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Abstract

We present a compositional proof of correctness for a binary decision diagram (BDD) man-
ager used in the context of a propositional satisfiability checker implemented using Single-
Threaded Objects (stobjs) in ACL2. The use of stobjs affords the definition of an efficient
BDD manager which ensures unique construction, allows constant-time comparison, and caches
previously computed results. The use of ACL2 means we can prove that the BDD manager im-
plements the prescribed task of building a normal-form representation of a boolean formula. We
divide the proof requirements into (1) showing that a simpler set of BDD functions is correct,
and (2) showing that the stobj-based BDD functions return values consistent with these simpler
functions. We conclude the paper with a discussion of future extensions and refinements to the
BDD manager presented.

1 Introduction

Reduced ordered binary decision diagrams (BDDs) were originally developed as a canonical form
for representing boolean functions[3]. Their range of application has grown beyond this largely due
to the elegant procedures which exist for performing various operations directly on their structure
while maintaining their canonical form. BDDs have been used in equivalence checkers, symbolic
model checkers, optimizing compilers, mechanical theorem provers, and other programs which need
to manipulate boolean logic terms. In each of these contexts, a program uses BDD nodes allocated
and maintained by a BDD manager and the correctness of the program invariably depends on the
correctness of the BDD manager.

We present a proof for a straightforward implementation of a BDD manager[1] in ACL2 using
Single Threaded Objects (stobjs). Recently, an implementation of BDDs was defined and verified
in the theorem prover Coq [13]. The work presented here is similar, but with the use of stobjs and
some additional optimizations in ACL2, our implementation is significantly more efficient. Some
features of existing BDD managers (most notably, dynamic variable reordering) are absent in our
implementation. Yet, we feel the structure of the work presented lends itself to extension and
provides a significant step in the direction of formally verifying an optimized, full-featured BDD
manager in ACL2. We also note that we prove nothing about the optimality or performance of
BDDs in this paper. Indeed, it is well-documented[4] that even in the best-case, BDDs require an
exponential (in the number of boolean variables) number of nodes to represent certain functions
(e.g. multiplication).

Section 2 presents the verification of a simplified version of the BDD operations. Section 3
then defines the stobj-based BDD functions and shows that these functions return values consistent
with their simplified counterparts. We conclude the paper in Section 4 with an outline of possible



extensions to the work presented here. We also present in Section 4 some experiments comparing the
execution times of an optimized version of the BDD manager we analyze in this paper, a translation
of this optimized BDD manager to C, and the popular CU Decision Diagram (CUDD) package[12].
We have omitted, for the sake of presentation, all :hints, :rule-classes, :guard, :stobjs, and :measure
declarations. The interested reader should consult the books accompanying this paper (available
from the author if necessary) for these details.

1.1 Single-Threaded Objects

In ACL2 versions 2.4 and later, the user can declare certain objects to be single-threaded[10]. This
declaration allows the use of destructive operations while maintaining the applicative semantics of
ACL2. When an object is declared to be single-threaded, ACL2 places certain syntactic constraints
on the use of the object which ensure that only one copy of the object (and only one pointer or
reference to the object) exists. With this restriction, destructive updates to the stobj are consistent
with the applicative semantics of ACL2 since the old value of the stobj cannot affect subsequent
evaluation. A stobj is declared with a defstobj form which defines the name of the stobj, the fields
of the stobj, the types of the fields, and their initial values. Of particular significance are fields which
are declared as array types. ACL2 has some built-in support for applicative arrays using arefi,
aref2, asetl, aset2 but these operations have to maintain an association list with every update
since there is no guarantee of single-threadedness. Array fields in stobjs are essentially Common
Lisp arrays and thus, in contexts where the single-threaded restrictions are not a significant burden,
stobj arrays are preferable to applicative arrays. In the logic, operations on stobjs are translated to
corresponding operations on lists defined with nth and update-nth. We will use stobjs to maintain
hash-tables for nodes in BDDs. This allows us to create BDD nodes uniquely and annotate the
nodes with tags which afford a fast constant-time check of BDD equivalence. Stobjs are also used
to cache the results of previously-computed function evaluations to avoid their recomputation.

2 Simplified BDD Operations

BDDs are a data structure used to represent propositional terms. An implementation of BDDs is
sound if the operations performed on BDDs are consistent with the semantics of the corresponding
operations on propositional terms. Translating this notion of correctness to an efficient implemen-
tation of BDDs is complicated by the likelihood that the efficient implementation only behaves
correctly under certain “well-formed” conditions on the inputs. While it is certainly possible to
define such conditions, and prove that these conditions are preserved in the implementation, it is
difficult to ensure that these conditions are complete. In light of this, we define a simple function
which uses the BDD manager for a particular application (in our case, propositional satisfiability
checking) which has an obvious and complete statement of correctness we can then verify. It is
possible that some future application of the BDD manager may require additional theorems to be
proven. Nonetheless, we believe the theorems proven in this work provide a clear basis for analyzing
future applications.

