
Ordinal Arithmetic in ACL2

Panagiotis Manolios and Daron Vroon

Georgia Institute of Technology, College of Computing, CERCS Lab
801 Atlantic Drive, Atlanta, Georgia, 30332, USA,

{manolios,vroon}@cc.gatech.edu
http://www.cc.gatech.edu/∼{manolios,vroon}

Abstract. Ordinals form the basis for termination proofs in ACL2. Currently,
ACL2 uses a rather inefficient representation for the ordinals up to ε0 and
provides limited support for reasoning about them. We present algorithms for
ordinal arithmetic on an exponentially more compact representation than the
one used by ACL2. The algorithms have been implemented and numerous
properties of the arithmetic operators have been mechanically verified, thereby
greatly extending ACL2’s ability to reason about the ordinals. We describe how
to use the libraries containing these results, which are currently distributed with
ACL2 version 2.7.

1 Introduction

Termination proofs play a crucial role in the mechanical verification of systems. For
example, ACL2’s definitional principle requires that functions be shown to terminate
before they are admitted. Termination proofs are even useful in the context of reactive
systems, non-terminating systems that are engaged in on-going interaction with an
environment, as they are used to establish liveness properties by showing that the
desired behavior is not postponed forever. Proving the termination of a system is
accomplished by showing a relation corresponding to a decreasing “measure” of the
system is well-founded. Since every well-founded relation can be extended to a total
ordering that is isomorphic to an ordinal, it makes sense that systems such as ACL2
use ordinals as the basis for termination proofs.

The theory of ordinals has been studied for over 100 years, since it was introduced
by Cantor as the core of his set theory [1, 2] (see also the English translation [3]). Ordi-
nals have subsequently played an important role in logic, e.g., they are routinely used
to prove the consistency of logical systems. This practice was introduced by Gentzen,
when he proved the consistency of Peano arithmetic using induction up to ε0 [9]. In
order to obtain constructive proofs, constructive ordinal notations are used [16, 20].
The general theory of these notations was initiated by Church and Kleene [4] and is
reviewed in Chapter 11 of Roger’s book on computability [15].

Although ordinal notations have been studied extensively by various communities
for over a century, we have been unable to find a comprehensive treatment of arithmetic
for ordinal notations. We define the ordinal arithmetic problem for a notational system
denoting ordinals up to some ordinal δ as follows: given α and β, expressions in the
system denoting ordinals less than δ, is γ the expression corresponding to α?β, where



? can be any of +,−, ·, exponentiation? Solving this problem amounts to defining
algorithms for arithmetic operations in the given notational system. While partial
solutions to this problem are presented in various texts and papers [16, 6, 8, 14, 17,
20], (for example, definitions for < appear in many of the above sources), we have
not found any similar statement of this problem nor any comprehensive solution in
previous work.

In a companion paper, we present efficient algorithms for ordinal addition, sub-
traction, multiplication, and exponentiation on succinct ordinal representations, prove
their correctness, and analyze their complexity [13]. In this paper, we discuss the ACL2
mechanization, as we use ACL2 to define our ordinal representation and arithmetic
algorithms. Our representation is exponentially more compact than the current repre-
sentation in ACL2 and we prove that the ordinals in our representation are isomorphic
to the ACL2 ordinals. This makes it possible for users to use our representation by
issuing a single command. In addition, we discuss an ACL2 library of theorems about
ordinal arithmetic. This library significantly increases the extent to which ACL2 can
automatically reason about ordinals and also makes it easier to reason about ordinals
from a human perspective. Previously, users were forced to define functions that ex-
plicitly constructed ordinals and had to reason about the representations. With our
library, users can for the most part use the algebraic properties of the ordinals while
ignoring representational issues. The library is now part of version 2.7 of the ACL2
distribution.

Our paper is organized as follows. In Section 2, we give a brief overview of the theory
of ordinals and ordinal arithmetic, we compare our representation of the ordinals with
the current system employed by ACL2, and we give an overview of the properties
of the ordinal arithmetic operators. In Section 3 we define our algorithms for the
arithmetic operators and give informal proofs of correctness. In Section 4, we give a
brief overview of how to use the books in ACL2. In Section 5, we consider complexity
issues. Section 6 contains our conclusions and outlines future work.

2 Ordinals

2.1 Set-Theoretic Ordinals

We briefly review the theory of ordinal numbers [7, 12, 16]. A relation, ≺ is said
to be well-founded if every decreasing sequence is finite. A well-ordering is a total,
well-founded relation.

A woset is a pair 〈X,≺〉, such that ≺ is a well-ordered relation over X. Given a
woset 〈X,≺〉, and an element a ∈ X, we define Xa to be {x ∈ X|x ≺ a}. An ordinal
is a woset, 〈X,≺〉, such that for all a ∈ X, a = Xa. Note that if 〈X,≺〉 is an ordinal
and a ∈ X, then a is an ordinal and ≺ is ∈.

For the remainder of the paper, we will use lowercase Greek letters to denote
ordinals, and < and ∈ to denote the well-ordering.

Given two wosets, 〈X,≺〉 and 〈X ′,≺′〉, we say a function f : X → X ′ is said to
be isomorphic if it is a bijection and for all x, y ∈ X, x ≺ y ≡ f.x ≺′ f.y. It is a
well-known result of set theory that every woset is isomorphic to a unique ordinal.

