Encapsulationfor Practical Simplification Procedures
Olga Shumskwatlin and Wlliam McCune

MathematiceandComputerScienceDivision
ArgonneNationalLaboratory
Argonne L 60439

Abstract

ACL2 wasusedto prove propertiesof two simplification procedures.The proceduredliffer in complexity but
solve the sameprogrammingproblemthat arisesin the context of a resolution/paramodulatiotheoremproving
system.Termrewriting is atthe coreof thetwo procedureshut detailsof therewriting proceduretself areirrelevant.
The ACL2 encapsulateonstructwasusedto assertthe existenceof the rewriting function andto statesomeof its
properties Terminationjrreducibility, andsoundnespropertiesvereestablishedor eachprocedure Theavailability
of the encapsulatiomechanismnin ACL2 is consideredessentiato rapid and efficient verification of this kind of
algorithm.

1 Intr oduction and Problem Description

We examine simplification proceduredhat arisein resolution,paramodulationand rewriting systems. We have
a programmingproblem, and at an abstractlevel we have a straightforwardprocedureto solve it. However, our
theoremprovers(e.g.,Otter[3]) arewrittenin C, with lots of hacksandoptimizationsthatimposeconstraintghatdo
notfit with our abstracsolution. We have deviseda two-stageprocedureéntendedo have propertiessimilar to those
of the straightforwardprocedure.The two-stageprocedureobeys the constraintshut its correctnesss not obvious,
sowe have calledon ACL2 [2] for assistance.

The following simplification problemis facedby mary resolution/paramodulatiostyle theorem-praing pro-
grams. Supposene have a setS of clauseswith theirreducibility propertythatno clausein S simplifiesarny other
clausen S We wishto addanew setl of clausedo Sandhave theresultingsetbe equivalentto SU | andalsosatisfy
theirreducibility property The problemis interestingbecausein additionto memberf Ssimplifying membersof
I, memberof | canalsosimplify memberof S andthosesimplifiedmembersansimplify othermemberof S, and
soon. Considetthefollowing procedurewhichwe call directincorporation.

Q=1;
Wiile (Q do
C = dequeue(Q;
C=simplify(C, 9S);
if (C!= TRUE)
for each Din Ssinplifiable by C
nmove DfromSto Q
append Cto S;

In theterminologyof our theoremprover Otter, the statementC = simplify(C, S)” correspondso bothforward
rewriting andforwardsubsumptionandtheloop“for eachD ..” correspond#o backsubsumptiomndbackrewriting.
Thelist | represents setof clauseslerived by someinferencerule.

*This work was supportedby the Mathematical,Information,and ComputationalScienceDivision subprogranof the Office of Advanced
ScientificComputingResearchQffice of ScienceU.S. Departmenbdf Enegy, underContractW-31-109-ENG-38.

The directincorporationproceduredoesnot suit our purposeshowever. The setl canbetoo large to generate
in full beforeincorporatingit into S Membersof | will typically simplify mary othermemberf |, sowe wish to
incorporatd into Sasl is beinggeneratedFurthermorethe setl is generatedy makinginferencefrom members
of § andour algorithmsanddatastructuresdo not allow usto remove clausedrom Swhile it is beingusedto make
inferences.

Therefore we usea two-stageprocedurewhich we call limbo incorporation. Thefirst stagesimplifiesmembers
of | and,if they arenotsimplifiedto TRUE, putstheminto a queuel (calledthelimbolist). ThesetSis notmodified
by thefirst stage.The secondstageprocesses until it is empty For eachmemberB of L, all clausesn Sthatcan
be simplified by B areremoved from S, simplifiedby Su L, thenappendedo L. The secondstageis similar to the
directincorporationprocedureexceptthatin the secondstage,membersf the queuebeingprocessedhave already
beensimplified with respectto S. In Otter terminology the first stagedoesforward simplification, and the second
stagedoesbacksimplification.

Thedirectincorporatiorprocedureandthelimbo incorporationproceduralo notnecessarilproducehe samere-
sultsbecausehesimplificationoperationcanhapperin differentordersandthe simplifierswe usedo notnecessarily
produceuniquecanonicalforms.

Our goalsareto shaw, for eachincorporationprocedurethat (1) it terminates(2) it producesa setin which no
membercansimplify ary othermembeyand(3) thefinal setSis equivalentto the conjunctionof | andtheinitial set
S

2 ACL2 Solution

The reasoningwve needto do is primarily aboutthe orderin which simplification operationsoccurand the setsof
simplifiersthat are applied. The detailsof the basicsimplification procedureand of the evaluationprocedurefor
proving equivalencepropertiesareirrelevant. Thereforewe have usedan ACL2 encapsulatiomechanisnto assert
the existenceandrelevantpropertiesof the simplificationandevaluationfunctions.