We begin by defining the syntax and semantics of propositional terms. Propositional terms (or
simply terms) are built from the propositional constants T and nil, propositional variables 1, 2, ...
(represented by their natural number subscript), and “decision nodes”, built with the ternary!
constructor function dn, of the form (dn f g h) where f, g, h are terms. The functions test, then,
and else are the corresponding access functions of a decision node (dn test then else). The
semantics of a propositional term is a function mapping boolean valuations of the propositional

I Technically, dn takes four parameters where the fourth parameter is a special tag value used for efficient comparison
in the stobj-based implementation. The semantics of decision nodes are independent of this tag field and for the
moment we ignore this extra parameter to dn



(defun pnatp (x) ;; recognizer for propositional variables
(and (integerp x) (> x 0)))

(defun prop-look (v a)
(cond ((endp a) nil)
((equal v (caar a))
(if (cdar a) T nil))
(t (prop-look v (cdr a)))))

(defun prop-if (f g h) ;; we need an ‘‘if’’ we can control
(if £ g h))

(defun prop-ev (f a)
(cond ((pnatp f) (prop-look f a))
((atom f) (if £ T nil))
(t (prop-if (prop-ev (test f) a)
(prop-ev (then f) a)
(prop-ev (else f) a)))))

;33 define function ((sat-check f) -> bool) and
;353 ((sat-witness f) -> a) such that the following can be shown:

(defthm sat-check-is-correct
(if (sat-check f)
(prop-ev f (sat-witness f))
(not (prop-ev f a))))

Figure 1: Statement of Correctness for sat-checking

variables to either T or nil. This mapping is defined by the function prop-ev in Figure 1. A term f
is satisfiable iff there exists a valuation a of the propositional variables such that (prop-ev f a) =
T. A satisfiability checker is a predicate which takes a term and returns T iff the term is satisfiable.
The correctness of a satisfiability checker sat-check is specified in ACL2 by the existence of a
function sat-witness such that the theorem sat-check-is-correct in Figure 1 can be proven.
Our goal is to use BDDs to define a simple satisfiability checker and then prove the proper variant
of sat-check-is-correct.

Reduced ordered binary decision diagrams (BDDs) are propositional terms which satisfy certain
restrictive criteria. These criteria are enumerated below and defined in ACL2 by the predicate robdd
in Figure 2.

1. Every BDD is either a propositional constant or a decision node.

2. For every (dn f g h), f is a natural number (i.e. a propositional variable) and g and h are
BDDs.

3. Forevery (dn  (dn y f ¢) h) and (dn z f (dn y g h)), the propositional variables are
ordered, e.g. x > y.

4. For every (dn f g h), it is the case that g # h.

As we mentioned before, BDDs are canonical representations of propositional terms. Specifi-
cally, two BDDs are structurally equivalent iff they are semantically equivalent. The relation bdd=



(defun bdd= (f g)
(cond ((and (atom f) (atom g)) (iff f g))
((or (atom f) (atom g)) nil)
(t (and (equal (test f) (test g))
(bdd= (then f) (then g))
(bdd= (else f) (else g))))))

(defcong bdd= equal (prop-ev f a) 1)

(defun bdd-test> (f g)
(or (atom g) (> (test f) (test g))))

(defun robdd (f)
(or (booleanp f)
(and (consp f)

(bdd-test> £ (then f)) 553 ; ORDERED

(bdd-test> f (else f))

(not (bdd= (then f) (else f))) ;;;; REDUCED

(pnatp (test f)) ;;3; test is propositional variable

(robdd (then f))
(robdd (else £)))))

(defthm robdd-bdd=-saturates-prop-ev-=
;; this theorem (combined with the above congruence) ensures
;3 that BDDs are a canonical form for propositional terms
(implies (and (robdd f) (robdd g) (not (bdd= f g)))
(not (equal (prop-ev f (robdd-witness f g))
(prop-ev g (robdd-witness f g))))))

Figure 2: Definition and properties of BDDs

given in Figure 2 defines structural equivalence for BDDs. Two BDDs f and g are semantically
equivalent iff for all valuations a, (prop-ev f a) = (prop-ev g a). The proof that structural
implies semantic is straightforward and leads to the congruence in Figure 2. The other direction
is shown by defining a witness function robdd-witness which takes two structurally inequivalent
BDDs and builds a valuation on which they differ under prop-ev. Our robdd-witness constructs
this valuation by consing up the values of the propositional variables encountered along the path
of inequivalent nodes in both BDDs eventually reaching T and nil. After proving a few simple
theorems relating variables and BDDs which are independent, ACL2 was able to find a proof to the
theorem robdd-bdd=-saturates-prop-ev-= which completes the canonical-form argument.