2



Since termination is established using well-founded relations, which can be extended
to well-ordered relations, we see that the theory of ordinals is the most general setting
for termination proofs. Given a woset, 〈X,≺〉, we denote the unique ordinal to which
it is isomorphic by Ord(X,≺).

Given an ordinal, α, its successor, denoted α′, is the ordinal α ∪ {α}. There is
clearly a minimal ordinal, ∅, usually denoted by 0. The successor of 0 is 0′ = {0}, and
is denoted by 1. It is the second smallest ordinal. The next smallest is 2 = 1′ = {0, 1}.
By continuing in this manner, we obtain the natural numbers.

A limit ordinal is a non-zero ordinal that is not a successor. The smallest of these
is the set of all natural numbers, denoted ω. We now provide definitions for arithmetic
functions over the ordinals.

Definition 1. α + β = Ord(A,<A), where A = ({0} × α) ∪ ({1} × β) and <A is the
lexicographic ordering on A.

Definition 2. α− β is defined to be 0 if α ≤ β, otherwise, it is the unique ordinal, ξ
such that β + ξ = α.

Definition 3. α · β = Ord(A,<A), where A =
⋃

ξ<β({ξ} × α) and <A is the lexico-
graphic ordering on A.

Definition 4. Given any ordinal, α, we define exponentiation using transfinite in-
duction: α0 = 1, αβ+1 = α · αβ, and for β a limit ordinal, αβ =

⋃
ξ<β αξ.

Using these ordinal operations, we can extend our hierarchy of ordinals:
0, 1, 2, . . . , ω, ω + 1, ω + 2, . . . , ω · 2, ω · 2 + 1, . . . ω2, . . . ω3, . . . , ωω, and so on. Even-

tually, we reach the ordinal ε0 = ωωω...

, which is the smallest ordinal, α such that
α = ωα.

2.2 Representation

ACL2 currently represents ordinals up to (but not including) ε0. The representation
is based on a well-known theorem by Cantor:

Theorem 1. For every ordinal α 6= 0, there are unique α1 ≥ α2 ≥ · · · ≥ αn, where
n ≥ 1, such that α ≥ α1 and α = ωα1 + · · ·+ ωαn .

This normal form is known as Cantor Normal Form (CNF). For example, w ·2+3 =
ω1 +w1 +ω0 +ω0 +ω0. However, since the sum of all terms of the form w0 is a natural
number and since ε0 is the smallest ordinal, α, such that α = ωα, we get the following
corollary:

Corollary 1. For every ordinal α ∈ ε0, there are unique n, p ∈ ω and α1 ≥ α2 ≥
· · · ≥ αn > 0 such that α > α1 and α = ωα1 + · · ·+ ωαn + p.

We can define a function, f to convert any ordinal α ∈ ε0 to its ACL2 represen-
tation. Let ωα1 + · · · + ωαn + p ∈ ε0 be the CNF decomposition of α according to
Corollary 1. Then,

3



f.α =
{

α, if α ∈ ω
(f.α1 f.α2 . . . f.αn . p) otherwise

For example, f(5) = 5, f(ω4+ω4+ω2+ω+3) = (4 4 2 1 . 3), and f(ωω+ω2+ω2)
= ((1 . 0) 2 2 . 0). A further explanation of the ordinal representation used in
ACL2 can be found in [10].

Our representation of the ordinals is similar to ACL2’s, but uses the left distributive
property of ordinal multiplication over addition to make it more compact. It is a well
known result of the theory of ordinals that, for all α, β, and γ, we have α(β + γ) =
αβ +αγ. Using this fact we can collect like terms. For example, ωα +ωα +ωα = ωα ·3.
Hence, we get a new corollary to Theorem 1:

Corollary 2. For every ordinal 0 < α < ε0, there are unique α1 > α2 > · · · > αn >
0(n ∈ ω), k1, k2, . . . , kn ∈ ω\{0}, and p ∈ ω such that α1 < α and α =

∑n
i=1 ωαiki+p.

Thus, we can define another function, CNF to convert any ordinal α ∈ ε0 into
our representation. Let

∑n
i=1 ωαiki + p be the CNF decomposition of α according to

Corollary 2. Then,

CNF.α =
{

α, if α ∈ ω
((CNF.α1 . k1) (CNF.α2 . k2) . . . (CNF.αn . kn) . p) otherwise

For the same examples we used before, we get CNF(5) = 5, CNF(ω4+ω4+ω2+ω+3)
= ((4 . 2) (2 . 1) (1 . 1) . 3), and CNF(ωω +ω2+ω2) = (((1 . 0) . 1) (2
. 2) . 0).

Lemma 1. The ordinal representation in Corollary 2 is exponentially more succinct
than the representation in Corollary 1.

Proof Consider ω ·k: it requires O(k) bits with the representation in Corollary 1 and
O(log k) bits with the representation in Corollary 2. �

For example, f(ω5 ∗ 10) = (5 5 5 5 5 5 5 5 5 5 . 0), while CNF(ω5 ∗ 10) =
((5 . 10) . 0). Instead of replicating 5 10 times, we store the number 10, which is
exponentially more succinct.

