Progress Report Term Dags Using Stobjs

Ruiz-Reina J.L., Alonso, J.A., Hidalgo, M.J., Martín, F.J.

Dpto. de Ciencias de la Computación e Inteligencia Artificial

UNIVERSIDAD DE SEVILLA

Introduction

- We are currently exploring the use of efficient data structures to implement operations on first-order terms
- Our idea is to use a single-threaded object (stobj) to store terms as directed acyclic graphs (dags)
 - Thus, operations never build new terms but merely update pointers
 - Application of substitutions needs no reconstruction of terms
- As a first attempt: implementation and verification of a unification algorithm on term dags
- The work is not finished yet
 - But we think that there are some interesting points that can be discussed

Representation of term dags

• $f(h(z), g(h(x), h(u))) \approx f(x, g(h(u), v))$, as a term dag:

• A stobj used to store term dags:

```
(defstobj terms-dag
  (dag :type (array t (1000)) :resizable t))
```

- Every graph node is represented by a cell. Depending on the type of a node i, (dagi i terms-dag) stores the following:
 - $(f \ . \ l)$: node i is the root node of a term $f(t_1,\ldots,t_n)$ where l is the list of indices corresponding to t_1,\ldots,t_n .
 - $(x \cdot t)$: node i stores the unbound variable x.
 - n: node i stores a bound variable pointing to node n.
- Example (before solving):

- Some terminology:
 - we can view an array index as a term
 - lists of pair of indices as a system of equations
 - ullet lists of pairs of the form (x . N) as substitutions
 - indices systems and indices substitutions

An unification algorithm

• The following function applies one step of \Rightarrow_u^{dag} , the transformation \Rightarrow_u on term dags:

```
(defun dag-transform-mm (S U terms-dag)
  (declare (xargs :stobjs terms-dag :mode :program))
  (let* ((ecu (car S)) (R (cdr S))
         (t1 (dag-deref (car ecu) terms-dag))
         (t2 (dag-deref (cdr ecu) terms-dag))
         (p1 (dagi t1 terms-dag)) (p2 (dagi t2 terms-dag)))
    (cond
                                                          ;;; DELETE
     ((= t1 t2) (mv R U t terms-dag))
     ((dag-variable-p p1)
      (if (occur-check t t1 t2 terms-dag)
                                                          ;;; CHECK
          (mv nil nil terms-dag)
        (let ((terms-dag (update-dagi t1 t2 terms-dag))) ;;; ELIMINATE
          (mv R (cons (cons (dag-symbol p1) t2) U) t terms-dag))))
     ((dag-variable-p p2)
      (mv (cons (cons t2 t1) R) U t terms-dag))
                                                          ;;; ORIENT
     ((not (eq (dag-symbol p1) (dag-symbol p2)))
                                                          ;;; CLASH
      (mv nil nil terms-dag))
     (t (mv-let (pair-args bool)
                (pair-args (dag-args p1) (dag-args p2))
                (if bool
                                                          ;;; DECOMPOSE
                    (mv (append pair-args R) U t terms-dag)
                  (mv nil nil nil terms-dag)))))))
                                                          ;;; CLASH
```

- To obtain a most general unifier of two terms
 - we store both terms as graphs in the stobj
 - and iteratively apply \Rightarrow_u^{dag} , starting with the indices of the input terms and with the empty substitution
 - until the system is empty or unsolvability is found
- Remarks:
 - S and U do not contain terms but pointers
 - Syntactic restrictions enforced by stobjs are naturally ensured

Example

```
Unification of f(h(z), g(h(x), h(u))) \approx f(x, g(h(u), v))
Both terms are stored in the stobj terms-dag
```

Starting with the following unification problem:

```
= ((1 . 9)) initial indices system to be solved
S
          = nil initial computed substitution
IJ
terms-dag = \#((EQU 1 9) (F 2 4) (H 3) (Z . T)
                 (G 5 7) (H 6) (X . T) (H 8) (U . T)
                 (F 10 11) 6 (G 12 14) (H 13) 8 (V . T))
```

Iteratively applying dag-transform-mm, we obtain:

```
S,
          = nil
          = ((V . 7) (U . 2) (X . 2))
IJ,
terms-dag = \#((EQU 1 9) (F 2 4) (H 3) (Z . T)
                  (G 5 7) (H 6) 2 (H 8) 2
                  (F 10 11) 6 (G 12 14) (H 13) 8 7)
```

Following the pointers of U' in terms-dag, we obtain the following most general unifier of the input terms:

$$\{v\mapsto h(h(z)), u\mapsto h(z), x\mapsto h(z)\}$$

Ruiz-Reina et al.