We now consider the simple versions of the BDD operations; these simple versions are defined in
Figure 3. The function var-spec takes a propositional var n and returns a node which splits on n.
The predicate eql-spec takes two BDDs and returns T iff they are structurally (and semantically)
equivalent. The function ite-spec takes three BDDs and constructs a BDD for the generic if-then-
else operation. We use “generic” here to mean that any of the sixteen binary boolean operations
can be translated to an appropriate call of ite-spec. For instance, (bdd-and f g) = (ite-spec
f g nil), (bdd-or £ g) = (ite-spec f T g), and (bdd-not f) = (ite-spec f nil T). The
evaluation of (ite-spec f g h) first tests if f is an atom and if so returns either g or h depending
on whether f is non-nil. Otherwise, the test variables (the test of atoms is defined to be 0) of £, g,
and h are compared and the maximum is returned by top-var. ite-spec is then called recursively



(defun var-spec (n) (dn n T nil))
(defun eql-spec (f g) (bdd= f g))
(defun ite-spec (f g h)

(if (atom f) (if f g h)
(let ((v (top-var f g h)))

(let ((then (ite-spec (v-then f v)
(v-then g v)

(v-then h v)))
(else (ite-spec (v-else f v)
(v-else g v)

(v-else h v))))

(if (bdd= then else) then
(dn v then else))))))

(defthm ite-spec-is-correct
(implies (and (robdd f) (robdd g) (robdd h))
(and (robdd (ite-spec f g h))
(equal (prop-ev (ite-spec f g h) a)
(prop-if (prop-ev f a)
(prop-ev g a)
(prop-ev h a))))))

Figure 3: Definition of spec operations and relevant properties

on the then and else branches of £, g, and h relative to the variable v — (v-then f v) is (then f)
if v. = (test f) and f otherwise. The results of the recursive calls are then combined into a new
decision node unless they are bdd=.

The statement of correctness for ite-spec is the theorem ite-spec-is-correct in Figure 3.
The fact that ite-spec returns robdds is easily shown because (1) top-var is strictly decreasing in
recursive calls, and (2) the then and else branches are guaranteed not to be bdd=. The proof that
prop-ev of (ite-spec f g h) reduces to prop-if of f, g, h arises from a case split on (prop-look
(top-var f g h) a) and the fact that bdd= is a congruence of prop-ev. Overall, once it was deter-
mined what properties were needed, it was a straightforward ACL2 exercise to prove the necessary
theorems about the simplified BDD operations. Proving these theorems about the stobj-based im-
plementation directly would have required a substantially greater amount of effort. We complete
the presentation of the simplified operations with the statement of some reductions of ite-spec in
Figure 4 which were used to optimize the evaluation of the implementation function ite-bdd defined
in the next section.

3 Stobj-based BDD Implementation

The BDD manager implementation we present follows the procedures outlined in [1]. The following
four functions are “exported” from the BDD manager book:

1. ((var-bdd n bdd-mgr) -> (bdd bdd-mgr)) returns a single bdd node, which splits on the
variable n, and the updated bdd-mgr.



(defthm ite-spec-reduction-1
(implies (robdd f)
(bdd= (ite-spec f T nil) £)))

(defthm ite-spec-reduction-2
(implies (and (robdd g) (robdd h) (bdd= g h))
(bdd= (ite-spec f g h) g))

(defthm ite-spec-reduction-3
(implies (and (robdd f) (robdd g) (robdd h) (bdd= f g))
(bdd= (ite-spec f g h)
(ite-spec £ T h))))

(defthm ite-spec-reduction-4
(implies (and (robdd f) (robdd h) (bdd= f h))
(bdd= (ite-spec f g h)
(ite-spec f g nil))))

Figure 4: Theorems about ite-spec optimizations

2. ((eql-bdd f g) -> boolean) takes two bdds £, g and returns T iff the bdds £ and g are
semantically equivalent.

3. ((ite-bdd f g h bdd-mgr) -> (bdd bdd-mgr)) performs the ite operation on the bdds f,
g, and h and returns the resulting bdd along-with the updated bdd-mgr.

4. ((free-bdd keep bdd-mgr) -> (1lst bdd-mgr)) clears the bdd-mgr tables and then rebuilds
the bdds in the list keep. free-bdd returns the list of rebuilt bdds and the updated bdd-mgr.
This function supports both the initialization of the BDD manager, and the clearing of refer-
ences to BDD nodes so the space for these nodes can be garbage collected by the Lisp runtime
environment.

The bdd-mgr parameter in these functions is the single-threaded object defined by the defstobj
form in Figure 5. The bdd-mgr has three fields: uniq-tbl, rslt-tbl, and next-id. The next-id
field stores a counter which is incremented every time a new BDD node is allocated and is used to
provide each new BDD node with a unique tag. The field uniq-tbl is a hash table used to uniquely
construct BDD nodes. Every entry, with address I, in uniq-tbl is a list of BDD nodes which hash
to the address I. The field rs1t-tbl is used to cache previous results of if-then-else constructions.
Every entry, with address I, in rs1t-tbl is either nil or a list of four values (f g h rslt) where
(f g h) hashes to address I and (bdd= rslt (ite-spec f g h)).