2.3 Properties

The following are well-known properties of arithmetic operations over the ordinals.
Proofs of these properties are distributed across various texts on proof theory and set
theory [16, 7, 12]. We use these properties to prove the correctness of our algorithms as
follows. Recall that by Corollary 2 we have a canonical representation for the ordinals
up to ε0. Thus, to show that an algorithm for some (say binary) arithmetic operator,
?, is correct, we show that when the algorithm is given a and b as inputs, it returns
c, such that if a is the ordinal representation of α and b is the ordinal representation
of β, then c is the ordinal representation of α ? β. Such proofs are not carried out in
ACL2 as this would require formalizing ZFC. Instead, they are carried out in the meta

4



level, using standard mathematical arguments. Detailed proofs appear in [13]; here we
only give the proof ideas.

Almost all of the following properties appear as theorems in our library on ordinal
representations. The four properties marked with a “†” do not appear in the library,
but the proofs are simple consequences the theorems we do prove.

The ordering relation on ordinals satisfies the following properties.

¬(α < α)
β < α ⇒ ¬(α < β) ∧ ¬(α = β)
α < β ∧ β < γ ⇒ α < γ
¬(α < β) ∧ ¬(α = β) ⇒ β < α

Ordinal addition and subtraction satisfy the following properties.

α + 0 = α
0 + α = α
α < α + 1

† α + 1 = α′

α < β ≡ α + 1 ≤ β
α < β + 1 ≡ α ≤ β
α ≤ β + α
α ≤ α + β
(α + β) + γ = α + (β + γ) (associativity)
(β < γ) ⇒ α + β < α + γ (strict right monotonicity)
(β < γ) ⇒ β + α ≤ γ + α (weak left monotonicity)
(α < ωβ) ⇒ α + ωβ = ωβ (additive principal property)

† (α, β < ωγ) ⇒ α + β < ωγ (closure of additive principal ordinals)
α− α = 0
α− β ≤ α
α ≤ β ⇒ α + (β − α) = β
α + γ = β ⇒ β − α = γ
α + β = α + γ ≡ β = γ

Ordinal multiplication satisfies the following properties.

α0 = 0
0α = 0
α1 = α
1α = α

† n ∈ ω ∧ n > 0 ⇒ n · ω = ω
(α · β) · γ = α · (β · γ) (associativity)
(β < γ) ⇒ α · β < α · γ (strict right monotonicity 1)
(β ≤ γ) ⇒ α · β ≤ α · γ (strict right monotonicity 2)
(β < γ) ⇒ β · α ≤ γ · α (weak left monotonicity)
α · (β + γ) = (α · β) + (α · γ) (left distributivity)

5



Ordinal exponentiation has the following properties.

α0 = 1
α1 = α
0 < α ⇒ 0α = 0
1α = 1
αβ · αγ = αβ+γ

(αβ)γ = αβ·γ

(β < γ) ⇒ αβ < αγ (strict right monotonicity)
(β < γ) ⇒ βα ≤ γα (weak left monotonicity)

† (p ∈ ω) ⇒ pω = ω

Limit ordinals satisfy the following properties

lim.β ⇒ α < β ≡ α + 1 < β
lim.β ∧ α < ωβ ⇒ 〈∃γ :: α < γ ∧ γ < ωβ〉

In addition to these theorems, we created counterexamples to the following con-
jectures in ACL2.

α + β = β + α fails when α = 1, β = ω
β < γ ⇒ β + α < γ + α fails when α = ω, β = 1, and γ = 2
(α + β)− γ = α + (β − γ) fails when α = ω + 1, β = 1, and γ = 2
αβ = βα fails when α = 2, β = ω
(β + γ)α = βα + γα fails when α = ω, β = 1, and γ = 1
β < γ ⇒ βα < γα fails when α = ω, β = 1, and γ = 2
(αβ)γ = αγβγ fails when α = 2, β = 2, and γ = ω
(β < γ) ⇒ βα < γα fails when α = ω, β = 2, and γ = 3

3 Ordinal arithmetic in ACL2

In this section, we explain our algorithms for the ordinal arithmetic operators given
above. Given an expression in our ordinal representation, a = ((a1 . k1) (a2 . k2)
. . . (an . kn) . p), we call each pair (ai . ki) a term. If

∑n
i=1 ωαiki + p is the

ordinal corresponding to a in its CNF decomposition, we can think of each term,
(ai . ki), as corresponding to ωαiki (where ai corresponds to αi). The first exponent
of a is a1 (the first component of the first term of a) and the first coefficient of a is
k1 (the second component of the first term of a).

We begin by defining some helper functions. The functions appearing in the library
also have guards (which we verify), but such issues are not considered in this paper.

(defun natp (x)
"Recognizer for natural numbers"
(and (integerp x)

(<= 0 x)))

6



(defun posp (x)
"Recognizer for positive integers"
(and (integerp x)

(< 0 x)))

(defun first-exp (x)
"The exponent of the first term of a cnf ordinal"
(if (atom x)

0
(caar x)))

(defun first-coef (x)
"The coefficient of the first term of a cnf ordinal"
(if (atom x)

x
(cdar x)))

(defmacro first-term (x)
"gives the first term of x"
‘(cons (cons (first-exp ,x) (first-coef ,x)) 0))

(defun omega-term (x k)
"Creates (wˆx)*k"
(cons (cons x k) 0))

3.1 The Irreflexive Ordering

We start by defining o<, the ordering function for our ordinal representation.