An alternatve to usingthe encapsulatiomechanisnis to fully definethe simplificationandevaluationfunctions
andthen prove the requiredpropertiesbasedon theseformalizations. Term rewriting, which is at the core of the
simplification procedurejs not a simplealgorithm[1], however, andconsiderableffort would have beenrequired
to establishits terminationand necessaryroperties. Formalizing an evaluationfunction would have necessitated
formalization of first-orderlogic in ACL2, aswasdonein the Ivy [4] project. Our experiencesn that project
highlightedthe difficultiesin implementinga generaffirst-orderevaluationfunctionin ACL2 andreasoningaboutit.
Hadwe takenthisroutehere themajority of effort would have beenspentontheseunderlyingconceptsprecludingus
from examiningtheproceduresf interestquickly andefficiently. For thesereasonsywe believe thattheencapsulation
mechanisnwasinvaluablein our currentwork.

2.1 Constrained Functionsand Their Properties

We constrainfour functionsusingthe encapsulateonstruct. The function simplify (x y) is for simplificationof an
elementx by asety. Thefunctiontrue-symbolf(x) is arecognizerfor thetrue symbol(for example,T or 'true or 1)
in aparticularlogic. Thefunctionceval (xi) is for evaluationof aclausexin interpretatiori. Thefunctionscount(x)
is for computingthesizeof theagument.Witnessedor thefour functionsarestraightforward A witnessfor simplify
(xy) returnsx. Witnessedor true-symbolp(x) andceval (x i) alwaysreturnt. Acl2-count(x) senesasa witnessfor
scount(x).

Giventhewitnessesthefollowing constraintfor thesefour functionsarestatedandproved. Constraintdall into
threecategoriesdependingon which of the threemain goals— termination,irredicibility, andlogical equivalence
— they enableus to establish. To ensureterminationof simplification proceduresjn practicewe typically use
the lexicographicpath orderingor the recursve pathordering[1]. Simplificationwith theseorderingscanincrease
the numberof symbols,so acl2-countdoesnot producean accurateterminationfunction. Instead the constrained
functionscountis usedto determinghe sizeof a clause The mainpropertyof the functionis thatit returnsanatural
number

(defthm scount - nat ur al
(and (integerp (scount X))
(<= 0 (scount x))))

Terminationproofsdependnthe constrainthatfor formulasthatareindeedchangedy simplification,the resultof
the simplificationis somehaev smallerthanthe original expression.

(defthm scount-sinplify
(or (equal (sinplify x y) x)
(< (scount (sinplify x y))
(scount x))))

Proofof theirreducibility propertydepend®nthefollowing propertiesof the basicsimplificationprocedure An
idempotenceropertystateghatoncea formulais simplified by a set,attemptingto simplify the resultagainby the
samesetwill have no effect. Anotherpropertyrequiresthatif a setsimplifiesa formula, thena supersebf thatset
doessoaswell. A third propertystateshattwo setsthatdo not simplify a formulaindividually do not do sowhen
considerectollectively.

(defthm sinplify-idenpotent
(equal (sinplify (simplify x vy) vy)
(sinplify x y)))

(defthm sinplify-subset
(inplies (and (not (equal (sinmplify a x) a))
(subset p-equal x y))
(not (equal (sinplify avy) a))))

(defthm sinplify-append
(inplies (and (equal (sinplify a x) a)
(equal (sinplify ay) a))
(equal (sinplify a (append x y)) a)))

We formalizedthe notion of rewritability to improve the readabilityof the formalizationsof both the directand
limbo incorporatiomproceduresindto easemanagementf proofs.If asetsimplifiesanelementwe saythattheele-
mentis rewritable by the set. Thenew functionrewritable is definedoutsidethe encapsulationOncethetermination
andirreducibility constraintarerestatedn termsof rewritable, thefunctionis disabled.

(defun rewitable (x vy)
(not (equal (sinplify x vy) x)))

Finally, the proofsof the logical equivalencepropertyof our incorporationprocedureslependon the following
propertiesof the constrainedvaluationfunctionandits relationshipwith simplify andtrue-symbolp The evaluation
functionis Boolean,andthe true symbolof thelogic is evaluatedto true. We definea functionto evaluatea setof
elementsasa conjunction. The main soundnesgropertyof constrainedsimplificationstateshatif the conjunction
of simplifiersis true,the evaluationsof the original andsimplified expressiongreequal.

