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Abstract

In this paper we present the use of the ACL2 theorem prover to formalize and mechanically check a
new proof of Dickson’s lemma about monomial sequences. Dickson’s lemma can be used to establish the
termination of Büchberger’s algorithm to find the Gröbner basis of a polynomial ideal. This effort is related
to a larger project which aims to develop a mechanically verified computer algebra system.

1 Introduction

Dickson’s lemma about monomial sequences [2] can be used to prove the termination of Büchberger’s
algorithm to find the Gröbner basis of a polynomial ideal [3]. This termination problem was the main
incentive behind this proof attempt [10].

The classical proof of Dickson’s lemma is not particularly complicated, however the non-constructive
nature of the proof and the concept of infinite sequences make this theorem non-trivial to formalize and
prove using the ACL2 theorem prover [5, 4].

Similar proofs were carried out using the Coq prover [12] and the ALF proof assistant [1]. Parallel to
this proof attempt formalization and proof of Dickson’s lemma using the multiset books [8, 11] distributed
with ACL2 was carried out in [9]. 1

Theorem (Dickson’s lemma) If �����������	��
����� is an infinite sequence of monomials of
�

variables, then
there exist indices � ��� such that ��� � and ��� divides ��� .

The above formulation is not directly applicable for a termination argument; to use it for that pur-
pose we need to assume non-termination and arrive at a contradiction applying the lemma. In the case of
Büchberger’s algorithm this is done as follows: a monomial is assigned at each step of the algorithm to the
polynomial set generating the ideal. The monomial sequence has the property that no monomial divides a
subsequent one in this sequence. The application of Dickson’s lemma will assert that the algorithm can only
have a finite number of steps.

In the logical world of ACL2 a recursive function definition has to be provably terminating to ensure
consistency. A measure function has the same signature as the function to be shown to be terminating
and it returns an ordinal. The measure function is a witness to the termination of a recursive function if
the ordinals assigned to each recursive call are smaller than the ordinal assigned to the invocation. This
naturally suggests a way to formalize Dickson’s lemma and the associated termination argument in terms of
an ordinal embedding. We will assign ordinals to the initial segments of the monomial sequence in such a
way that if no monomial divides a subsequent one then the ordinal sequence will be strictly decreasing. As
it turns out this formulation could directly be used for the termination argument required in [10].

An ordinal arithmetic package (“book”) was developed by Panagiotis Manolios and Daron Vroon [6, 7].
It is distributed with along the ACL2 sources starting with version 2.7. In these books they formulate and
prove properties of ordinals written in Cantor normal form. They establish properties of ordinal addition,
multiplication, exponentation and the ordering. They prove equivalence of their ordinal representation to

1The comparison of the two proofs is not discussed in this paper. It will be published separately.
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that of the native ACL2 representation through a one-to-one embedding. A small collection of further
definitions and lemmas about ordinals were necessary to carry out the presented proof attempt.

The full transcript of the ACL2 events and instructions on how to replay and certify the proof presented
here are available as supporting material and be downloaded from the ACL2 home-page.

2 ACL2 formalized proof of Dickson’s lemma

As indicated in the introduction, we will define a mapping from the sets of monomials to the ordinals (below��� ) such that if a sequence of monomials does not have two elements where the former divides the latter, then
the ordinals corresponding to the sets of monomials in the initial subsequences form a strictly decreasing
sequence. This establishes that the sequence must be finite, and in turn can be used to prove termination of
an ACL2 function.

Definition. A monomial of the � � � � � ���� � ����� � variables is a product in the form: � �
	� � ���� �� � ���� ���� � , where
the exponents are natural numbers.

Theorem (Dickson’s lemma) If �����������	��
����� is an infinite sequence of monomials of
�

variables, then
there are � � � indices such that ��� divides ��� .
Monomials of

�
variables can be represented by

�
-tuples, where each tuple consists of the exponents. The

following partial order defined on
�

-tuples coincides with the divisibility of the corresponding monomials:

Definition. For the � ������� � � -tuples ����� � if and only if � � � � � for all ��� ��� �
, where ���� � � � � � ������ � ��� �"! and � � � � � ��� � �������� ��� �"! .