(defun o< (x y)
"The less-than relation on cnf ordinals"
(cond ((atom x)

(or (consp y) (< x y)))
((atom y) nil)
((not (equal (first-exp x) (first-exp y)))
(o< (first-exp x) (first-exp y)))

((not (= (first-coef x) (first-coef y)))
(< (first-coef x) (first-coef y)))

(t (o< (cdr x) (cdr y)))))

In the sequel, we assume that α and β are the ordinals corresponding to x and y,
respectively. We now show (o< x y) holds iff α < β. First note that α > ω iff x is
a cons. Hence, if x is an atom, it is a natural number. Thus, if y is a cons, or y is a
natural number greater than x, we return true. Otherwise, x is a cons, and therefore
an ordinal greater than ω. Thus if y is an atom, it is less than x. Otherwise, both
x and y are conses, and it follows that α is of the form ωα1k1 + γ, where γ < ωα1 ,

7



thus α < ωα1(k1 + 1) Therefore, if the first exponent of y is greater than that of x,
we know that x must be less than y. The same argument holds if the first exponent
of x is greater than that of y. If the exponents are equal, we look at the coefficients.
Again, if one of the arguments has a greater coefficient than the other, we know it
is the greater of the two. Finally, if the first exponents and the first coefficients are
both equal, then the first terms are equal, so we apply the strong left monotonicity of
ordinal addition. By this property we know that x is less than y iff the cdr of x is less
than the cdr of y. Thus, we recurse into the cdr of both arguments.

3.2 The Ordinal Predicate

Now we examine op, the predicate which determines if the argument is an ordinal in
our representation.

(defun op (a)
"A recognizer for cnf ordinals"
(if (atom a)

(natp a)
(and (consp (car a))

(op (first-exp a))
(not (eql 0 (first-exp a)))
(posp (first-coef a))
(op (cdr a))
(o< (first-exp (cdr a))

(first-exp a)))))

The correctness of this function is easy to see, since it directly follows from Corol-
lary 2 and the definition of CNF.

3.3 Addition

Next, we examine ordinal addition. We define here the binary function, ob+, which
takes 2 ordinals as input and adds them together.

(defun ob+ (x y)
"Ordinal addition"
(let ((x0 (first-exp x)) (y0 (first-exp y))

(x1 (first-coef x)) (y1 (first-coef y)))
(cond ((and (atom x) (atom y)) (+ x y))

((or (atom x) (o< x0 y0)) y)
((o< y0 x0) (cons (cons x0 x1)

(ob+ (cdr x) y)))
(t (cons (cons x0 (+ x1 y1))

(cdr y))))))

If both arguments are atoms, they are natural numbers and are simply added using
+. Otherwise, due to the additive principal property, we know that y will smash any
term in x with a smaller exponent than the first exponent of y. Hence, we walk down

8



x, copying it, until an exponent is found that is less than or equal to the first exponent
of y (the third case of the cond). If the exponents are equal (the last case of the cond),
the left distributive property is employed: the first coefficients are added and the rest
of y is tacked onto the end. Otherwise, all of y is tacked onto the end (the second case
of the cond). In other words, y smashes all the terms of x with smaller exponents.

3.4 Subtraction

Ordinal subtraction is very similar in structure to addition.

(defun o- (x y)
"Ordinal subtraction"
(let ((x0 (first-exp x)) (y0 (first-exp y))

(x1 (first-coef x)) (y1 (first-coef y)))
(cond ((o< x y) 0)

((and (atom x) (atom y)) (- x y))
((or (atom y) (o< y0 x0)) x)
((< y1 x1) (cons (cons x0 (- x1 y1))

(cdr x)))
(t (o- (cdr x) (cdr y))))))

If y is greater than x, we return 0. The cases where we are dealing with natural
numbers are easy to see. Otherwise, if the first exponent of x is greater than or equal
to that of y, we return x, as β + α = α (recall that we are assuming that α and β are
the ordinals corresponding to x and y, respectively). Otherwise, the first exponents
are equal and we look at the coefficients; if they are different, we subtract them and
tack on the end of x. Otherwise, we subtract (cdr y) from (cdr x). The correctness
follows from the correctness of ob+. It is easily verified that (ob+ x (o- y x)) = y
if (o< x y).

3.5 Multiplication

Next, we examine ob*.

(defun ob* (x y)
"Ordinal multiplication"
(let ((x0 (first-exp x)) (y0 (first-exp y))

(x1 (first-coef x)) (y1 (first-coef y)))
(cond ((or (equal x 0) (equal y 0)) 0)

((and (atom x) (atom y)) (* x y))
((atom y)
(cons (cons x0 (* x1 y1))

(cdr x)))
(t (cons (cons (o+ x0 y0)

y1)
(ob* x (cdr y)))))))

9



If either argument to ob* is 0, we return 0. If they are both atoms, we multiply
them using *. If only y is an atom, then we are adding x to itself y times. Now, if we
consider the addition algorithm, we see that we smash everything but the first term
of all but the last x, which is equivalent to modifying x so that the first coefficient is
(* x1 y1) (recall that y1 is y in this case).