(defthm ceval - bool ean
(or (equal (ceval x i) t) (equal (ceval x i) nil)))

(defthm true-synbol p-ceval
(inplies (true-synbolp x) (ceval x i)))

(defun ceval -list (x i)
(if (endp x)
t
(and (ceval (car x) i) (ceval-list (cdr x) i))))

(defthm sinplify-sound
(inplies (ceval-list y i)
(equal (ceval (simplify x y) i) (ceval xi))))

2.2 Formalization and Termination of Incorporation Procedures

Threesupportingfunctionsareusedto formalizethe directandlimbo incorporationproceduresRatherthanpresent
the ACL2 implementatiorof thefunctions,we simply describehem. Thefunctionextract-rewritables(x s) computes
asubsebf elementof Sthatarerewritable by X. The functionextract-n-simplify-ewritables(x s) producesa setof
elementof Sthatarerewritable by X andhave beensimplifiedby it. Thefunctionremove-ewritables(x s) produces
the setof elementof Sthatarenot rewritable by X. The directincorporationprocedures formalizedby usingthe
lasttwo functionsasfollows.

(defun direct-incorporation (q s)
(cond ((or (not (true-listp g)) (not (true-listp s))) ' NPUT- ERROR)
((endp q) s)
((true-synbolp (sinplify (car q) s)) (direct-incorporation (cdr q) s))
(t (direct-incorporation
(append (cdr q)
(extract-n-sinplify-rewitables (sinmplify (car gq) s) s))
(cons (sinmplify (car q) s)
(renove-rewritables (sinmplify (car g) s) s))))))

The limbo incorporationprocedurerelieson computationof theinitial limbo list andsubsequenintegration of
thelist into the original database As statedabove, the secondstepof the incorporationproceduremay placenew
elementonthelimbo list. Beforeary elemenis addedo thelimbo list, however, it is simplifiedasmuchaspossible
by the memberwf the original databasendthe elementsalreadyon the limbo list. We note,therefore thatin the
recursve call of thefunction preproces-list, in additionto thethe memberof original databas@ndlimbo list, the
setof simplifiersincludeselementgprocessedby the functionin the previouscalls.

(defun preprocess (x s I)
(if (true-symbolp (sinmplify x (append s 1)))
|

(append | (list (sinmplify x (append s 1))))))

(defun initial-linbo (g s I)
(if (endp q)
|

(initial-limbo (cdr gq) s (preprocess (car q) s 1))))

(defun preprocess-list (d s r)
(if (endp d)
r
(preprocess-list (cdr d) s (preprocess (car d)
(append s (cdr d))

r)))

(defun process-linbo (I s)
(cond ((or (not (true-listp 1)) (not (true-listp s))) ' NPUT- ERROR)
((endp 1) s)
(t (process-linmbo (append (cdr 1)
(preprocess-1i st
(extract-rewitables (car I) s)
(append (remove-rewritables (car |) s) |)
nil))
(cons (car I)
(renove-rewritables (car 1) s))))))

(defun Iinmbo-incorporation (g s)
(process-linmbo (initial-linmbo q s nil) s))

Terminationproofsfor thefunctionsdirect-incorpoationandprocess-limbaely on the simplificationproperties
statedn the encapsulationThe proofsarenot entirelytrivial; in orderto achieve them,the conjecturesnustbe split
into two casesa casewhenthe setof elementproducedy the extract functionsis empty anda casewhenit is not.
We defineanadditionalcountingfunctionlcountwhosebehavior onlists is similar to thatof acl2-count exceptthat
thesizeof list elementds computedby usingthe constrainedunctionscount

(defun I count (x)
(if (endp x)
0
(+ 1 (scount (car x)) (lcount (cdr x)))))

Themeasurdunction,basednlcount, is

(cons (+ 1 (lcount qg) (lcount s))
(+ 1 (lcount q))).

We notethattheformalizationon the directincorporationproceduras slightly differentfrom thealgorithmpresented
in Sectionl. In thealgorithmelement®d thatarerewritableby C aremoved from thesetS onto Q. In theformaliza-
tion, theseelementsare simplified by C beforebeingplacedonto Q. This extra simplificationstepallows usto show
thatthedirectincorporationalgorithmterminatesYet this additionto the original algorithmdoesnot affect the main
correctnesgpropertiesof the procedure.

