Checking ACL2 Theorems via SAT Checking

ACL2 Workshop Grenoble, France April 9, 2002

Rob Sumners

robert.sumners@amd.com

The need for theorem checking...

- Basic ACL2 proof strategy: divide-and-conquer
 - In practice, this is really divide-and-divide-and-divide-and-divide-and-divide...
- In order to avoid spending time *proving* nontheorems, we would like to have a tool we could use to automatically check the theorem on some sufficiently-bounded domain of values for the free variables
 - If the theorem fails, we would like an assignment to the free variables witnessing the failure
 - Especially useful in testing inductive invariants
- A theorem checker could also be used in the context of a more general tool to either generate failure witnesses or heuristically prune the paths in search of a proof

| An interface |

• Ideally, before attempting to prove some proposed theorem:

```
(thm <expr>)
```

```
We would like to first check or test the theorem: (check-thm (implies <constraint> <expr>))
```

Where **<constraint>** sufficiently bounds the free variables in **<expr>**

• Example:

• What is "sufficiently bounded"?

Our approach...

- Basic idea: Translate the constrained theorem into a propositional formula
 - If generated propositional formula is valid, then original ACL2 theorem is valid
 - In practice, the other direction holds as well
 - Use a SAT checker to determine if the propositional formula is valid
 - Allow multiple SAT checkers to be used for engine
 - Translate failure witness for propositional formula into a failure witness for original ACL2 theorem
 - Failure witness (an alist binding the free variables) is doublechecked by evaluating the theorem on witness
- The translation consists of two steps: translate the theorem into a simple sublanguage and then *reduce* the theorem to a propositional formula

| Step 1 of the Translation |

- First, translate the history and the proposed ACL2 theorem into a history and theorem in a sublanguage (ST) of ACL2
 - ST histories are built from the primitives if, cons,
 car, cdr, (quote nil)
 - ST universe consists of trees where nil is the only atom
- The input history and theorem is restricted to be a sublanguage (MDL) of ACL2
 - MDL histories are built from the primitives if, car, cdr, cons, binary-+, n-, <, naturalp, symbolp, consp, equal, quote, ...
 - MDL universe consists of trees where the only atoms are symbols and natural numbers
 - MDL could be extended, but resulting translation could be more expensive
 - Implicit assumption (constraint) of free variables in MDL universe

| Translation of MDL universe |

- Translation from MDL to ST is essentially defined by a translation of the MDL primitives to ST functions
 - This translation is based on mapping of MDL universe to ST universe:

• aux parameter is a list of symbols automatically computed from the MDL history

| Translation of MDL primitives |

• For each MDL primitive we define a corresponding ST function

• We then need to prove that st-binary-+ is a legal implementation of binary-+:

| Step 2 of the Translation |

- We translate the theorem in ST into a propositional formula
 - Propositional formulae (ITEs) are built from variables, booleans, and (if x y z) terms
 - o Common subterms are constructed uniquely
 - Each free variable in the ST theorem defines a tree of propositional variables $tree\ variable\ positions(TVPs)$
- The translation is an optimized rewriter which:
 - Eliminates car and cdr applications (may generate new TVPs)
 - Reduce the tests of if terms to propositional formula
 - Expand all functions (even recursive functions)
 - We must provide mechanisms to avoid unwanted expansion

| Rewriting(evaluation) of ST terms |

```
(defun tfr-eval (term alist ctx fns)
 (if (variablep term)
      (let ((bound (assoc term alist)))
        (if bound (cdr bound) term)))
    (case (first term)
      (quote nil)
      (cons (list 'cons (tfr-eval (second term) alist ctx fns)
                        (tfr-eval (third term) alist ctx fns)))
      ((car cdr) (tfr-destruct (first term)
                   (tfr-eval (second term) alist ctx fns)))
      (if (let* ((tst (ite-extract
                       (tfr-eval (second term) alist ctx fns)))
                 (t-ctx (ctx-and ctx tst))
                 (f-ctx (ctx-and ctx (ite-not tst))))
            (cond
             ((ctx-empty f-ctx)
              (tfr-eval (third term) alist t-ctx fns))
             ((ctx-empty t-ctx)
              (tfr-eval (fourth term) alist f-ctx fns))
             (t
              (list 'if tst
                    (tfr-eval (third term) alist t-ctx fns)
                    (tfr-eval (fourth term) alist f-ctx fns))))))
            (otherwise
             (mv-let (formals body)
                 (if (flambdap operator)
                     (mv (lambda-formals operator)
                         (lambda-body operator))
                   (lookup-function operator fns))
               (tfr-eval body
                         (tfr-eval-bind formals (rest term)
                                         alist ctx fns)
                         ctx fns))))))))
```