For the last case, we have that y is a cons. We consider two cases. If x is an atom,
say representing n, then (ob* x y) corresponds to n(ωβ1 l1 + · · ·+ wβj lj + q), which
is ωβ1 l1 + · · · + wβj lj + nq, as for any additive principal ordinal α > 1 (i.e., α = ωβ

for some β) and natural number p > 0, p · α = α. We return the representation
of this ordinal, as x0 is 0, thus (o+ x0 y0) is y0. In the second case, both x and
y are infinite ordinals and we are adding x to itself an infinite number of times.
First we use the left distributive property, multiplying x by each term in y. If we are
multiplying by a natural number, we already know what to do. The interesting part
is when we are multiplying by an infinite term, (y0 . y1), representing ωy0y1. The
key insight here is that x is less than (cons (cons x0 (+ x1 1)) 0), and at least
as great as (cons (cons x0 x1) 0). But since a natural number multiplied by an
infinite additive principal ordinal on the right is just that infinite ordinal, we see that
ωx0x1 · ωy0y1 = ωx0 · (x1 · ωy0) · y1 = ωx0 · ωy0y1 = ωx0+y0y1. By the same argument,
ωx0(x1 + 1) · ωy0y1 = ωx0+y0y1. Therefore, we know that x multiplied by (y0 . y1)
is (cons (o+ x0 y0) y1). Recognizing that the exponents of y are decreasing and
using the strong left monotonicity of addition, we can simply compute each term as
shown above and cons them together to get the product.

3.6 Exponentiation

In Figure 1, we present obˆ. First, we take care of the base cases, when y is 0 or x is 1 or
x is 0. If y is an atom, we simply return the representation of α ·αβ−1 (recall that α, β
correspond to x, y). Otherwise, y is a cons and we distribute the exponentiation over x
and multiply the results, since α(β+γ) = αβ ·αγ for all α, β, γ. How this is done depends
on whether x is a cons or an atom. When x is an atom, say representing n, we use the
fact that nω = ω, e.g., we use that nωα

= nω1+α−1
= nω∗ωα−1

= (nω)ωα−1
= ωωα−1

.
Finally, if x is a cons, we multiply the first exponent of x by the first term of y to
obtain the first exponent of the first component of the product; the second component
of the product is obtained by raising x to the (cdr y).

4 Ordinal Library Overview

In this section, we discuss some of the interesting aspects of our library, and give some
pointers on how to use it effectively.

4.1 The Books

The ordinal library is composed of ten books. The first is top-with-meta, which
simply includes the arithmetic books necessary to deal with operations over the natural
numbers.

10



(defun obˆ (x y)

"Ordinal exponentiation"

(let ((x0 (first-exp x))

(y0 (first-exp y))

(y1 (first-coef y)))

(cond ((or (and (atom y)

(not (posp y))) ;(zp y))

(equal x 1))

1)

((equal x 0)

0)

((atom y)

(o* x (obˆ x (1- y))))

((atom x)

(if (equal y0 1)

(o* (omega-term y1 1)

(obˆ x (cdr y)))

(o* (omega-term (omega-term (o- y0 1)

y1)

1)

(obˆ x (cdr y)))))

(t

(o* (omega-term (o* x0 (first-term y))

1)

(obˆ x (cdr y)))))))

Fig. 1. Ordinal exponentiation.

11



The second is ordinal-definitions, almost all of which we have already covered.
The two omissions so far are the guards and several macros defining our binary oper-
ations on an arbitrary number of arguments. The guards are rather straightforward.
The macros are defined as shown below.

(defmacro o+ (&rest rst)
; based on the macro +
(if rst

(if (cdr rst)
(xxxjoin ’ob+ rst)

(car rst))
0))

(defmacro o* (&rest rst)
; based on the macro *
(cond ((null rst) 1)

((null (cdr rst))
(car rst))

(t (xxxjoin ’ob* rst))))

(defmacro oˆ (&rest rst)
; based on the macro *
(cond ((null rst) 1)

((null (cdr rst))
(car rst))

(t (xxxjoin ’obˆ rst))))

All of these macros apply the binary operator associated with them to an arbitrary
number of arguments, associating the operator to the right. For example, (o+ a b
c d) opens up to (ob+ a (ob+ b (ob+ c (ob+ d)))). This is similar to the way
the macros + and * behave. In order to allow the user to reason about the more
readable macros than their messy expansions into the binary operators, we included
the following lines in this book.

(add-binop o+ ob+)
(add-binop o* ob*)
(add-binop oˆ obˆ)

The add-binop command tells ACL2 to write the binary operation in terms of
the macro. Again, this is similar to the way ACL2 treats +, which is never printed as
binary-+. This does not affect the way ACL2 reasons about the binary operations. It
simply cleans up the output in order to make it more readable.

Also, note that we defined the strict (irreflexive) version of the ordering function.
We chose to define this rather than the reflexive version of the ordering (≤) because the
irreflexive version is a well-ordering, and therefore more useful for termination proofs.
In addition, the irreflexive ordering is necessary to prove our ordinals isomorphic
to the ACL2 ordinals. However, in the basic-definitions-thms book, we prove
trichotomy. That is, we prove for any ordinals, a and b, either (o< a b), (o< b a),

12



or (equal a b). Therefore, it should be easy to define a reflexive ordering and reason
about it, for those users who wish to do so.

