On the Verification of Synthesized Kalman Filters

Ruben Gamboa, John Cowles, Jeff Van Baalen

University of Wyoming
ACL2 Workshop 2003
Supported by NASA grant NAG 2-1570

The General Challenge

- Consider the automatic generation of software * customized for a particular use夫 optimized, taking advantage of domain knowledge \star based on theorem proving technology
- How can we verify the resulting software is correct?

Verifying the Process

- certify the software generator * ... may much more complex than the software it generates
- problems: customizations, optimizations, complexity of the generator, etc. make this a daunting challenge
- the same problem applies to theorem provers

Verifying the Product

- certify the software that is generated, regardless of the generation process
- problems: software may be hard to read or understand
- solution: annotate generated software with a correctness argument
- software can be inspected manually (or mechanically)

The Specific Challenge

- Verify the correctness of automatically generated Kalman Filters
- Use "hints" in the generated code to guide the proof
- Process should be 100% automatic

Our Approach

- Separate the correctness of the program * correctness of Kalman Filters
^ correctness of the implementation
- Use as much manual intervention as necessary in the first part
- The second part must be automatic

The Kalman Filter

The roots of the Kalman Filter are in estimation theory. How can we predict the next value of the time-series x_{1}, x_{2}, \ldots, x_{n} ? This is especially important when the x_{i} can not be measured directly.

The Kalman Filter Conditions

$$
z_{k}=H_{k} x_{k}+v_{k}
$$

The Kalman Filter Conditions

$$
\begin{aligned}
z_{k} & =H_{k} x_{k}+v_{k} \\
x_{k+1} & =\Phi_{k} x_{k}+w_{k}
\end{aligned}
$$

The Kalman Filter Conditions

$$
\begin{array}{rl}
z_{k}= & H_{k} x_{k}+v_{k} \\
x_{k+1}= & \Phi_{k} x_{k}+w_{k} \\
E\left[v_{k}\right]=0 & E\left[w_{k}\right]=0 \\
E\left[v_{k} v_{i}^{\mathrm{T}}\right]=\delta_{k-i} R_{k} & E\left[w_{k} w_{i}^{\mathrm{T}}\right]=\delta_{k-i} Q_{k}
\end{array}
$$

The Kalman Filter Conditions

$$
\begin{array}{rl}
z_{k}= & H_{k} x_{k}+v_{k} \\
x_{k+1}= & \Phi_{k} x_{k}+w_{k} \\
E\left[v_{k}\right]=0 & E\left[w_{k}\right]=0 \\
E\left[v_{k} v_{i}^{\mathrm{T}}\right]=\delta_{k-i} R_{k} & E\left[w_{k} w_{i}^{\mathrm{T}}\right]=\delta_{k-i} Q_{k} \\
E\left[v_{k} w_{i}^{\mathrm{T}}\right]= & 0
\end{array}
$$

The Kalman Filter Conditions

$$
\begin{array}{rl}
z_{k}= & H_{k} x_{k}+v_{k} \\
x_{k+1}= & \Phi_{k} x_{k}+w_{k} \\
E\left[v_{k}\right]=0 & E\left[w_{k}\right]=0 \\
E\left[v_{k} v_{i}^{\mathrm{T}}\right]=\delta_{k-i} R_{k} & E\left[w_{k} w_{i}^{\mathrm{T}}\right]=\delta_{k-i} Q_{k} \\
E\left[v_{k} w_{i}^{\mathrm{T}}\right]= & 0 \\
E\left[x_{0} v_{k}{ }^{\mathrm{T}}\right]=0 & E\left[x_{0} w_{k}{ }^{\mathrm{T}}\right]=0
\end{array}
$$

The Kalman Filter

The estimate \hat{x}_{k} that minimizes $E\left[\left(\hat{x}_{k}-x_{k}\right)\left(\hat{x}_{k}-x_{k}\right)^{\mathrm{T}}\right]$ is

$$
\begin{aligned}
\hat{x}_{k} & =\bar{x}_{k}+K_{k}\left(z_{k}-H_{k} \bar{x}_{k}\right) \\
\bar{x}_{k} & =\Phi_{k-1} \hat{x}_{k-1}
\end{aligned}
$$

