THIRD ACL2 WORKSHOP 2002

Progress Report
Term Dags Using Stobjs

Ruiz-Reina J.L., Alonso, J.A., Hidalgo, M.J., Martin, F.J.

Dpto. de Ciencias de la Computacién e Inteligencia Artificial

UNIVERSIDAD DE SEVILLA

Ruiz-Reina et al. Ccla ACL2 Workshop 2002 1



Introduction

® We are currently exploring the use of efficient

data structures to implement operations on
first-order terms

® Our idea is to use a single-threaded object
(stobj) to store terms as directed acyclic graphs

(dags)

e Thus, operations never build new terms but merely
update pointers

e Application of substitutions needs no reconstruc-
tion of terms

e As a first attempt: implementation and verifi-
cation of a unification algorithm on term dags

e The work is not finished yet

e But we think that there are some interesting points
that can be discussed

Ruiz-Reina et al. Ccla ACL2 Workshop 2002 2



Representation of term dags

e A stobj used to store term dags:

(defstobj terms-dag
(dag :type (array t (1000)) :resizable t))

e Every graph node is represented by a cell. Depend-
ing on the type of a node i, (dagi i terms-dag)
stores the following:

- (f . DD: node i is the root node of a term f(t1,...,t,)
where [ is the list of indices corresponding to ti,...,¢,.

- (zr . t): node i stores the unbound variable =z.

- n: node i stores a bound variable pointing to node n.

e Example (before solving):

#((EQU 1 9) (F24) (H3) (Z.T) (G57) (H6) (X.T) (H8 (U .T
(F 10 11) 6 (G 12 14) (H 13) 8 (V . T))

e Some terminology:
e we can view an array index as a term
e lists of pair of indices as a system of equations
e lists of pairs of the form (z . N) as substitutions

e indices systems and indices substitutions

Ruiz-Reina et al. Ccla ACL2 Workshop 2002 3



An unification algorithm

e The following function applies one step of =79,
the transformation =, on term dags:

(defun dag-transform-mm (S U terms-dag)
(declare (xargs :stobjs terms-dag :mode :program))
(let* ((ecu (car S)) (R (cdr 8))
(t1 (dag-deref (car ecu) terms-dag))
(t2 (dag-deref (cdr ecu) terms-dag))
(p1 (dagi t1 terms-dag)) (p2 (dagi t2 terms-dag)))

(cond
((= t1 t2) (mv R U t terms-dag)) ;;; DELETE
((dag-variable-p pl)
(if (occur-check t t1 t2 terms-dag) ;53 CHECK
(mv nil nil nil terms-dag)
(let ((terms-dag (update-dagi tl1 t2 terms-dag))) ;;; ELIMINATE

(mv R (cons (cons (dag-symbol pl) t2) U) t terms-dag))))
((dag-variable-p p2)
(mv (cons (cons t2 t1) R) U t terms-dag)) ;3 ; ORIENT
((not (eq (dag-symbol p1) (dag-symbol p2))) ;33 CLASH
(mv nil nil nil terms-dag))
(t (mv-let (pair-args bool)
(pair-args (dag-args pl) (dag-args p2))

(if bool ;;; DECOMPOSE
(mv (append pair-args R) U t terms-dag)
(mv nil nil nil terms-dag))))))) ;5> CLASH

e To obtain a most general unifier of two terms

e we store both terms as graphs in the stobj

e and iteratively apply =9%, starting with the indices
of the input terms and with the empty substitution

e until the system is empty or unsolvability is found
e Remarks:

e S and U do not contain terms but pointers

e Syntactic restrictions enforced by stobjs are natu-

rally ensured
Ruiz-Reina et al. Ccla ACL2 Workshop 2002 4




Example

Unification of f(h(z),g(h(z),h(w) ~ f(z,g(h(u),v))
Both terms are stored in the stobj terms-dag

Starting with the following unification problem:

S = ((1 . 9)) 1initial indices system to be solved
U = nil initial computed substitution
terms-dag = #((EQU 1 9) (F24) (H3) (Z . T

(G57) (H6) (X .T) (H8 (U . T
(F 10 11) 6 (G 12 14) (H 13) 8 (V . T))

Iteratively applying dag-transform-mm, we obtain:

S’ = nil

U’ = (V.7 @U.2 X.2)

terms-dag = #((EQU 1 9) (F 2 4) (H3) (Z . T)
(G57) (H6) 2 (H8) 2
(F 10 11) 6 (G 12 14) (H 13) 8 7)

Following the pointers of U’ in terms-dag, we obtain the
following most general unifier of the input terms:

{v— h(h(z)), u— h(z), x— h(z)}

Ruiz-Reina et al. Ccla ACL2 Workshop 2002 5



Termination properties

e The previous functions are in :program mode
e they are not terminating in general

e Problem: the graph stored in terms-dag could
contain cycles

® Sources of non—termination:

e Traversing the graph: for example (occur-check
flg x h terms-dag) may not terminate

e Even if occur—check is never applied, iterative ap-
plications of dag-transform-mm may not terminate

® We defined conditions that ensure termination

e Directed acyclic graphs, dag-p

e Main properties:

(defthm dag-p-soundeness
(implies (not (dag-p g))
(cycle-p (one-cyclic-path g) g)))

