Checking ACL2 Theorems via
SAT Checking

ACL2 Workshop
Grenoble, France

April 9, 2002

Rob Sumners

robert.sumners@amd.com

| The need for theorem checking... |

e Basic ACL2 proof strategy: divide-and-conquer

— In practice, this is really divide-and-divide-and-

divide-and-divide-and-divide...

e In order to avoid spending time proving non-
theorems, we would like to have a tool we could
use to automatically check the theorem on some
sufficiently-bounded domain of values for the
free variables

— If the theorem fails, we would like an assignment to
the free variables witnessing the failure

— Especially useful in testing inductive invariants

e A theorem checker could also be used in the
context of a more general tool to either generate
tailure witnesses or heuristically prune the paths
in search of a proot

| An interface |

e Ideally, before attempting to prove some pro-
posed theorem:
(thm <expr>)

We would like to first check or test the theorem:
(check-thm (implies <constraint> <expr>))

Where <constraint> sufficiently bounds the
free variables in <expr>

e ixample:

(check-thm (implies (and (< (len x) 4)
(< (len y) 3))
(equal (len (append x y))
(+ (len x) (len y)))))

e What is “sufhiciently bounded””

| Our approach... |

e Basic idea: Translate the constrained theorem
into a propositional formula

— If generated propositional formula is valid, then orig-
inal ACL2 theorem is valid

o In practice, the other direction holds as well

— Use a SAT checker to determine if the propositional
formula is valid

— Allow multiple SAT checkers to be used for engine

— Translate failure witness for propositional formula
into a failure witness for original ACL2 theorem

o Failure witness (an alist binding the free variables) is double-
checked by evaluating the theorem on witness

e The translation consists of two steps: trans-
late the theorem into a simple sublanguage and
then reduce the theorem to a propositional for-
mula,

| Step 1 of the Translation |

e First, translate the history and the proposed
ACL2 theorem into a history and theorem in a
sublanguage (ST) of ACL2

— ST histories are built from the primitives if, cons,
car, cdr, (quote nil)

— ST universe consists of trees where nil is the only
atom

e The input history and theorem is restricted to
be a sublanguage (MDL) of ACL2

— MDL histories are built from the primitives if, car,
cdr, cons, binary-+, n—-, <, naturalp, symbolp,
consp, equal, quote, ...

— MDL universe consists of trees where the only atoms
are symbols and natural numbers

— MDL could be extended, but resulting translation
could be more expensive

— Implicit assumption (constraint) of free variables in
MDL universe

| Translation of MDL universe |

e Translation from MDL to ST is essentially
defined by a translation of the MDL primitives
to ST functions

— This translation is based on mapping of MDL uni-
verse to ST universe:

(defun mdl-to-tree (x aux)

(cond
((null x) nil)
((consp x)

(st-make-cons (mdl-to-tree (car x) aux)

(mdl-to-tree (cdr x) aux)))

((naturalp x)

(st-make-nat (nat-to-list x)))
(t ;; (symbolp x)

(st-make-symb

(nat-to-list (location x (cons t aux)))))))

e aux parameter is a list of symbols automati-
cally computed from the MDL history

| Translation of MDL primitives |

e For each MDL primitive we define a corre-
sponding ST function

— e.g. binary-+ translates to st-binary-+:

(defun st-coerce-to-nat (x)
(if (st-naturalp x) x (st-make-nat nil)))

(defun st-binary-+valus (x y)
(if-cons x (cons nil (st-binary-+valus (cdr x) y)) y))

(defun st-binary-+ (x y)
(let ((x (st-coerce-to-nat x))
(y (st-coerce-to-nat y)))
(st-make-nat (st-binary-+valus (cdr x) (cdr y)))))

e We then need to prove that st-binary-+ is
a legal implementation of binary-+:

(implies (and (good-model-object-p x aux)
(good-model-object-p y aux))
(equal (mdl-to-tree (binary-+ x y) aux)
(st-binary-+ (mdl-to-tree x aux)
(mdl-to-tree y aux))))

| Step 2 of the Translation |

e We translate the theorem in ST into a propo-
sitional formula

— Propositional formulae (ITEs) are built from vari-
ables, booleans, and (if x y z) terms

o Common subterms are constructed uniquely

— FEach free variable in the ST theorem defines a

tree of propositional variables — tree variable posi-
tions(TVPs)

e The translation is an optimized rewriter which:

— Eliminates car and cdr applications (may generate
new TVPs)

