
Encapsulationfor Practical Simplification Procedures
�

Olga ShumskyMatlin andWilliam McCune

MathematicsandComputerScienceDivision
ArgonneNationalLaboratory

Argonne,IL 60439

Abstract

ACL2 wasusedto prove propertiesof two simplificationprocedures.The proceduresdiffer in complexity but
solve the sameprogrammingproblemthat arisesin the context of a resolution/paramodulationtheoremproving
system.Termrewriting is at thecoreof thetwo procedures,but detailsof therewriting procedureitself areirrelevant.
TheACL2 encapsulateconstructwasusedto asserttheexistenceof the rewriting functionandto statesomeof its
properties.Termination,irreducibility, andsoundnesspropertieswereestablishedfor eachprocedure.Theavailability
of the encapsulationmechanismin ACL2 is consideredessentialto rapid andefficient verificationof this kind of
algorithm.

1 Intr oduction and ProblemDescription
We examinesimplification proceduresthat arise in resolution,paramodulation,and rewriting systems. We have
a programmingproblem,and at an abstractlevel we have a straightforwardprocedureto solve it. However, our
theoremprovers(e.g.,Otter[3]) arewritten in C, with lotsof hacksandoptimizationsthatimposeconstraintsthatdo
notfit with ourabstractsolution.We havedeviseda two-stageprocedureintendedto have propertiessimilar to those
of thestraightforwardprocedure.The two-stageprocedureobeys theconstraints,but its correctnessis not obvious,
sowe have calledon ACL2 [2] for assistance.

The following simplificationproblemis facedby many resolution/paramodulationstyle theorem-proving pro-
grams.Supposewe have a setSof clauseswith the irreducibility propertythat no clausein Ssimplifiesany other
clausein S. We wishto addanew setI of clausesto Sandhavetheresultingsetbeequivalentto S � I andalsosatisfy
theirreducibility property. Theproblemis interestingbecause,in additionto membersof Ssimplifying membersof
I, membersof I canalsosimplify membersof S, andthosesimplifiedmemberscansimplify othermembersof S, and
soon. Considerthefollowing procedure,whichwe call directincorporation.

Q = I;
While (Q) do

C = dequeue(Q);
C = simplify(C, S);
if (C != TRUE)

for each D in S simplifiable by C
move D from S to Q;

append C to S;

In theterminologyof our theoremprover Otter, thestatement“C = simplify(C, S)” correspondsto bothforward
rewriting andforwardsubsumption,andtheloop“for eachD ...” correspondstobacksubsumptionandbackrewriting.
Thelist I representsa setof clausesderivedby someinferencerule.

�
This work was supportedby the Mathematical,Information,andComputationalSciencesDivision subprogramof the Office of Advanced

ScientificComputingResearch,Officeof Science,U.S.Departmentof Energy, underContractW-31-109-ENG-38.



The direct incorporationproceduredoesnot suit our purposes,however. The set I canbe too large to generate
in full beforeincorporatingit into S. Membersof I will typically simplify many othermembersof I, so we wish to
incorporateI into SasI is beinggenerated.Furthermore,thesetI is generatedby makinginferencesfrom members
of S, andouralgorithmsanddatastructuresdo not allow usto remove clausesfrom Swhile it is beingusedto make
inferences.

Therefore,we usea two-stageprocedure,which we call limbo incorporation. Thefirst stagesimplifiesmembers
of I and,if they arenotsimplifiedto TRUE, putstheminto a queueL (calledthe limbo list). ThesetSis notmodified
by thefirst stage.ThesecondstageprocessesL until it is empty. For eachmemberB of L, all clausesin S thatcan
besimplifiedby B areremovedfrom S,simplified by S � L, thenappendedto L. Thesecondstageis similar to the
direct incorporationprocedureexceptthat in thesecondstage,membersof thequeuebeingprocessedhave already
beensimplified with respectto S. In Otter terminology, the first stagedoesforward simplification,and thesecond
stagedoesbacksimplification.

Thedirectincorporationprocedureandthelimbo incorporationproceduredonotnecessarilyproducethesamere-
sultsbecausethesimplificationoperationscanhappenin differentordersandthesimplifiersweusedonotnecessarily
produceuniquecanonicalforms.

Our goalsareto show, for eachincorporationprocedure,that (1) it terminates,(2) it producesa setin which no
membercansimplify any othermember, and(3) thefinal setS is equivalentto theconjunctionof I andtheinitial set
S.