The functions in Figure 6 define the optimized stobj-based versions of the corresponding sim-
plified functions in Figure 3. The function eql-bdd reduces to iff when comparing atoms and
tag-equality when comparing conses. As we mentioned before, tags are assigned uniquely to every
BDD node which is constructed. This is maintained with the function get-unique which takes the
values test, then, and else and looks them up in the uniq-tbl to determine if a previously-built
BDD node matches these values. In a sense, get-unique is the stobj-based version of dn. Assuming
constant-time hashing, get-unique operates in constant-time. The correspondence of var-bdd with
var-spec should now be apparent and so we turn our attention to ite-bdd. In the definition of
ite-bdd, we use a macro seq to define a sequence of bindings where the bindings may involve one
or possibly more than one variable. (seq (bg b1 ... by) wvalue) expands to a nest of alternating



(defstobj bdd-mgr
(unig-tbl :type (array (satisfies bdd-tr-listp) (4096))
:initially nil)
(rslt-tbl :type (array (satisfies ite-resultp?) (4096))
:initially nil)
(next-id :type (integer 1 *)
:initially 1))

;; the array sizes 4096 above are arbitrary and could be replaced
;; with any power-of-2 (with a recertification of the bdd books)

Figure 5: BDD Manager single threaded object

lets and mv-lets when the first element in each b; is a symbol or list of symbols, respectively. For
instance:

(seq (((u v) (mv 1 2))
(x (+ 34)
((y 2) (mv 5 6)))
+xy2)
---— macro-expands to ----—
(mv-let (u v) (mv 1 2)
(let ((x (+ 3 4)))
(mv-let (y z) (mv 5 6)
+xy2)))

seq is particularly useful in writing functions which update stobjs since many functions which use
stobjs will return multiple-values and consist of sequences of updates to the stobjs.

The function ite-bdd is structurally similar to the function ite-spec. ite-bdd first determines
if £ is an atom and returns g or h appropriately if this is the case. Note that ACL2 will require
ite-bdd to have a consistent signature, so even in the cases when we do not update bdd-mgr, we still
must return it. The next four tests in ite-bdd are optimizations corresponding to the reductions
of ite-spec presented in Figure 4. If none of these cases apply, then ite-bdd will look for a match
in the result cache. If a matching entry is found, then the result field of this entry is returned. If
an entry is not found, then we perform recursive calls of ite-bdd (similar to the recursive calls in
ite-spec), we use get-unique to construct the decision node uniquely, add the result of this call
to the result cache, and then finally return the result.

The necessary correctness lemmas for eql-bdd and ite-bdd are defined in Figure 8. It is impor-
tant to note that these theorems are about functions defined on the stobj bdd-mgr but the theorems
themselves make no reference to the bdd-mgr. Indeed, one of the main goals in adding stobjs to
ACL2[10] was that the logic should remain unaffected. This is the case since the declaration and use
of stobjs enforces sufficient restrictions to ensure a correspondence between the stobj-based functions
and their corresponding applicative semantics. This feature is important because it allows the ACL2
user to define elegant functions for definitions used in proofs and efficient functions for definitions
which are executed. We use the variable name bmr in place of bdd-mgr in theorems. This name
switch is simply for presentation clarity, since no special distinction is made for the name bdd-mgr
in the logic.

The predicate bdd-mgr-inv defines the notion of a “well-formed” bdd-mgr and should be an
invariant which is preserved by every operation which updates the bdd-mgr stobj. bdd-mgr-inv is
defined in Figure 7. We note that while bdd-mgr-inv is an invariant defining the properties of a
well-formed bdd-mgr in the logic, it could not be called on the stobj bdd-mgr itself. We chose this



(defun eql-bdd (x y)
(if (atom x) (and (atom y) (iff x y))
(and (consp y) (eql (tag x) (tag y)))))

(defun var-bdd (n bdd-mgr) (get-unique n T nil bdd-mgr))

(defun ite-bdd (f g h bdd-mgr)
(cond ((atom f) (if f (mv g bdd-mgr) (mv h bdd-mgr)))

((and (eq g T) (not h)) (mv £ bdd-mgr)) ;; reduction-1
((eql-bdd g h) (mv g bdd-mgr)) ;; reduction-2
((eql-bdd f g) (ite-bdd £ T h bdd-mgr)) ;; reduction-3
((eql-bdd f h) (ite-bdd f g nil bdd-mgr)) ;; reduction-4

(t (let ((entry (find-result f g h bdd-mgr)))
(if entry (mv (ite-rslt entry) bdd-mgr)
(seq ((v (top-var f g h))
((then bdd-mgr) (ite-bdd (v-then f v)
(v-then g v)
(v-then h v)
bdd-mgr))
((else bdd-mgr) (ite-bdd (v-else f v)
(v-else g v)
(v-else h v)
bdd-mgr))
((rslt bdd-mgr)
(if (eql-bdd then else) (mv then bdd-mgr)
(get-unique v then else bdd-mgr)))
(bdd-mgr (set-result f g h rslt bdd-mgr)))
(mv rslt bdd-mgr)))))))

Figure 6: Definition of bdd operations



(defun uniq-tbl-inv (bmr)
(let ((unig-1st (flatten (uniq-tbl bmr)))

(rslt-1st (rslt-tbl bmr)))

(and (integerp (next-tag bmr))
(consesp unig-1lst)
(codes-match (unig-tbl bmr) 0)
(no-dup-tags uniqg-1st)
(no-dup-nodes uniq-1lst)
(contained uniq-1lst uniq-1lst)
(tags-bounded uniq-1st (next-tag bmr))
(rslts-contained rslt-1st uniq-1st))))

(defun bdd-mgr-inv (bmr)
(and (uniq-tbl-inv bmr)

(ite-results (rslt-tbl bmr))))

Figure 7: Invariant definitions

approach to allow the use of functions which recur down lists to replace iteration over elements in
stobj arrays. It is easier to prove theorems about functions which recur down lists than functions
which recur through arrays and the flexibility of stobjs in the ACL2 logic affords us this choice. The
invariant bdd-mgr-inv is comprised of the following conjuncts:

1.