In addition to trichotomy, the basic-definitions-thms book contains basic the-
orems about the helper functions, as well as o< and op (the predicate recognizing or-
dinals in our representation). After these theorems are proved, we disable the function
definitions. We found that this not only helped to make the ordinal representation
transparent to the user, but also significantly sped up the theorems in subsequent
books.

The ordinal-addition, ordinal-multiplication, and ordinal-exponentiation
books contain the main results about the ordinal operations. We began with lists of
properties about the ordinals similar to the ones presented in this paper, and proved
them along with any necessary lemmas. It is, however, important to note that there
are a few theorems we export from each file that are not in our list of properties. The
most important of these involve building a theory about each function in terms of
the helper functions we created. For each of the operators, we include theorems about
the value of their first exponents, first coefficients, and cdrs, as well as under what
circumstances they return atoms (finite ordinals) or conses (infinite ordinals). The
importance of these theorems is that they allow us to reason about the ordinals alge-
braically rather than structurally. Once we build up this theory about the function,
we can disable its definition, and still effectively use it to reason about the ordinals.

The limits book contains proofs about limit ordinals (in our representation, this
corresponds to infinite ordinals with a 0 as their last element).

In the ordinal-isomorphism book we show that our representation is isomorphic
to the ACL2 ordinals. More precisely, let Oc be the set of objects that correspond to
ordinals in our representation, and let Oa be the set of objects representing the ACL2
ordinals. The purpose of this book is to show that Oc is isomorphic to Oa. To this
end, we created two functions: ctoa, which maps Oc to Oa, and atoc, which Oa to
Oc. To show that our representation is isomorphic to the ordinals in ACL2, we show
the following:

1. ctoa is well defined. That is, x ∈ Oc ⇒ (ctoa x) ∈ Oa. Translating this to ACL2
gives us:

(implies (op x)
(e0-ordinalp (ctoa x)))

We also proved the equivalent theorem for atoc:

(implies (e0-ordinalp x)
(op (ctoa x)))

2. ctoa is surjective. By definition, this means 〈∀x ∈ Oa :: 〈∃y ∈ Oc :: (ctoa y) =
x〉〉. We prove this by showing that atoc is the inverse of ctoa. Thus, given x ∈ Oa,
we have that (ctoa (atoc x)) = x. In ACL2, this becomes:

(implies (e0-ordinalp x)
(equal (ctoa (atoc x))

x))

We also proved the equivalent theorem for atoc:

13



(implies (op x)
(equal (atoc (ctoa x))

x))

3. ctoa is injective, i.e., 〈∀x, y ∈ Oc :: (ctoa x) = (ctoa y)⇒ x = y〉. In ACL2:

(implies (and (op x)
(op y))

(equal (equal (ctoa x) (ctoa y))
(equal x y)))

We also proved the equivalent theorem for atoc:

(implies (and (e0-ordinalp x)
(e0-ordinalp y))

(equal (equal (atoc x) (atoc y))
(equal x y)))

4. ctoa is homomorphic with respect to o< and e0-ord-<. That is, x, y ∈ Oc such
that (o< x y)⇒ (e0-ord-< (ctoa x) (ctoa y). In ACL2, this is:

(implies (and (op x)
(op y))

(equal (e0-ord-< (ctoa x)
(ctoa y))

(o< x y)))

and equivalently for atoc

(implies (and (e0-ordinalp x)
(e0-ordinalp y))

(equal (o< (atoc x)
(atoc y))

(e0-ord-< x y)))

Hence, the ordinal-isomorphism book shows our representation of the ordinals
to be isomorphic to the ACL2 ordinals. As an added bonus, these theorems imply that
our representation is a well-founded relation. Hence, we prove the following theorem:

(defthm well-founded-cnf
(and (implies (op x) (e0-ordinalp (ctoa x)))

(implies (and (op x)
(op y)
(o< x y))

(e0-ord-< (ctoa x) (ctoa y))))
:rule-classes :well-founded-relation)

The “:rule-classes :well-founded-relation” statement allows the user to set
the default well-founded relation used by ACL2 to prove termination to be our ordinal
representation. To do this, simply run the following command:

(set-well-founded-relation o<)

14



More on the set-well-founded-relation command can be found in the ACL2
online documentation [11]. Note that since our relation and representation are identical
to the ACL2 ordinals for natural numbers, and since ACL2’s automatic measure gen-
eration only generates measures that are natural numbers, changing the well-founded
relation will not affect ACL2’s automatic measure generation.

The final book in our library is ordinal-counter-examples, which contains the
counter-examples listed earlier in this paper.

4.2 Using the Books

As we stated previously, one of our goals for this library is to allow the user to reason
about our ordinal representation and functions algebraically rather than structurally.
We have found that ACL2 is rather eager to open up the definitions of our functions,
so we recommend that in most cases the user disable the definitions of o<, o+, o-, o*,
and oˆ. This will force ACL2 to use the theorems we proved about these functions,
making it easier for the user to follow ACL2’s reasoning; this also tends to lead to
significantly shorter proofs.