| Elaborations and Optimizations |

- We need to maintain a context in order to lazily evaluate if
 - ctx-and is used to extend ctx and ctx-empty determines if a ctx is consistent
 - In our case, a context is a partial assignment of the TVPs which must hold in the current context
 - efficient and (hopefully) sufficient
- Several optimizations in the term representation and evaluation
 - e.g. ITEs and TVPs are constructed uniquely, hash tables for lookup, etc.
- Translation maintains statistics on function expansion to assist in determining where constraints are insufficient
 - The translator also provides depth bounds for each function's "stack"

| Translating ITE to SAT checker |

- In order to reduce the formula given to the SAT checker, we perform an initial simplification which:
 - Iteratively constructs a partial assignment which must hold for any satisfying assignment
 - Reduce the formula under this partial assignment
 - Save the partial assignment to include with any results from SAT checker
 - The <constraint> will often reduce to T
- We also need to communicate relationship between TVPs (i.e. (implies (car x) x))
- Translation to external SAT checkers involves creation of input file, sys-call to run the SAT checker, and parsing of the output file

| Translating SAT results to ACL2 |

- If the SAT check produces a failure witness, the witness will define a (partial) assignment to the propositional TVPs
 - We first translate TVP assignment to a binding of the free variables in the theorem to ST objects
 - We then translate this assignment to a binding of free variables with MDL objects using the inverse mapping tree-to-mdl
 - Finally, we double-check the failure witness on the original theorem by evaluating the theorem
- In the case of our internal SAT checker, a partial assignment can be returned which may be useful in analyzing automatically generated theorems

| Example: mutual exclusion |

```
(defun step-state (s f)
  (case s
              (if f 'try 'go))
        (try
                'wait)
        (go
        (otherwise 'try)))
(defun step-flag (s f)
  (case s
              t)
        (try
                   nil)
        (go
        (otherwise f)))
(defun next (l n)
  (let ((f (car 1))
        (s (get-nth n (cdr 1))))
    (cons (step-flag s f)
          (set-nth n (step-state s f) (cdr l)))))
(defun no-one-go (1)
 (if (endp 1) t
    (and (not (equal (car 1) 'go))
         (no-one-go (cdr 1)))))
(defun only-one-go (1)
  (and (consp 1)
       (if (equal (car 1) 'go)
           (no-one-go (cdr 1))
         (only-one-go (cdr 1)))))
(defun good (1)
  (if (car 1)
      (only-one-go (cdr 1))
    (no-one-go (cdr 1))))
```

| Example continued |

- What makes a good constraint?
 - The constraint should be sufficient for evaluation to terminate (checker provides feedback)
 - The weaker the constraint, the stronger the result
 - A stronger constraint may afford more efficient SAT checking and make failure witnesses easier to comprehend

| Future Work – guiding SAT |

- ITE is *natural form* of translation
 - Can asymmetry between test and branches provide hints to decision structure during SAT check?
 - Initial attempts at defining a SAT checker for ITE forms failed because I did not see the relevance of splitting on intermediate nodes
 - natural byproduct of translation to CNF
- The following case split is (roughly) sufficient:
 - (car 1), and in the only-one-go case, a further split on the location of 'go, and a case split on n
- Work continues on heuristics and user annotation to better direct decisions made in SAT checker

| Future Work – Proof of correctness |

- In some cases it would be useful to actually **prove** theorems using the theorem checker
- The sanctioned approach is to define a metafunction which maps terms to (provably) equivalent terms, but evaluator is limited

- In order to prove this, we will need to prove each step of the translation is correct:
 - Translation from MDL functions to ST functions is consistent via mdl-to-tree
 - Interpretation of term returned by tfr-eval is consistent with evaluation of ST functions