Termination properties

- The previous functions are in :program mode
 - they are not terminating in general
- Problem: the graph stored in terms-dag could contain cycles
- Sources of non-termination:
 - Traversing the graph: for example (occur-check flg x h terms-dag) may not terminate
 - Even if *occur-check* is never applied, iterative applications of dag-transform-mm may not terminate
- We defined conditions that ensure termination
 - Directed acyclic graphs, dag-p
 - Main properties:

• This function allows us to define:

```
* (dag-p-st terms-dag)
* (well-formed-term-dag-st terms-dag)
* (well-formed-upl-st S U terms-dag)
```

• These are expensive "type" checks

Functions in logic mode

• Occur check:

```
(defun occur-check-st (flg x h terms-dag) (declare (xargs :measure ... :stobjs terms-dag)) (if (dag-p-st terms-dag) < body > 'undef))
```

• Iterative application of \Rightarrow_u^{dag} :

- The measure functions are not trivial
- Now we can define a function in logic mode (dag-mgs-st S terms-dag), such that:
 - given a unification problem stored in terms-dag
 - and an indices system
 - returns a multivalue with a boolean (solvability), a most general solution in the form of indices substitution (in case of solvability) and terms-dag

Verification of dag-mgs-st

- Key point: if the graph stored in terms-dag is a dag, we can associate with each index of the array a term represented in the standard (list/prefix) notation
- Compositional reasoning
 - We first proved the properties of \Rightarrow_u acting on the standard representation
 - Then we prove:

```
S; U; \texttt{terms-dag} \implies_{u}^{dag} S'; U'; \texttt{terms-dag},
\alpha_{\texttt{terms-dag}}(S; U) \Rightarrow_u \alpha_{\texttt{terms-dag}}(S'; U') \text{ where } \alpha_{\texttt{terms-dag}}
transforms indices into the corresponding terms in
list/prefix representation
```

- One of the main proof efforts: prove that \Rightarrow_u^{dag} preserves the dag-p property
- The dag-p property is essential:
 - for termination

Ruiz-Reina et al.

- for compositional reasoning (for example, structural induction on term dags)
- The main theorem we have proved:

```
If (well-formed-term-dag-st terms-dag)
and SO is an indices system, let
[U,bool,terms-dag] = (dag-mgs-st SO terms-dag),
S = \alpha_{\text{terms-dag}}(S0) and \sigma = \alpha_{\text{terms-dag}}(U). Then:
  - S has a solution if and only if bool\neqnil.
  - If bool\neqnil, \sigma is a most general solution of S.
```

Verification of dag-mgs-st

• Main properties proved:

```
(defthm dag-mgs-st-completeness
  (let ((S (tbs-as-system-st S-dag terms-dag)))
    (implies
       (and (well-formed-dag-system-st S-dag terms-dag)
            (solution sigma S))
       (second (dag-mgs-st S-dag terms-dag)))))
(defthm dag-mgs-st-soundness
  (let* ((S (tbs-as-system-st S-dag terms-dag))
         (dag-mgs-st (dag-mgs-st S-dag terms-dag))
         (unifiable (second dag-mgs-st))
         (sol (solved-as-system-st (first dag-mgs-st)
                                    (third dag-mgs-st))))
    (implies
      (and (well-formed-dag-system-st S-dag terms-dag)
           unifiable)
      (solution sol S))))
(defthm dag-mgs-st-most-general-solution
  (let* ((S (tbs-as-system-st S-dag terms-dag))
         (dag-mgs-st (dag-mgs-st S-dag terms-dag))
         (sol (solved-as-system-st (first dag-mgs-st)
                                    (third dag-mgs-st))))
    (implies
      (and (well-formed-dag-system-st S-dag terms-dag)
           (solution sigma S))
      (subs-subst sol sigma))))
```

To be done

- Integrate dag-mgs-st with a function that stores terms in the stobj
 - using the new functionalities in version 2.6 (with-local-stobj and resizable arrays)
- The algorithm is still exponential
 - we think it is not difficult to refine it in order to obtain a quadratic algorithm
- Possible future work:
 - Extensions: term rewriting, automated deduction
 - Reasoning about complexity
- But our current major problem is execution.
 - The dag-p check makes execution impractical
- One standard approach that could work:
 - A counter decremented in each recursive call: the dag check can be replaced by simpler integer tests
 - Equivalence of both versions have to be proved (for well-formed term dags)
 - As for the functions traversing dags, a suitable value for the counter is the number of total nodes
- We are exploring an alternative

Execution

- Use for execution similar functions in program mode, removing the expensive checks
- To be confident about this:
 - the functions have to be called only on term dags
 - recursion have to be closed on term dags
 - we can use the prover to ensure those conditions
 - for example, we have proved:

```
(defthm well-formed-upl-st-preserved-by-dag-transform-mm-st
  (implies (and (well-formed-upl-st S U terms-dag)
                (consp S))
           (mv-let (S1 U1 bool1 terms-dag)
                   (dag-transform-mm-st S U terms-dag)
                   (well-formed-upl-st S1 U1 terms-dag))))
```

- The guarded domain idea of defpun (Manolios and Moore, ACL2 Workshop 2000):
 - The domain of a partial function is its guard
 - The guard verification mechanism provides built-in support for ensuring that recursion is closed
 - Drawback: termination conditions are mixed with Common Lisp compliant conditions
- We would like more built-in support for this kind of situations