(integerp (next-tag bmr)) — next-tag is the same function as next-id. This conjunct
ensures that (1+ (next-tag bmr)) does not equal any number less than or equal to (next-tag
bmr).

(consesp uniqg-1st) — Every bdd node in the uniq-tbl is a cons. This is essentially a type
predicate.

(codes-match (unig-tbl bmr) 0) — Ensures that every BDD node in the chain at address
I in the uniqg-tbl hashes to I. This allows us to reduce the search for a matching node in the
uniq-tbl to a matching node in the chain at the proper hash-code.

(no-dup-tags unig-1st) — No two nodes in the uniq-tbl have the same tag value. This
ensures the uniqueness of tags in the bdd-mgr.

(no-dup-nodes unig-1st) — No two nodes in the unig-tbl are bdd=. This ensures the
uniqueness of nodes (upto bdd=) in the bdd-mgr.

(contained unig-1st uniq-1st) — Ensures that every bdd node in the uniq-tbl satisfies
the predicate in-uniq-tbl. The predicate (in-uniq-tbl f bmr) returns T iff £ is embedded
in the uniq-tb1%2. Any operation performed on BDDs will require that the BDDs satisfy
in-uniq-tbl in order to ensure their unique construction. We need the property that the
uniq-tbl is contained in itself since for various inputs, get-unique may return any node
currently in the unig-tbl and this node must satisfy in-uniq-tbl.

(tags-bounded unig-1st (next-tag bmr)) — Every tag of every bdd node is bounded by
next-tag. This allows the use of next-tag as the tag value for the next bdd node added
without invalidating no-dup-tags above.

2A node £ is embedded in a tbl iff when f is a cons, then f is a member of tbl and (then f) and (else f) are
both embedded in tbl as well



(defthm eql-bdd-is-correct
(implies (and (uniq-tbl-inv bmr) ;; implied by (bdd-mgr-inv bmr)
(in-uniq-tbl f bmr)
(in-uniq-tbl g bmr))
(iff (eql-bdd f g) (bdd= f g))))

(defthm ite-bdd-preserves-in-unig-tbl
(implies (in-unig-tbl b bmr)
(in-unig-tbl b (mv-nth 1 (ite-bdd f g h bmr)))))

(defthm ite-bdd-is-correct
(implies (and (bdd-mgr-inv bmr)
(in-uniqg-tbl f bmr)
(in-uniq-tbl g bmr)
(in-unig-tbl h bmr)
(robdd f) (robdd g) (robdd h))
(mv-let (r nbm)
(ite-bdd f g h bmr)
(and (in-uniq-tbl r nbm) ;3 Step 1
(bdd-mgr-inv nbm) ;3 Step 1,2
(bdd= r (ite-spec f g h)))))) ;; Step 2

Figure 8: Correctness theorems for bdd functions

8. (rslts-contained rslt-1st uniq-1st) — Every entry in the result cache is a list (f g h
rslt) of bdd nodes each of which satisfy in-uniq-tbl.

9. (ite-results (rslt-tbl bmr)) — Every entry in the result cache is a list (f g h rslt)
where (bdd= rslt (ite-spec f g h)).

The theorem eql-bdd-is-correct in Figure 8 states the correspondence between eql-bdd and
eql-spec. The theorem is proven in the forward direction because of the in-unigq-tbl assumptions
and because (no-dup-tags uniqg-1st) ensures that no two nodes in the uniq-tbl have the same
tag. It is proven in the reverse direction because (no-dup-nodes uniqg-1st) ensures that no two
nodes are bdd=.

The theorems ite-bdd-preserves-in-unig-tbland ite-bdd-is-correct state the correctness
of the function ite-bdd. For every function which updates the bdd-mgr, we must prove a theorem
similar to ite-bdd-preserves-in-uniq-tbl. This is necessary since many BDD nodes may be
created, compared and combined at different points of the evolution of the bdd-mgr. Thus, an
update of the bdd-mgr stobj should not invalidate any existing BDD node. The one exception to
this is the function free-bdd which clears the bdd-mgr and only ensures that the list of BDDs it
returns satisfy in-uniq-tbl. Once similar theorems are proven about the functions get-unique
and set-result, the theorem ite-bdd-preserves-in-uniq-tbl is easily verified.