For this same reason, we recommend that for termination proofs the user construct
ordinals algebraically rather than constructively. As a simple example, consider Ex-
ercise 6.15 in Computer-Aided Reasoning: An Approach [10], which asks the user to
come up with a measure for Ackermann’s function:

(defun ack (x y)
(if (zp x)

1
(if (zp y)

(if (equal x 1) 2 (+ x 2))
(ack (ack (1- x) y) (1- y)))))

A measure based on the ACL2 ordinals is (cons (1+ (nfix y)) (nfix x)),
which corresponds to the ordinal ωy+1 + x. Using our ordinals, a solution to this
exercise is (o+ (o* (omega) (nfix y)) (nfix x)), which corresponds to the ordi-
nal ωy + x. First note that the solution based on our ordinals is more easily readable
than the solution based on the ACL2 ordinals, as in our solution the representation
of the ordinals is completely hidden. Second, note that the ACL2 solution uses much
larger ordinals than the solution in our representation, because the ACL2 represen-
tation makes it easier to use cons. (No matter what the values of x and y are, our
measure function is guaranteed to return an ordinal less than ω2, whereas the upper
bound on the ACL2 measure is ωω.) Finally, note that since our functions return or-
dinals in our representation when passed ordinals in our representation, the user does
not need to worry about whether an ordinal is constructed in all cases. In the ACL2
solution, on the other hand, the user must add 1 to y to make sure that the exponent
in the constructed ordinal is not a 0.

Finally, we note that the user may need to enable the function definitions when
proving theorems about a newly defined function that constructs ordinals directly. For
example, if the user were to define a new multiplication function that constructed the

15



ordinals in a different way and wanted to prove it equivalent to o*, it may be necessary
to enable o*’s definition.

5 Complexity

When writing the algebraic operators for this library, we were more concerned with
making them easy for ACL2 to reason about than with the complexity. However, we
found that our algorithms were surprisingly efficient. This becomes an issue when
ACL2 uses the executable counterpart of our functions to compute ground expres-
sions involving ordinal operations or uses the definition as a rewrite rule to simplify
expressions involving ordinals. Since releasing this library, we have come up with more
efficient algorithms, which will appear in [13]. However, here we present the complex-
ity of o< and op, which have the same complexity as the version that will appear in
the next release of the library.

For our analysis, we assume that the integer operations have constant running
time. One can account for integer operations using the fastest known algorithms. We
take this approach to allow us to focus on the interesting aspects of the algorithm.

Let the function (size a) give the size of an ordinal expression in ACL2. We
define it such that

(defun size (x)
(if (atom x)

1
(+ (size (first-exp a))

(size (cdr a)))))

Theorem 2. (o< a b) runs in time O(min((size a), (size b))).

The complexity of this function is bounded by the recurrence relation

T (a, b) =
{

c, if (atom a) or (atom b)
T ((first-exp a), (first-exp b)) + T ((cdr a), (cdr b)) + c, otherwise

for some constant value, c. We will show that T (a, b) ≤ k·min((size a), (size b))−t
for any constants, k, t, such that t ≥ c and k ≥ c + t. If (atom a) or (atom b),
then min((size a), (size b)) = 1. Hence, we get T (a, b) = c ≤ k − t = k ·
min((size a), (size b))− t. Otherwise, using the induction hypothesis, we get

T (a, b) = T ((first-exp a), (first-exp b)) + T ((cdr a), (cdr b)) + c

≤ k ·min((size (first-exp a)), (size (first-exp b)))− t

+ k ·min((size (cdr a)), (size (cdr b)))− t + c

≤ k ·min((size (first-exp a)) + (size (cdr a)),

(size (first-exp b)) + (size (cdr b)))− 2t + c

≤ k ·min((size (first-exp a)) + (size (cdr a)),

(size (first-exp b)) + (size (cdr b)))− t { t ≥ c }
≤ k ·min((size a), (size b))− t �

16



Lemma 2. 〈∀x ∈ ω ::
(
2x
x

)
≥ 2x〉.

Proof If x = 0, then 1 ≥ 1, else
(
2x
x

)
= (2x)!

x!x! = (2x)(2x−1)···(x+1)
x(x−1)···1 ≥ 2 · · · 2 ≥ 2x �

Lemma 3. 〈∀x, y ∈ ω :: x ≤ y ⇒ xxyy2x ≤ (x + y)x+y〉

Proof (x + y)x+y ≥ { by the binomial theorem } xxyy
(
x+y

x

)
≥ {y ≥ x}

xxyy
(
2x
x

)
≥ { by Lemma 2 } xxyy2x �

Lemma 4. 〈∀x, y ∈ ω :: x ≤ y ⇒ x log x + y log y + x ≤ (x + y) log(x + y)〉

Proof By Lemma 3, we know that xxyy2x ≤ (x + y)x+y. By the monotonicity
of log, this implies log(xxyy2x) ≤ log[(x + y)x+y], i.e., log xx + log yy + log 2x ≤
(x + y) log(x + y), i.e., x log x + y log y + x ≤ (x + y) log(x + y). �

Theorem 3. (op a) runs in time O((size a)(log (size a))).