The corresponding ACL2 functions realizing a recognizer for tuples and the �#� relation:

(defun natural-tuplep (k x)
(cond ((zp k) (null x))

((not (natp (first x))) nil)
(T (natural-tuplep (1- k) (rest x)))))

(defun partial-tuple-<= (k x y)
(cond ((zp k) t)

((< (car y) (car x)) nil)
(t (partial-tuple-<= (1- k) (cdr x) (cdr y)))))

Let us denote the collection of the finite sets of
�

-tuples by $ � :
Definition. $%�&�('�)�* � �,+�- ) - �/.10 
Definition. We define the 2 � + $ �#35476�8 function inductively. If ) � $ � then set

2 � � ) ! ��9;:=<1) �

where 9;:=< is defined to give the minimal number from a set of (natural) numbers2 with the agreement that
2 � �?> ! �@. . Let us suppose now that

�(ACB
and that we have already defined 2D��� � . For an arbitrary

) � $E� and � �F� define the GIHKJML� � $E��� � sets and the NOH=JML� ordinals as follows:

G HKJML� ��' � � ��� � �������� � ��� � ! + � � � � � �������� � ��� � ! � ) � � � � �P0 �

N HKJML� �(2/��� � � G HKJML� ! 
If ) is clear from the context then the

� ) ! superscript will be omitted. Before we can define 2 � we need
the following lemma:

Lemma 0. The G � , N � sequences stabilize for every ) � $%� .
Proof. Set Q HKJML �@9SR�TU'�� � + � � � � � � ���� � � ��� � ! � )V0 and notice that G � �WGYX�Z\[^] if �;_WQ HKJML and by
definition N � �(N X for every �`_DQ . a

2Note that bdcfegb .
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Definition.

2 � � ) ! �
� X � ��
��� � .����	��
 .����� � 

To simplify the proof formalization we introduce the partial sums of 2D� . We abuse the notation somewhat
by denoting this function which takes an additional second argument by 2D� as well:

Definition.

2 � � ) ��� ! ��� 9;:=<1) :�� � � B��� X � ���� � . � ��� 
 . � � � � :�� �,A�B

The proof of Lemma 0 is implicit in the ACL2 definition of the mapping function:

(defun tuple-set->ordinal-partial-sum (k S i)
(declare (xargs :measure (cons (1+ (nfix k))

(nfix (- (tuple-set-max-first S) i)))))
(cond ((or (not (natp k)) (not (natp i))) 0)

((zp k) 0)
((equal k 1)
(tuple-set-min-first S))

((<= (tuple-set-max-first S) i)
(oˆ (omega)

(o+ (tuple-set->ordinal-partial-sum
(1- k)
(tuple-set-projection S)
0)

1)))
(T (o+

(oˆ (omega)
(tuple-set->ordinal-partial-sum
(1- k)
(tuple-set-filter-projection S i)
0))

(tuple-set->ordinal-partial-sum k S (1+ i))))))

To highlight the intuition behind the definition—especially the role of the last term—it is worth mentioning
that 2 � could be defined as a supremum:

2/� � ) ! � ������� � � ��
��� � . ���

however the finite sum form appeared to be more appropriate for the ACL2 formalization.
Some immediate properties that we can derive from the definition:

2 � � ) ! �D2/� � ) � � !

,
2 � � ) ��� ! �D.��! "
/2 � � ) � � 
 B ! 

The latter relies on lemmas of ordinal arithmetic and the “stabilization” of the N � sequences.
The above defined G HKJML� sets are realized by the following ACL2 functions:

(defun tuple-set-filter (S i)
(cond ((endp S) NIL)

((and (consp (first S)) (<= (first (first S)) i))
(cons (first S) (tuple-set-filter (rest S) i)))

(T (tuple-set-filter (rest S) i))))
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(defun tuple-set-projection (S)
(cond ((endp S) NIL)

((consp (first S)) (cons (rest (first S))
(tuple-set-projection (rest S))))

(T (tuple-set-projection (rest S)))))

(defun tuple-set-filter-projection (S i)
(tuple-set-projection (tuple-set-filter S i)))

Basic properties of the above functions were automatically verified once stated.
To arrive to the promised proof of Dickson’s lemma we need to establish certain properties of 2�� and the
corresponding N � sequences used in the definition. The lemmas about 2 � proved below can be generalized
to refer to the partial sum version; but for succinctness and because they are obvious to derive we may omit
the more general form of these lemmas. In the proofs usually we establish the more general property. (In
the ACL2 proof the more general form had to be stated as a separate lemma.)

Lemma 1. If )���� � $E� then 2 � � ) ! _ 2/� � � ! .
Proof. We prove the stronger 2 � � ) ��� ! _(2/� � � ��� ! (with � ��� ) using induction on

�
. The statement is

immediate from the definition if
� � B

. Now suppose that
� A B

and that we have established the property
for

��� B
.