The Kalman Filter

The estimate \hat{x}_{k} that minimizes $E\left[\left(\hat{x}_{k}-x_{k}\right)\left(\hat{x}_{k}-x_{k}\right)^{\mathrm{T}}\right]$ is

$$
\begin{aligned}
\hat{x}_{k} & =\bar{x}_{k}+K_{k}\left(z_{k}-H_{k} \bar{x}_{k}\right) \\
\bar{x}_{k} & =\Phi_{k-1} \hat{x}_{k-1} \\
K_{k} & =\bar{P}_{k} H_{k}^{\mathrm{T}}\left(H_{k} \bar{P}_{k} H_{k}^{\mathrm{T}}+R_{k}\right)^{-1}
\end{aligned}
$$

The Kalman Filter

The estimate \hat{x}_{k} that minimizes $E\left[\left(\hat{x}_{k}-x_{k}\right)\left(\hat{x}_{k}-x_{k}\right)^{\mathrm{T}}\right]$ is

$$
\begin{aligned}
\hat{x}_{k} & =\bar{x}_{k}+K_{k}\left(z_{k}-H_{k} \bar{x}_{k}\right) \\
\bar{x}_{k} & =\Phi_{k-1} \hat{x}_{k-1} \\
K_{k} & =\bar{P}_{k} H_{k}^{\mathrm{T}}\left(H_{k} \bar{P}_{k} H_{k}^{\mathrm{T}}+R_{k}\right)^{-1} \\
\bar{P}_{k} & =\Phi_{k-1} P_{k-1} \Phi_{k-1}{ }^{\mathrm{T}}+Q_{k-1}
\end{aligned}
$$

The Kalman Filter

The estimate \hat{x}_{k} that minimizes $E\left[\left(\hat{x}_{k}-x_{k}\right)\left(\hat{x}_{k}-x_{k}\right)^{\mathrm{T}}\right]$ is

$$
\begin{aligned}
\hat{x}_{k} & =\bar{x}_{k}+K_{k}\left(z_{k}-H_{k} \bar{x}_{k}\right) \\
\bar{x}_{k} & =\Phi_{k-1} \hat{x}_{k-1} \\
K_{k} & =\bar{P}_{k} H_{k}^{\mathrm{T}}\left(H_{k} \bar{P}_{k} H_{k}^{\mathrm{T}}+R_{k}\right)^{-1} \\
\bar{P}_{k} & =\Phi_{k-1} P_{k-1} \Phi_{k-1}^{\mathrm{T}}+Q_{k-1} \\
P_{k} & =\left(I-K_{k} H_{k}\right) \bar{P}_{k}
\end{aligned}
$$

The Proof Outline

- Assumptions
* initial estimates of \bar{x}_{0} and its error covariance \bar{P}_{0} are known
* best estimate is a linear combination of the best prior estimate and the measurement error

The Proof Outline

Claims
$\star P_{k}=E\left[\left(x_{k}-\hat{x}_{k}\right)\left(x_{k}-\hat{x}_{k}\right)^{\mathrm{T}}\right]$
$\star \bar{P}_{k}=E\left[\left(x_{k}-\bar{x}_{k}\right)\left(x_{k}-\bar{x}_{k}\right)^{\mathrm{T}}\right]$
$\star \hat{x}_{k}$ is the best possible (linear) estimate of x_{k}

Comments on the Proof

- Mathematics involves linear algebra, matrix calculus, and multivariate probability theory
- Only linear algebra portion is formalized in ACL2
- Assuming some key facts from the other branches of mathematics, the proof becomes an algebraic reduction

Taming Induction

- All functions we use are mutually recursive
- The proofs involve complex induction
- Our approach
\star Avoid mutually recursive definitions
* Break complex (mutual) inductions into simpler inductions by (temporarily) assuming the needed instances of the mutual induction hypothesis

Matrix Inverses

- Matrix inverses appear in the computation of K_{k}
- How do we know these inverses exist?
\star Currently, we are simply assuming they do \star In reality, they really do (matrices are pos. def.)
- In practice, if the algorithm fails to find an inverse, it can report the failure and reinitialize the filter - how can we capture this idea in ACL2?

Optimality Criterion

- Requires using matrix derivatives
- Currently, we are assuming the facts we need
- In principle, this could be formalized in ACL2(r)

Random Variables

- Proof uses several facts from multivariate probability
- Some of these are hard to formalize in ACL2
- In principle, we can formalize probability theory in ACL2(r)

Verifying Generated Software

- Annotate software with mapping from software entities to mathematical entities
- We verified a sample file - verification was fully automatic
- Open question: will it be as easy to verify other generated Kalman filters?