The theorem ite-bdd-is-correct cannot be proven directly; it has to be broken into two
steps. In the first step, we must prove that the result satisfies in-uniq-tbl and that the predicate
unig-tbl-inv holds. We must prove these properties first in order to make use of eql-bdd-is-
-correct, which is necessary in order to show that the evaluations of ite-spec and ite-bdd cor-
respond. Once this first step is shown, we can then prove the bdd=-equivalence between ite-spec
and ite-bdd. This also requires that we prove in this second step that the remaining conjunct
(ite-results (rslt-tbl bmr)) is valid since we may at any point return an entry in the result
cache or set an entry in the result cache. Once the first step of ite-bdd-is-correct is proven, the

10



(defun term->bdd (term bdd-mgr)
(cond ((prop-varp term)
(var-bdd term bdd-mgr))
((atom term)
(mv (if term T nil) bdd-mgr))
(t (seq (((f-bdd bdd-mgr)
(term->bdd (test term) bdd-mgr))
((g-bdd bdd-mgr)
(term->bdd (then term) bdd-mgr))
((h-bdd bdd-mgr)
(term->bdd (else term) bdd-mgr)))
(ite-bdd f-bdd g-bdd h-bdd bdd-mgr)))))

(defthm term->bdd-is-correct
(implies (bdd-mgr-inv bmr)
(mv-let (b nbm)
(term->bdd f bmr)
(and (robdd b)
(equal (prop-ev b a)
(prop-ev f a))))))

(defun bdd-sat? (term bdd-mgr)
(seq ((bdd-mgr (clear-bdd bdd-mgr))
((f-bdd bdd-mgr) (term->bdd term bdd-mgr)))
(mv (not (eql-bdd f-bdd nil)) bdd-mgr)))

(defthm bdd-sat?-is-sat-checker
(implies (bdd-mgrp bmr)
(if (mv-nth 0 (bdd-sat? f bmr))

(prop-ev f (mv-nth O (sat-witness f bmr)))
(not (prop-ev f a)))))

Figure 9: bdd-sat? satisfiability checker and correctness

second step follows from the definitions of ite-spec and ite-bdd and the reductions of ite-spec

listed in Figure 4.

We now finally prove that our BDD manager implementation can be used in defining a valid sat-
isfiability checker. Our satisfiability checker is the function bdd-sat? in Figure 9 and the statement
of correctness is the theorem bdd-sat?-is-sat-checker. The function bdd-sat? first clears the
bdd-mgr, then builds the BDD for the given term, and finally tests the resulting term against nil.

The function clear-bdd is actually a call to the function free-bdd:

(defun clear-bdd (bdd-mgr)
(mv-let (temp bdd-mgr)
(free-bdd () bdd-mgr)
(declare (ignore temp))
bdd-mgr))

The relevant property about clear-bdd is the following theorem:
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(defthm clear-bdd-is-correct
(implies (bdd-mgrp bmr)
(bdd-mgr-inv (clear-bdd bmr))))

The function bdd-mgrp is the type predicate for the bdd-mgr stobj which ACL2 automatically
generates from the type information about the fields. In proving the guards of the functions which
operate on the bdd-mgr, we proved that they preserve this predicate during their execution. Thus, at
any point during a run of ACL2, the bdd-mgr stobj will satisfy bdd-mgrp® and further, (clear-bdd
bdd-mgr) will ensure bdd-mgr-inv. We note that the above satisfiability checker is not a general
application of the function free-bdd. In light of this, we proved additional theorems about free-bdd
to ensure that the BDD list it returns is equivalent to the BDD list it was given and that every BDD
in the returned list satisfies in-uniq-tbl.

The function term->bdd transforms an arbitrary propositional term into a BDD. The important
property of this transformation is the theorem term->bdd-is-correct which states that the result-
ing BDD has the same valuations as the original term under prop-ev. We also needed to prove that
term->bdd preserved the bdd-mgr-inv and returns a BDD that satisfies in-uniq-tbl, but it should
be apparent by now that any function which uses the bdd-mgr operations correctly, will necessarily
satisfy these properties. Combining the theorem term->bdd-is-correct with the canonical form
property of BDDs, we know that the original term is satisfiable if and only if the result of term->bdd
is non-nil. For our witness function sat-witness, we simply construct the BDD for the term and
then call robdd-witness:

(defun sat-witness (f bdd-mgr)
(seq ((bdd-mgr (clear-bdd bdd-mgr))
((f-bdd bdd-mgr) (term->bdd f bdd-mgr)))
(mv (robdd-witness f-bdd nil) bdd-mgr)))

4 Extensions and Experiments

We conclude with a discussion of possible extensions to the work presented in this paper. In short,
the work documented in this paper could be considered a first cut at defining and analyzing an
efficient BDD manager in ACL2. There are many directions in which this work could be extended
and we consider some of these directions here.

Common Lisp Optimizations. Some common techniques for optimizing Lisp functions could
be employed to improve the execution speed of our BDD implementation. To begin with, several
functions that we defined could have instead been defined as macros to avoid function calls. The
difficulty with the use of macros is the inability to disable their definition. For instance, if the function
eql-bdd were instead defined as a macro, the theorems involving ite-bdd would have experienced a
significant case explosion. Defining eql-bdd as a function allowed its definition to be hidden once its
correspondence with bdd= had been shown. An alternative approach (suggested by Matt Kaufmann)
is to introduce another book of definitions syntactically identical to the current implementation
except that several key functions would be redefined as macros. Presumably, we could then prove
that the functions in this new book were equivalent to the current implementation (assuming ACL2
could handle the large terms after expansion). Additional efficiency could be achieved through the
addition of type declarations. Type declarations are especially useful in optimizing integer operations
whose inputs and outputs are guaranteed to be fixnums. Unfortunately, the “logical” definition of
BDDs is not restricted to any bound in size and as such we would have to change the functionality
of the current implementation to enforce fixnum bounds.