2 ACL2 Solution
The reasoningwe needto do is primarily aboutthe order in which simplificationoperationsoccurand the setsof
simplifiers that areapplied. The detailsof the basicsimplificationprocedureandof the evaluationprocedurefor
proving equivalencepropertiesareirrelevant. Thereforewe have usedan ACL2 encapsulationmechanismto assert
theexistenceandrelevantpropertiesof thesimplificationandevaluationfunctions.

An alternative to usingtheencapsulationmechanismis to fully definethesimplificationandevaluationfunctions
and thenprove the requiredpropertiesbasedon theseformalizations. Term rewriting, which is at the core of the
simplificationprocedure,is not a simplealgorithm[1], however, andconsiderableeffort would have beenrequired
to establishits terminationandnecessaryproperties. Formalizingan evaluationfunction would have necessitated
formalizationof first-order logic in ACL2, as was done in the IVY [4] project. Our experiencesin that project
highlightedthedifficultiesin implementinga generalfirst-orderevaluationfunctionin ACL2 andreasoningaboutit.
Hadwetakenthisroutehere,themajorityof effort wouldhavebeenspentontheseunderlyingconcepts,precludingus
from examiningtheproceduresof interestquickly andefficiently. For thesereasons,webelievethattheencapsulation
mechanismwasinvaluablein ourcurrentwork.

2.1 ConstrainedFunctions and Their Properties
We constrainfour functionsusingtheencapsulateconstruct.The functionsimplify (x y) is for simplificationof an
elementx by a sety. Thefunction true-symbolp(x) is a recognizerfor thetruesymbol(for example,T or ’true or 1)
in a particularlogic. Thefunctionceval (x i) is for evaluationof aclausex in interpretationi. Thefunctionscount(x)
is for computingthesizeof theargument.Witnessesfor thefour functionsarestraightforward.A witnessfor simplify
(x y) returnsx. Witnessesfor true-symbolp(x) andceval (x i) alwaysreturnt. Acl2-count(x) servesasa witnessfor
scount(x).

Giventhewitnesses,thefollowing constraintsfor thesefour functionsarestatedandproved.Constraintsfall into
threecategoriesdependingon which of the threemain goals— termination,irredicibility, andlogical equivalence
— they enableus to establish. To ensureterminationof simplification procedures,in practicewe typically use
the lexicographicpathorderingor the recursive pathordering[1]. Simplificationwith theseorderingscanincrease
thenumberof symbols,so acl2-countdoesnot producean accurateterminationfunction. Instead,the constrained
functionscountis usedto determinethesizeof a clause.Themainpropertyof thefunctionis thatit returnsanatural
number.

(defthm scount-natural
(and (integerp (scount x))

(<= 0 (scount x))))

2



Terminationproofsdependontheconstraintthatfor formulasthatareindeedchangedby simplification,theresultof
thesimplificationis somehow smallerthantheoriginal expression.

(defthm scount-simplify
(or (equal (simplify x y) x)

(< (scount (simplify x y))
(scount x))))

Proofof theirreducibility propertydependsonthefollowing propertiesof thebasicsimplificationprocedure.An
idempotencepropertystatesthatoncea formula is simplifiedby a set,attemptingto simplify theresultagainby the
samesetwill have no effect. Anotherpropertyrequiresthat if a setsimplifiesa formula, thena supersetof thatset
doessoaswell. A third propertystatesthattwo setsthatdo not simplify a formula individually do not do sowhen
consideredcollectively.

(defthm simplify-idempotent
(equal (simplify (simplify x y) y)

(simplify x y)))

(defthm simplify-subset
(implies (and (not (equal (simplify a x) a))

(subsetp-equal x y))
(not (equal (simplify a y) a))))

(defthm simplify-append
(implies (and (equal (simplify a x) a)

(equal (simplify a y) a))
(equal (simplify a (append x y)) a)))

We formalizedthenotion of rewritability to improve the readabilityof theformalizationsof both thedirectand
limbo incorporationproceduresandto easemanagementof proofs.If asetsimplifiesanelement,we saythattheele-
mentis rewritableby theset.Thenew functionrewritable is definedoutsidetheencapsulation.Oncethetermination
andirreducibility constraintsarerestatedin termsof rewritable, thefunctionis disabled.

(defun rewritable (x y)
(not (equal (simplify x y) x)))

Finally, theproofsof the logical equivalencepropertyof our incorporationproceduresdependon the following
propertiesof theconstrainedevaluationfunctionandits relationshipwith simplifyandtrue-symbolp. Theevaluation
function is Boolean,andthe truesymbolof the logic is evaluatedto true. We definea function to evaluatea setof
elementsasa conjunction.Themainsoundnesspropertyof constrainedsimplificationstatesthat if theconjunction
of simplifiersis true,theevaluationsof theoriginal andsimplifiedexpressionsareequal.