2.3 Irr educibility Property

We formulatethe irreducibility propertyasfollows. We first definea function mutually-irreducible-el-list(x s) that
checksthatthe elementX neitherrewritesnor is rewritable by arything in S. The mainirreducibility checkfunction
reliesontheelemenwiseirreducibility check.

(defun mutual ly-irreducible-el-list (x s)
(cond ((endp s) t)
((or (rewitable x (list (car s)))
(rewritable (car s) (list x))) nil)
(t (mutually-irreducible-el-list x (cdr s)))))

(defun irreducible-list (s)
(cond ((endp s) t)

((nutual ly-irreducible-el-list (car s) (cdr s))
(irreducible-list (cdr s)))
(t nil)))

We accomplishedhe secondf the statedgoalsby proving thatif theoriginal databasef clausess irreducible,both
incorporatiorprocedureproducesetswith that property

(defthm direct-incorporation-is-irreducible
(inplies (irreducible-list s)
(irreducible-list (direct-incorporation gq s))))

efthm | i nbo-i ncorporation-is-irreducible
(defthm i nbo-i p i is-i duci bl
(inplies (irreducible-list s)
(irreduci ble-list (linbo-incorporation gq s))))

2.4 Soundness

Soundnesgproofsrely onthe propertiesof ceval givenin theencapsulateonstruciandwererelatively easyto estab-
lish. We shovedthatbothincorporationprocedureproducea conjunctionof clausesvhoseevaluationis equivalent
to the evaluationof the conjunctionf clausesn thetwo input sets.

(defthm direct-incorporation-is-sound
(inplies (and (true-listp Q)
(true-listp s))
(equal (ceval-list (direct-incorporation q s) i)
(and (ceval-list g i) (ceval-list s i))))

(defthm 1inbo-incorporation-is-sound
(inplies (true-listp s)
(equal (ceval-list (linbo-incorporation gq s) i)
(and (ceval-list gq i) (ceval-list s i))))

3 RelatedWork and Conclusions

Ourearlierprojectlvy [4] dealtwith checkingthe proofsproduceddy Otter The checkercodewaswrittenin ACL2
andproved sound. Although both efforts concernthe samesoftware the errorsthey help eliminatedo not overlap.
Ivy wasdesignedo catcherrorsin Otterproducedproofs. This work focusesonirreducibility andtermination,and
errorsin the simplification proceduredescribedcherewould likely not leadto soundnesgroblemsin the resulting
proofs,but would preventOtterfrom finding someor all proofsfor a particularproblem.

Also relatedis the large andongoingACL2 effort on abstractreductionsystemsandterm rewriting in [5]. The
effort concentratesnformalizingbasicreductionandrewriting procedurein ACL2 andestablishingheirproperties.
Thework includesformalizationof first-orderlogic andreasoningaboutterminationof rewriting. Both areaspects
thatour effort takesfor grantedto concentrat®n a practicalapplicationthatrelieson a rewriting procedure.

TheOttercodeis basedn analgorithmsimilar to limbo incorporation.Correctnessf this algorithmis therefore
importantto us but is not obvious becauseof the compleity of the algorithm. While the algorithm dependsn
term rewriting andclausesubsumptiorproceduresye wereable, thanksto encapsulatiomechanismin ACL2, to
concentrat®n only a few relevant propertiesof thesebasicproceduresndto devoteall effort to understandingind
verifying thelimbo incorporationthe actualproceduref interest.

References

[1] F. BaaderandT. Nipkow. TermRewriting and All That CambridgeUniversity PressCambridgeUnited King-
dom,1998.

[2] M. Kaufmann,P. Manolios,andJ S. Moore. ComputerAided Reasoning:An Appradc. Kluwer Academic
Publishers2000.

[3] W. McCune. Otter 3.0 ReferenceManualand Guide. Tech.ReportANL-94/6, ArgonneNational Laboratory
Argonne,IL, 1994.SeealsoURL http://wwwmcs.anl.ge/AR/otter/.

[4] W. McCuneandO. Shumsly. IVY: A preprocessoand proof checkerfor first-orderlogic. In M. Kaufmann,
P. Manolios,andJ Moore, editors, ComputerAidedReasoning:ACL2 CaseStudies chapterl6. Kluwer Aca-
demic,2000.

[5] J.L. Ruiz Reina,J. A. Alonso, M. J. Hidalgo, andF. J. Martin. Formal proofs aboutrewriting using ACL2.
Annalsof Mathematicsand Atrtificial Intelligence 36(3):239-2622002.