(defthm dag-p-completeness
(implies (cycle-p p g) (not (dag-p g))))

e This function allows us to define:

* (dag-p-st terms-dag)
* (well-formed-term-dag-st terms-dag)
* (well-formed-upl-st S U terms-dag)

® These are expensive “type” checks

Ruiz-Reina et al. CCIA ACL2 Workshop 2002



Functions in logic mode

® Occur check:

(defun occur-check-st (flg x h terms-dag)

(declare (xargs :measure ... :stobjs terms-dag))
(if (dag-p-st terms-dag)
< body >
’undef))

e Iterative application of =%;

(defun dag-solve-system-st (S U bool terms-dag)

(declare (xargs :measure ... :stobjs terms-dag))
(if (well-formed-upl-st S U terms-dag)
< body >

(mv ’undef ’undef ’undef terms-dag)))

® The measure functions are not trivial

e Now we can define a function in logic mode
(dag-mgs-st S terms-dag), such that:

e given a unification problem stored in terms-dag
e and an indices system

e returns a multivalue with a boolean (solvability), a
most general solution in the form of indices substi-
tution (in case of solvability) and terms-dag

Ruiz-Reina et al. Ccla ACL2 Workshop 2002 7



Verification of dag-mgs-st

e Key point: if the graph stored in terms-dag
is a dag, we can associate with each index of
the array a term represented in the standard
(list /prefix) notation

e Compositional reasoning

e We first proved the properties of =, acting on the
standard representation

e Then we prove:
If S;U;terms-dag =99 G U';terms-dag, then
aterms—dag(s; U) =u aterms—dag<S,; Ul) where Olterms—dag
transforms indices into the corresponding terms in
list /prefix representation

e One of the main proof efforts: prove that =% pre-
serves the dag-p property

e The dag-p property is essential:

e for termination

e for compositional reasoning (for example, struc-
tural induction on term dags)

e The main theorem we have proved:

If (well-formed-term-dag-st terms-dag)
and SO is an indices system, let
[U,bool,terms-dag] = (dag-mgs-st SO terms-dag),
S = @ terms—dag(S0) and 0 = & terms—aag(U). Then:
- S has a solution if and only if bool#nil.
- If bool#nil, o is a most general solution of S.

Ruiz-Reina et al. Ccla ACL2 Workshop 2002 8



Verification of dag-mgs-st

e Main properties proved:

(defthm dag-mgs-st-completeness
(let ((S (tbs-as-system-st S-dag terms-dag)))
(implies
(and (well-formed-dag-system-st S-dag terms-dag)
(solution sigma S))
(second (dag-mgs-st S-dag terms-dag)))))

(defthm dag-mgs-st-soundness
(let* ((S (tbs-as-system-st S-dag terms-dag))
(dag-mgs-st (dag-mgs-st S-dag terms-dag))
(unifiable (second dag-mgs-st))
(sol (solved-as-system-st (first dag-mgs-st)
(third dag-mgs-st))))
(implies
(and (well-formed-dag-system-st S-dag terms-dag)
unifiable)
(solution sol S))))

(defthm dag-mgs-st-most-general-solution
(let* ((S (tbs-as-system-st S-dag terms-dag))
(dag-mgs-st (dag-mgs-st S-dag terms-dag))
(sol (solved-as-system-st (first dag-mgs-st)
(third dag-mgs-st))))
(implies
(and (well-formed-dag-system-st S-dag terms-dag)
(solution sigma S))
(subs-subst sol sigma))))

Ruiz-Reina et al. Ccla ACL2 Workshop 2002 9



To be done

e Integrate dag-mgs-st with a function that stores
terms in the stobj

e using the new functionalities in version 2.6
(with-local-stobj and resizable arrays)
e The algorithm is still exponential

e we think it is not difficult to refine it in order to
obtain a quadratic algorithm

e Possible future work:

e Extensions: term rewriting, automated deduction

e Reasoning about complexity

e But our current major problem is execution.

e The dag-p check makes execution impractical

® One standard approach that could work:

e A counter decremented in each recursive call: the
dag check can be replaced by simpler integer tests

e Equivalence of both versions have to be proved (for
well-formed term dags)

e As for the functions traversing dags, a suitable
value for the counter is the number of total nodes

® We are exploring an alternative

Ruiz-Reina et al. Ccla ACL2 Workshop 2002 10



Execution

e Use for execution similar functions in program
mode, removing the expensive checks

e To be confident about this:

e the functions have to be called only on term dags
e recursion have to be closed on term dags
e we can use the prover to ensure those conditions

e for example, we have proved:

(defthm well-formed-upl-st-preserved-by-dag-transform-mm-st
(implies (and (well-formed-upl-st S U terms-dag)
(consp S))
(mv-let (S1 Ul booll terms-dag)
(dag-transform-mm-st S U terms-dag)
(well-formed-upl-st S1 Ul terms-dag))))

e The guarded domain idea of defpun (Manolios
and Moore, ACL2 Workshop 2000):

e The domain of a partial function is its guard

e The guard verification mechanism provides built-in
support for ensuring that recursion is closed

e Drawback: termination conditions are mixed with

Common Lisp compliant conditions

e We would like more built—in support for this
kind of situations

Ruiz-Reina et al. Ccla ACL2 Workshop 2002 11