(defthm ceval-boolean
(or (equal (ceval x i) t) (equal (ceval x i) nil)))

(defthm true-symbolp-ceval
(implies (true-symbolp x) (ceval x i)))

(defun ceval-list (x i)
(if (endp x)

t
(and (ceval (car x) i) (ceval-list (cdr x) i))))

(defthm simplify-sound
(implies (ceval-list y i)

(equal (ceval (simplify x y) i) (ceval x i))))

3



2.2 Formalization and Termination of Incorporation Procedures
Threesupportingfunctionsareusedto formalizethedirectandlimbo incorporationprocedures.Ratherthanpresent
theACL2 implementationof thefunctions,wesimplydescribethem.Thefunctionextract-rewritables(x s)computes
a subsetof elementsof Sthatarerewritableby X. Thefunctionextract-n-simplify-rewritables(x s) producesa setof
elementsof Sthatarerewritableby X andhavebeensimplifiedby it. Thefunctionremove-rewritables(x s)produces
thesetof elementsof S thatarenot rewritable by X. Thedirect incorporationprocedureis formalizedby usingthe
lasttwo functionsasfollows.

(defun direct-incorporation (q s)
(cond ((or (not (true-listp q)) (not (true-listp s))) ’INPUT-ERROR)

((endp q) s)
((true-symbolp (simplify (car q) s)) (direct-incorporation (cdr q) s))
(t (direct-incorporation

(append (cdr q)
(extract-n-simplify-rewritables (simplify (car q) s) s))

(cons (simplify (car q) s)
(remove-rewritables (simplify (car q) s) s))))))

The limbo incorporationprocedurerelieson computationof the initial limbo list andsubsequentintegrationof
the list into the original database.As statedabove, the secondstepof the incorporationproceduremay placenew
elementsonthelimbo list. Beforeany elementis addedto thelimbo list, however, it is simplifiedasmuchaspossible
by themembersof theoriginal databaseandtheelementsalreadyon the limbo list. We note,therefore,that in the
recursive call of thefunctionpreprocess-list, in additionto thethemembersof original databaseandlimbo list, the
setof simplifiersincludeselementsprocessedby thefunctionin thepreviouscalls.

(defun preprocess (x s l)
(if (true-symbolp (simplify x (append s l)))

l
(append l (list (simplify x (append s l))))))

(defun initial-limbo (q s l)
(if (endp q)

l
(initial-limbo (cdr q) s (preprocess (car q) s l))))

(defun preprocess-list (d s r)
(if (endp d)

r
(preprocess-list (cdr d) s (preprocess (car d)

(append s (cdr d))
r))))

(defun process-limbo (l s)
(cond ((or (not (true-listp l)) (not (true-listp s))) ’INPUT-ERROR)

((endp l) s)
(t (process-limbo (append (cdr l)

(preprocess-list
(extract-rewritables (car l) s)
(append (remove-rewritables (car l) s) l)
nil))

(cons (car l)
(remove-rewritables (car l) s))))))

(defun limbo-incorporation (q s)
(process-limbo (initial-limbo q s nil) s))

4



Terminationproofsfor thefunctionsdirect-incorporationandprocess-limborely on thesimplificationproperties
statedin theencapsulation.Theproofsarenotentirelytrivial; in orderto achievethem,theconjecturesmustbesplit
into two cases:a casewhenthesetof elementsproducedby theextract functionsis empty, anda casewhenit is not.
We defineanadditionalcountingfunction lcountwhosebehavior on lists is similar to thatof acl2-count, exceptthat
thesizeof list elementsis computedby usingtheconstrainedfunctionscount.

(defun lcount (x)
(if (endp x)

0
(+ 1 (scount (car x)) (lcount (cdr x)))))

Themeasurefunction,basedon lcount, is

(cons (+ 1 (lcount q) (lcount s))
(+ 1 (lcount q))).

Wenotethattheformalizationonthedirectincorporationprocedureis slightly differentfrom thealgorithmpresented
in Section1. In thealgorithmelementsD thatarerewritableby C aremovedfrom thesetSontoQ. In theformaliza-
tion, theseelementsaresimplifiedby C beforebeingplacedontoQ. This extra simplificationstepallows usto show
thatthedirectincorporationalgorithmterminates.Yet thisadditionto theoriginal algorithmdoesnotaffect themain
correctnesspropertiesof theprocedure.