Memory Management. As it stands now, for every BDD node which is created, we allocate
4 conses — 3 conses for the BDD node itself and 1 cons for the chain in the unig-tbl. There are

3 Assuming only the refined BDD manager operations are allowed to update the bdd-mgr stobj
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time and space costs to each of these conses. In GNU Common Lisp for instance, a cons cell takes
three 32-bit words in memory. Thus, a BDD node takes up at least 12 words in memory. Further,
there is overhead in allocating and accessing car and cdr fields of conses. If millions of BDD nodes
are created (and in many potential applications this is indeed the case) then the overhead of all
the consing will dramatically effect the overall efficiency of the Lisp runtime environment. One
solution to this problem is to manage our own node allocation and access in a large array field of
a stobj. We could define each BDD as an index into the table where for each index we associate
four numbers (test, then, else, next) where test is a variable identifier, then, else are BDD indexes,
and next is the index of the next BDD node in the given unique chain; the BDD index itself can be
used as the tag for the node. This approach would require no consing and is potentially much more
efficient — although lookup of BDD nodes would require stobj accesses which have some overhead.
Unfortunately (at least for this problem) most common lisp environments enforce a limit on the size
of any array. In Franz Allegro Common Lisp, this limit is about 16 million entries. This would limit
the number of BDD nodes stored in a single array to around 4 million. Depending on the application
involved, this number may not be sufficient and some alternative approach, such as using multiple
arrays or using arrays and conses, would be required.

Variable Reordering. It is common knowledge that the number of BDDs required to represent
certain propositional terms is very sensitive to the ordering of the propositional variables. For
instance, representing the equality of two bit vectors of size N may require & 3N BDD nodes for
the best variable ordering and ~ 2"V BDD nodes for the worst variable ordering. One technique that
many existing BDD managers use to combat this problem is to dynamically reorder the variables
using a variety of heuristics. One elegant approach is to implement a procedure called “sifting”
which simply checks for each adjacent pair of variables (v,v + 1) to see if flipping their order reduces
the total number of nodes. The idea is that if you repeat this procedure, you eventually will obtain a
good ordering on the variables. Dynamic variable reordering is a non-trivial extension and requires
some extra cost in indirect node addressing and maintaining chains of nodes for common variable
identifiers. Additionally, the problems we are targeting with BDDs in an ACL2 environment will
rarely (if ever) represent arithmetic or equality operations at the bit-level and as such, the benefits
of supporting reordering are not as apparent in this context.

Primitive Complement. Another common BDD optimization is to introduce a primitive
complementation operator which is set and cleared using a single bit in a BDD address or index
(e.g. negative BDD indexes are complements of the corresponding positive index). Using this
tagging, computing the complement of a BDD is a very fast constant-time operation. Further, using
the complement primitive affords a greater amount of normalization in BDD representations, which
in turn leads to fewer allocated nodes and more efficient use of the result cache.

Partitioned Image Computation. A common application of BDDs is for so-called symbolic
model checkers[2]. Model checking is a procedure for checking that some system satisfies a formula
from some temporal logic (often CTL, FairCTL, or LTL). Model checking procedures verify this
satisfaction by exploring the reachable states of the system to be checked. BDDs are often used
in symbolic model checkers as the compact representation of a set of states. A common operation
performed in model checking is the computation of a set of next-states given a current state set
and a transition relation, termed an image computation. Where a state set may be defined on NV
propositional variables, a straightforward encoding of a transition relation requires 2N propositional
variables (current state var.s and next state var.s). This straightforward encoding of a transition
relation can be prohibitively expensive to build and use in practice and so an alternative procedure
for performing image computations is desired. One alternative is to define the transition relation
with N BDDs — one for each next state variable ' — each of which is defined on N current state
variables and defines the set of states for which z’ is 1. This approach requires a special procedure
to perform image computations but often avoids the computational overhead of the straightforward
encoding. Although we do not document this extension here, we have added this procedure to the
BDD manager defined in this paper. In a future paper we will cover this extension.
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ACL2 Term-Level BDDs. The BDDs we defined in this paper used propositional variables
for the test fields of the if-expressions. In a general ACL2 application of BDDs, we would like to
use arbitrary ACL2 terms (i.e. either a quoted constant, variable symbol, or function application
on ACL2 terms) in the test positions of the if-expressions. Indeed, ACL2s current BDD package
supports arbitrary terms at the test and leaves of the if-expressions. For our purposes, we would
like to use arbitrary ACL2 terms at test positions while ensuring the BDD computed is a canonical
form for the set of interpretations of the free variables of these terms. Unfortunately, these terms
will likely involve common free variables and thus, are not independently nil or non-nil. Extending
BDDs to general terms in this manner will likely require additional proof requirements of the user
and methods for achieving this interaction is one of our current areas of research interest.

