
1

On the Verification of
Synthesized Kalman Filters

Ruben Gamboa, John Cowles, Jeff Van Baalen

University of Wyoming

ACL2 Workshop 2003

Supported by NASA grant NAG 2-1570



2

The General Challenge

• Consider the automatic generation of software

? customized for a particular use

? optimized, taking advantage of domain knowledge

? based on theorem proving technology

• How can we verify the resulting software is correct?



3

Verifying the Process

• certify the software generator

? . . . may much more complex than the software it

generates

• problems: customizations, optimizations, complexity of

the generator, etc. make this a daunting challenge

• the same problem applies to theorem provers



4

Verifying the Product

• certify the software that is generated, regardless of the

generation process

• problems: software may be hard to read or understand

• solution: annotate generated software with a correctness

argument

• software can be inspected manually (or mechanically)



5

The Specific Challenge

• Verify the correctness of automatically generated

Kalman Filters

• Use “hints” in the generated code to guide the proof

• Process should be 100% automatic



6

Our Approach

• Separate the correctness of the program

? correctness of Kalman Filters

? correctness of the implementation

• Use as much manual intervention as necessary in the

first part

• The second part must be automatic



7

The Kalman Filter

The roots of the Kalman Filter are in estimation theory.

How can we predict the next value of the time-series x1,

x2, . . . , xn? This is especially important when the xi

can not be measured directly.



8

The Kalman Filter Conditions

zk = Hkxk + vk



8

The Kalman Filter Conditions

zk = Hkxk + vk

xk+1 = Φkxk + wk



8

The Kalman Filter Conditions

zk = Hkxk + vk

xk+1 = Φkxk + wk

E[vk] = 0 E[wk] = 0

E[vkvi
T] = δk−iRk E[wkwi

T] = δk−iQk



8

The Kalman Filter Conditions

zk = Hkxk + vk

xk+1 = Φkxk + wk

E[vk] = 0 E[wk] = 0

E[vkvi
T] = δk−iRk E[wkwi

T] = δk−iQk

E[vkwi
T] = 0



8

The Kalman Filter Conditions

zk = Hkxk + vk

xk+1 = Φkxk + wk

E[vk] = 0 E[wk] = 0

E[vkvi
T] = δk−iRk E[wkwi

T] = δk−iQk

E[vkwi
T] = 0

E[x0vk
T] = 0 E[x0wk

T] = 0



9

The Kalman Filter

The estimate x̂k that minimizes E[(x̂k− xk)(x̂k− xk)T] is

x̂k = xk + Kk(zk −Hkxk)

xk = Φk−1x̂k−1



9

The Kalman Filter

The estimate x̂k that minimizes E[(x̂k− xk)(x̂k− xk)T] is

x̂k = xk + Kk(zk −Hkxk)

xk = Φk−1x̂k−1

Kk = P kHk
T(

HkP kHk
T + Rk

)−1



9

The Kalman Filter

The estimate x̂k that minimizes E[(x̂k− xk)(x̂k− xk)T] is

x̂k = xk + Kk(zk −Hkxk)

xk = Φk−1x̂k−1

Kk = P kHk
T(

HkP kHk
T + Rk

)−1

P k = Φk−1Pk−1Φk−1
T + Qk−1



9

The Kalman Filter

The estimate x̂k that minimizes E[(x̂k− xk)(x̂k− xk)T] is

x̂k = xk + Kk(zk −Hkxk)

xk = Φk−1x̂k−1

Kk = P kHk
T(

HkP kHk
T + Rk

)−1

P k = Φk−1Pk−1Φk−1
T + Qk−1

Pk = (I −KkHk) P k



10

The Proof Outline

• Assumptions

? initial estimates of x0 and its error covariance P 0 are

known

? best estimate is a linear combination of the best prior

estimate and the measurement error



11

The Proof Outline

• Claims

? Pk = E[(xk − x̂k)(xk − x̂k)T]
? P k = E[(xk − xk)(xk − xk)T]
? x̂k is the best possible (linear) estimate of xk



12

Comments on the Proof

• Mathematics involves linear algebra, matrix calculus,

and multivariate probability theory

• Only linear algebra portion is formalized in ACL2

• Assuming some key facts from the other branches of

mathematics, the proof becomes an algebraic reduction



13

Taming Induction

• All functions we use are mutually recursive

• The proofs involve complex induction

• Our approach

? Avoid mutually recursive definitions

? Break complex (mutual) inductions into simpler

inductions by (temporarily) assuming the needed

instances of the mutual induction hypothesis



14

Matrix Inverses

• Matrix inverses appear in the computation of Kk

• How do we know these inverses exist?

? Currently, we are simply assuming they do

? In reality, they really do (matrices are pos. def.)

• In practice, if the algorithm fails to find an inverse, it

can report the failure and reinitialize the filter — how

can we capture this idea in ACL2?



15

Optimality Criterion

• Requires using matrix derivatives

• Currently, we are assuming the facts we need

• In principle, this could be formalized in ACL2(r)



16

Random Variables

• Proof uses several facts from multivariate probability

• Some of these are hard to formalize in ACL2

• In principle, we can formalize probability theory in

ACL2(r)



17

Verifying Generated Software

• Annotate software with mapping from software entities

to mathematical entities

• We verified a sample file — verification was fully

automatic

• Open question: will it be as easy to verify other

generated Kalman filters?