— Reduce the tests of if terms to propositional formula

— Expand all functions (even recursive functions)

o We must provide mechanisms to avoid unwanted expansion

| Rewriting(evaluation) of ST terms |

(defun tfr-eval (term alist ctx fns)
(if (variablep term)
(let ((bound (assoc term alist)))
(if bound (cdr bound) term)))
(case (first term)
(quote nil)
(cons (list ’cons (tfr-eval (second term) alist ctx fns)
(tfr-eval (third term) alist ctx fns)))
((car cdr) (tfr-destruct (first term)
(tfr-eval (second term) alist ctx fns)))
(if (let* ((tst (ite-extract
(tfr-eval (second term) alist ctx fns)))
(t-ctx (ctx-and ctx tst))
(f-ctx (ctx-and ctx (ite-not tst))))
(cond
((ctx-empty f-ctx)
(tfr-eval (third term) alist t-ctx fns))
((ctx-empty t-ctx)
(tfr-eval (fourth term) alist f-ctx fns))
(t
(list ’if tst
(tfr-eval (third term) alist t-ctx fns)
(tfr-eval (fourth term) alist f-ctx fns))))))
(otherwise
(mv-let (formals body)
(if (flambdap operator)
(mv (lambda-formals operator)
(lambda-body operator))
(lookup-function operator fns))
(tfr-eval body
(tfr-eval-bind formals (rest term)
alist ctx fns)

ctx fns))))))))

| Elaborations and Optimizations |

e We need to maintain a context in order to
lazily evaluate if

— ctx-and is used to extend ctx and ctx-empty de-
termines if a ctz is consistent

— In our case, a context is a partial assignment of the
TVPs which must hold in the current context

o efficient and (hopefully) sufficient

e Several optimizations in the term representa-
tion and evaluation

— e.g. I'TEs and TVPs are constructed uniquely, hash
tables for lookup, etc.

e 'ITranslation maintains statistics on function
expansion to assist in determining where con-
straints are insuflicient

— The translator also provides depth bounds for each
function’s “stack”

10

| Translating ITE to SAT checker |

e In order to reduce the formula given to the
SAT checker, we perform an initial simplifica-
tion which:

— Iteratively constructs a partial assignment which
must hold for any satistying assignment

— Reduce the formula under this partial assignment

— Save the partial assignment to include with any re-

sults from SAT checker

o The <constraint> will often reduce to T

e We also need to communicate relationship be-
tween TVPs (i.e. (implies (car x) x))

e Translation to external SAT checkers involves
creation of input file, sys-call to run the SAT
checker, and parsing of the output file

11

| Translating SAT results to ACL2 |

e If the SAT check produces a failure witness,
the witness will define a (partial) assignment to
the propositional TVPs

— We first translate TVP assignment to a binding of
the free variables in the theorem to ST objects

— We then translate this assignment to a binding of free
variables with MDL objects using the inverse mapping
tree-to-mdl

— Finally, we double-check the failure witness on the
original theorem by evaluating the theorem

e In the case of our internal SAT checker, a
partial assignment can be returned which may
be useful in analyzing automatically generated
theorems

12

| Example: mutual exclusion |

(defun step-state (s f)

(case s
(try (if £ ’try ’go))
(go ‘wait)

(otherwise ’try)))

(defun step-flag (s f)

(case s
(try t)
(go nil)

(otherwise f)))

(defun next (1 n)
(let ((f (car 1))
(s (get-nth n (cdr 1))))
(cons (step-flag s f)
(set-nth n (step-state s f) (cdr 1)))))

(defun no-one-go (1)
(if (endp 1) t
(and (not (equal (car 1) ’go))
(no-one-go (cdr 1)))))

(defun only-one-go (1)
(and (consp 1)
(if (equal (car 1) ’go)
(no-one-go (cdr 1))
(only-one-go (cdr 1)))))

(defun good (1)
(if (car 1)
(only-one-go (cdr 1))
(no-one-go (cdr 1))))

13

| Example continued |

(defun boundedp (1 k)
(if (Op k) (not 1)
(and (consp 1)
(member (car 1) ’(try go wait))
(boundedp (cdr 1) (n- k 1)))))

(defun constrain (1 n k)
(and (consp 1)
(member (car 1) ’(t nil))
(boundedp (cdr 1) k)
(naturalp n)

(< n k)))
(check-thm
(implies (constrain 1 n 4)

(implies (good 1)
(good (next 1 n)))))

What makes a good constraint?

— The constraint should be sufficient for evaluation to
terminate (checker provides feedback)

— The weaker the constraint, the stronger the result

— A stronger constraint may afford more efficient SAT
checking and make failure witnesses easier to compre-

hend

14

| Future Work — guiding SAT |

e ['TE is natural form of translation

— Can asymmetry between test and branches provide
hints to decision structure during SAT check?

— Initial attempts at defining a SAT checker for ITE
forms failed because I did not see the relevance of split-
ting on intermediate nodes

o natural byproduct of translation to CNF

e The following case split is (roughly) sufficient:

— (car 1), and in the only-one-go case, a further
split on the location of ’go, and a case split on n

e Work continues on heuristics and user anno-

tation to better direct decisions made in SAT
checker

15

| Future Work — Proof of correctness |

e In some cases it would be useful to actually
prove theorems using the theorem checker

e The sanctioned approach is to define a meta-
function which maps terms to (provably) equiv-
alent terms, but evaluator is limited

(defthm theorem-checker-is-correct
(let* ((fns (assemble-MDL-functions term state))
(aux (quoted-symbols-in-fns fns)))
(implies (and (good-mdl-object-alist-p alist aux)
(equal (check-thm term) :qed))
(mdl-eval term alist fns))))

e In order to prove this, we will need to prove
each step of the translation is correct:

— Translation from MDL functions to ST functions is
consistent via mdl-to-tree

— Interpretation of term returned by tfr-eval is con-
sistent with evaluation of ST functions

16