Experiments. Finally, we present some experimental results to facilitate the performance com-
parison of the BDD manager presented in this paper with two versions written and compiled in
C. Unfortunately, the version of the BDD manager presented in this paper is very inefficient for
numerous reasons. So in order to make a meaningful comparison of what can be done in ACL2
using stobjs and the various extensions presented above, we wrote an optimized version of the BDD
manager which included the Common Lisp Optimizations, Memory Management, and Primitive
Complement extensions mentioned above. It is important to note that as of the time of this writing,
this optimized BDD manager has not been verified. The functions defining the optimized manager
have been admitted to the logic, and have had their guards verified. It is the author’s intention in
the near future to complete a proof of this optimized BDD manager — similar in structure to the one
outlined in this paper. We compare this optimized implementation in ACL2 with a straightforward
translation of this manager (by hand) to C and with the CUDD[12] package, which is also written
in C. The ACL2 BDD manager was compiled using Franz[5] Allegro Common Lisp, and the two C
managers were compiled using the Gnu Compiler Collection(GCC) with optimization level three[6].
These three managers were run on various instances of three different problems. The first problem
is Urquhart’s U-formula which was used as a benchmark in [13]. For N propositional variables
x1,..,ZN, the U-formula is (< is propositional equivalence):

21 (e ..(zv e (219 (29 ...(zN_1 S TN)--.)))--)

We also tested the managers using the problem of multiplying of two size-N bit-vectors, and some
random tests where the parameter IV is used as a seed for a random BDD generator. The tests were
performed on an UltraSparc workstation under Solaris, with Franz version 5.0.1 and GCC version
2.7.3.2. The following table presents the execution times in seconds, with “ACL2” denoting the
optimized BDD manager in ACL2, “GCC” denoting the translation by hand of the ACL2 BDD
manager, and “CUDD” denoting the CUDD package compiled with GCC as well.

Problem | Parameter(N) | ACL2 | GCC | CUDD
Urquhart 1000 4.3 1.5 2.0
1200 6.5 24 3.0
1400 9.5 3.8 4.2
multiply 10 14 0.3 0.6
11 4.6 1.2 1.0
12 15.8 4.5 2.9
random 700 10.1 3.4 4.6
1000 14.4 4.8 6.5
1300 13.6 4.4 5.8

Generally speaking, GCC and CUDD performed similarly with a few exceptions. CUDD has
some overhead for BDD nodes due to its support for garbage collection using reference counts and
dynamic variable reordering. CUDD also has support for reallocating result caches and unique
tables on demand. Unfortunately, stobj arrays in ACL2 must have a fixed allocation which does
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not allow the user to size them depending on the demands of a particular problem. Since the GCC
manager was a straightforward translation of the ACL2 manager, it shares this property of fixed
allocation which may explain the difference in growth (2% vs. 4%) in the multiplication example
since this problem exhibits a great deal of result sharing. It is also worth noting that for CUDD,
we disabled dynamic variable reordering since it didn’t help in any of these examples. In actual
systems, though, dynamic variable reordering can be crucial if a bad variable ordering is provided
and it would be easy to construct relatively small examples with poor initial variable orders where
CUDD is exponentially faster than our implementation. Still, the limited results we present here are
encouraging and demonstrate how close optimized ACL2 using stobjs can get to C-like efficiency.

References

[1] K. Brace, R. Rudell, and R. Bryant. Efficient Implementation of a BDD package, Proceedings
of the ACM/IEEE Design Automation Conference, 1990.

[2] J. Burch, E. Clarke, K. McMillan, D. Dill, and L. Hwang. Symbolic Model Checking: 102°
states and beyond,” in IEEE Symposium on Logic in Computer Science, 1988.

[3] R. Bryant. Graph-Based Algorithms for Boolean Function Manipulation, IEEE Transactions
on Computers, August, 1986.

[4] R. Bryant. Symbolic Boolean Manipulation with Ordered Binary Decision Diagrams. Tech.
Report CMU-CS-92-160, School of Computer Science, Carnegie Mellon University, 1992.

[5] Franz Allegro Common Lisp home page: http://www.franz.com/
[6] Gnu Compiler Collection home page: http://gcc.gnu.org/

[7] D. Greve, M. Wilding, and D. Hardin. High-Speed, Analyzable Simulators, in Computer-Aided
Reasoning: ACL2 Case Studies. Kluwer Academic Publishers, June, 2000.

[8] J. Harrison. Binary Decision Diagrams as a HOL derived rule, in The Computer Journal. volume
38, 1995.

[9] S. Minato. Binary Decision Diagrams and Applications for VLSI CAD. Kluwer Academic Pub-
lishers, 1996.

[10] J. Moore and R. Boyer. Single-Threaded Objects in ACL2. available from the ACL2 publications
web page: http://www.cs.utexas.edu/users/moore/publications/acl2-papers.html

[11] P. Manolios. Mu-calculus Model Checking, in Computer-Aided Reasoning: ACL2 Case Studies,
Kluwer Academic Publishers, June, 2000.

[12] F. Somenzi, et. al. CUDD: CU Decision Diagram Package. Available at the CUDD web page:
http://vlsi.colorado.edu/ fabio/CUDD/

[13] K. Verma and J. Goubault-Larrecq. Reflecting BDDs in Coq. INRIA Research Report 3859,
January, 2000.

15