Proof The running time is bounded by the (non-linear) recurrence relation

T (a) =

 c, if (atom a)
T ((first-exp a)) + T ((cdr a))

+ min((size (first-exp a)), (size (cdr a))) + c, otherwise

for some constant, c, by Theorem 2. We will show by induction on (size a), that
T (a) ≤ k((size a))(log (size a)) + t where k, t are constants such that t ≥ c and
k ≥ 3t. In the base case, we have T (a) = c ≤ t. For the induction step, let x =
min((size (first-exp a)), (size (cdr a))) and y = max((size (first-exp a)),
(size (cdr a))). We have:

T (a)

= { Definition of T, x }

T ((first-exp a)) + T ((cdr a)) + x + c

≤ { Induction hypothesis }

kx log x + t + ky log y + t + x + c

≤ { kx ≥ 2t + x as k ≥ 3t }

k(x log x + y log y + x) + c

≤ { Lemma 4, t ≥ c, x + y = (size a) }

k((size a))(log (size a)) + t �

17



6 Conclusions

We introduced a representation of ordinals up to ε0 that is exponentially more succinct
than the ACL2 representation. We also presented algorithms for various arithmetic
operations on our representation, along with a library of theorems about these algo-
rithms which significantly extends ACL2’s ability to reason about ordinals and ordinal
arithmetic. This library is included with ACL2 version 2.7, and has already been used
to give a constructive proof of Dickson’s Lemma [19].

Despite the fact that the theory of ordinals has been studied for over 100 years,
we believe we are the first to give a full solution to the ordinal arithmetic problem
[13] and the first to give mechanical proofs of correctness of algorithms for ordinal
arithmetic.

We end by outlining directions for future work. In [13] we describe more efficient
algorithms than the ones appearing in this paper and we plan to mechanically prove
that the two are equivalent. Another possibility involves extending our representation
to larger countable ordinals. Of particular interest is the countable ordinal Γ0, which
is much larger than ε0 and is needed to show the termination of some term rewriting
systems [5, 8]. There are notational systems for ordinals up to Γ0 and even for much
larger countable ordinals [14, 17, 18], and it would be interesting to find algorithms
for manipulating these notations. A final possibility is to explore heuristics that allow
ACL2 to guess measure functions based on the ordinals; the hope being that our
library would automatically discharge many of the proof obligations.

References

1. G. Cantor. Beiträge zur Begründung der transfiniten Mengenlehre. Mathematische An-
nalen, xlvi:481–512, 1895.

2. G. Cantor. Beiträge zur Bgründung der transfiniten Mengenlehre. Mathematische An-
nalen, xlix:207–246, 1897.

3. G. Cantor. Contributions to the Founding of the Theory of Transfinite Numbers. Dover
Publications, Inc., 1952. Translated by Philip E. B. Jourdain.

4. A. Church and S. C. Kleene. Formal definitions in the theory of ordinal numbers. Fun-
damenta mathematicae, 28:11–21, 1937.

5. N. Dershowitz and M. Okada. Proof-theoritic techniques for term rewriting theory. In
3rd IEEE Symp. on Logic in Computer Science, pages 104–111, 1988.

6. N. Dershowitz and E. M. Reingold. Ordinal arithmetic with list structures. In Logical
Foundations of Computer Science, pages 117–126, 1992.

7. K. Devlin. The Joy of Sets: Fundamentals of Contemporary Set Theory. Springer-Verlag,
second edition, 1992.

8. J. H. Gallier. What’s so special about Kruskal’s theorem and the ordinal Γ0? A survey
of some results in proof theory. Annals of Pure and Applied Logic, pages 199–260, 1991.

9. G. Gentzen. Die widerspruchsfreiheit der reinen zahlentheorie. Mathematische Annalen,
112:493–565, 1936. English translation in M. E. Szabo (ed.), The Collected Works of
Gerhard Gentzen, pp. 132-213, North Holland, Amsterdam, 1969.

10. M. Kaufmann, P. Manolios, and J. S. Moore. Computer-Aided Reasoning: An Approach.
Kluwer Academic Publishers, July 2000.

11. M. Kaufmann and J. S. Moore. ACL2 homepage. See URL http://www.cs.utexas.edu/-

users/moore/acl2.

18



12. K. Kunen. Set Theory - an Introduction to Independence Proofs, volume 102 of Studies
in Logic and the Foundations of Mathematics. North-Holland, Amsterdam, 1980.

13. P. Manolios and D. Vroon. Algorithms for ordinal arithmetic. In 19th International
Conference on Automated Deduction (CADE), 2003.

14. L. W. Miller. Normal functions and constructive ordinal notations. Journal of Symbolic
Logic, 41:439–459, June 1976.

15. H. Rogers, Jr. Theory of Recursive Functions and Effective Computability. MIT Press,
1st paperback edition, 1987.

16. K. Schütte. Proof Theory. Springer-Verlag, 1977. translated by J. N. Crossley from the
revised version of Beweistheorie, 1st edition, 1960.

17. A. Setzer. Ordinal systems. In B. Cooper and J. Truss, editors, Sets and Proofs, pages
301–331. Cambridge University Press, 1999.

18. A. Setzer. Ordinal systems part 2: One inaccessible. In Logic Colloquium ’98, volume 13
of ASL Lecture Notes in Logic, pages 426–448, 2000.

19. M. Sustik. Proof of Dixon’s lemma using the ACL2 theorem prover via an explicit ordinal
mapping. In ACL2 Workshop 2003, 2003. Submitted.

20. A. S. Troelstra and H. Schwichtenberg. Basic Proof Theory. Cambridge University Press,
second edition, 2000.

19