2.3 Irr educibility Property
We formulatethe irreducibility propertyasfollows. We first definea functionmutually-irreducible-el-list(x s) that
checksthattheelementX neitherrewritesnor is rewritableby anything in S. Themain irreducibility checkfunction
relieson theelementwiseirreducibility check.

(defun mutually-irreducible-el-list (x s)
(cond ((endp s) t)

((or (rewritable x (list (car s)))
(rewritable (car s) (list x))) nil)

(t (mutually-irreducible-el-list x (cdr s)))))

(defun irreducible-list (s)
(cond ((endp s) t)

((mutually-irreducible-el-list (car s) (cdr s))
(irreducible-list (cdr s)))

(t nil)))

We accomplishedthesecondof thestatedgoalsby proving thatif theoriginal databaseof clausesis irreducible,both
incorporationproceduresproducesetswith thatproperty.

(defthm direct-incorporation-is-irreducible
(implies (irreducible-list s)

(irreducible-list (direct-incorporation q s))))

(defthm limbo-incorporation-is-irreducible
(implies (irreducible-list s)

(irreducible-list (limbo-incorporation q s))))

2.4 Soundness
Soundnessproofsrely onthepropertiesof ceval givenin theencapsulateconstructandwererelatively easyto estab-
lish. We showedthatbothincorporationproceduresproducea conjunctionof clauseswhoseevaluationis equivalent
to theevaluationof theconjunctionsof clausesin thetwo inputsets.

5



(defthm direct-incorporation-is-sound
(implies (and (true-listp q)

(true-listp s))
(equal (ceval-list (direct-incorporation q s) i)

(and (ceval-list q i) (ceval-list s i))))

(defthm limbo-incorporation-is-sound
(implies (true-listp s)

(equal (ceval-list (limbo-incorporation q s) i)
(and (ceval-list q i) (ceval-list s i))))

3 RelatedWork and Conclusions
OurearlierprojectIVY [4] dealtwith checkingtheproofsproducedby Otter. Thecheckercodewaswritten in ACL2
andproved sound.Although bothefforts concernthesamesoftware,theerrorsthey help eliminatedo not overlap.
IVY wasdesignedto catcherrorsin Otter-producedproofs.This work focuseson irreducibility andtermination,and
errorsin the simplificationproceduredescribedherewould likely not leadto soundnessproblemsin the resulting
proofs,but would preventOtterfrom findingsomeor all proofsfor a particularproblem.

Also relatedis thelarge andongoingACL2 effort on abstractreductionsystemsandterm rewriting in [5]. The
effort concentratesonformalizingbasicreductionandrewriting proceduresin ACL2 andestablishingtheirproperties.
Thework includesformalizationof first-orderlogic andreasoningaboutterminationof rewriting. Both areaspects
thatoureffort takesfor grantedto concentrateona practicalapplicationthatrelieson a rewriting procedure.

TheOttercodeis basedon analgorithmsimilar to limbo incorporation.Correctnessof thisalgorithmis therefore
importantto us but is not obvious becauseof the complexity of the algorithm. While the algorithm dependson
term rewriting andclausesubsumptionprocedures,we wereable,thanksto encapsulationmechanismin ACL2, to
concentrateon only a few relevantpropertiesof thesebasicproceduresandto devoteall effort to understandingand
verifying thelimbo incorporation,theactualprocedureof interest.

References
[1] F. BaaderandT. Nipkow. TermRewriting andAll That. CambridgeUniversityPress,Cambridge,UnitedKing-

dom,1998.

[2] M. Kaufmann,P. Manolios,and J S. Moore. Computer-AidedReasoning:An Approach. Kluwer Academic
Publishers,2000.

[3] W. McCune. Otter 3.0 ReferenceManualandGuide. Tech.ReportANL-94/6, ArgonneNationalLaboratory,
Argonne,IL, 1994.SeealsoURL http://www.mcs.anl.gov/AR/otter/.

[4] W. McCuneandO. Shumsky. IVY: A preprocessorandproof checkerfor first-orderlogic. In M. Kaufmann,
P. Manolios,andJ Moore,editors,Computer-AidedReasoning:ACL2 CaseStudies, chapter16. Kluwer Aca-
demic,2000.

[5] J. L. Ruiz Reina,J. A. Alonso, M. J. Hidalgo, andF. J. Mart́ın. Formal proofsaboutrewriting usingACL2.
Annalsof MathematicsandArtificial Intelligence, 36(3):239–262,2002.

6


