadr (assoc (car form) genv))))
(wellformed-forms (cdr form) genv env)))))))))))

(defun wellformed-forms (flist genv env)
(and (form-listp flist) ;; should not be necessary
(if (comsp flist)
(and (wellformed-form (car flist) genv env)
(wellformed-forms (cdr flist) genv env))
(null flist))))
)

A definition is well-formed, if it is syntactically correct, its body is well-formed
w.r.t. the global environment and the formal parameter list. A list of definitions
is well-formed, if every definition is:

(defun wellformed-def (def genv)
(and (definitionp def)
(wellformed-form (cadddr def) genv (caddr def))))

(defun wellformed-defs (defs genv)
(and (definition-listp defs)
(if (consp defs)
(and (wellformed-def (car defs) genv)
(wellformed-defs (cdr defs) genv))
(null defs))))

A program is well-formed, if it is syntactically correct, if the declaration part is
well-formed w.r.t genv and if the main form is well-formed w.r.t. genv and vars.

(defun wellformed-program (defs vars main)
(and (definition-listp defs)
(wellformed-defs defs (construct-genv defs))
(symbol-listp vars)
(wellformed-form main (construct-genv defs) vars)))