Notice that if )���� as required then G;HKJML� � G H
	dL� and so by the inductive hypothesis

N`HKJML� ��2/��� � � G H=JML� ! _ 2/�
� � � G H
	dL� ! �DNOH
	dL� �

for every � �F� .

If � _�9SR�T � Q HKJML � Q H
	dL ! then 2 � � ) � � ! � . � Z [ ] � � and 2/� � � � � ! � . � Z��U] � � and we are done. A “down-

ward” induction on � finishes the proof using the 2 � � ) ��� ! �@. � Z\[^] 
(2 � � ) ��� 
 B ! and 2 � � � ��� ! �
. � Z��U] 
/2/� � � � � 
 B ! equalities and properties of ordinal arithmetic. a
The ACL2 event for this lemma is as follows:

(defthm map-lemma-1
(implies (and (tuple-setp k A)

(tuple-setp k B)
(tuple-set-subsetp A B)
(natp k))

(ord<= (tuple-set->ordinal k B)
(tuple-set->ordinal k A)))

The necessary hints required for the proof of the above and subsequent ACL2 theorems were omitted. Please
refer to the supporting materials for the complete forms.

Lemma 2. For any ) � ) � , �,A(B
the N � sequence is monotone decreasing.

Proof. Notice that the G � sets are monotone increasing (with regard to inclusion) and therefore by the
previous Lemma 1 and the definition we can write:

N � �(2 ��� � � G � ! _ 2 �
� � � G � � � ! �(N � � �
finishing the proof. a
The corresponding ACL2 event is:

(defthm map-lemma-2
(implies (and (tuple-setp k A)

(natp k)
(< 1 k)
(natp i))

(ord<= (tuple-set->ordinal (1- k)
(tuple-set-filter-projection
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A (1+ i)))
(tuple-set->ordinal (1- k)

(tuple-set-filter-projection
A i)))))

Lemma 3. For any ) � � � $%� , �,A B
, 2/� � ) ! ��2/� � � ! holds if and only if N HKJML� �DN H
	dL� is true for every

� � � .

Proof. The non-obvious implication to prove is that if 2 � � ) ! � 2 � � � ! then the sequences are identical.
We arrive at the proof through several lemmas. The letters � , � ,

�
denote natural numbers and ) , � denote

sets of tuples from $%� .
Lemma 3.1 If

� A�B
then 2 � � ) � � ! � . � Z [ ]� � � .

Proof. We use a downward induction on � . When � _ Q HKJML the inequality is the direct consequence of the
definition of 2/� � ) � � ! . The induction step follows from:

2 � � ) � � ! � .�� Z\[^]� 
 2 � � ) � � 
 B ! � .�� Z [ ]� 
 .�� Z [ ]��� � � � �/.�� Z [ ]� 
 .�� Z [ ]� � � �D.�� Z [ ]� � �  a
The corresponding ACL2 theorem is the following:

(defthm map-lemma-3.1
(implies (and (tuple-setp k A)

(natp k)
(< 1 k)
(natp i))

(ord<= (tuple-set->ordinal-partial-sum k A i)
(oˆ (omega) (o+ (tuple-set->ordinal-partial-sum

(1- k)
(tuple-set-filter-projection A i)
0)

1))))

The proof required the specification of the induction scheme, expansion the definition of the 2�� � ) � � !
function and instantiation of ordinal arithmetic lemmas corresponding to the inequalities establishing the
induction step.

Lemma 3.2 If
� A�B

then . � Z [ ]� � 2/� � ) � � ! .
Proof. This claim is immediate from 2 � � ) � � ! �D. � Z [ ]� 
/2/� � ) � � 
 B ! . a
The corresponding ACL2 event is:

(defthm map-lemma-3.2
(implies (and (tuple-setp k A)

(natp k)
(< 1 k)
(natp i))

(o< (oˆ (omega) (tuple-set->ordinal-partial-sum
(1- k)
(tuple-set-filter-projection A i)
0))

(tuple-set->ordinal-partial-sum k A i))))

Lemma 3.3 If
� A�B

and N HKJML� �D2/��� � � G HKJML� ! � 2/��� � � G H
	dL� ! �(N`H
	dL� then 2/� � ) � � ! � 2/� � � � � ! .
Proof. The N HKJML� � NOH
	 L� inequality implies N HKJML� 
 B � NOH
	 L� . Properties of ordinal exponentiation, Lemmas

3.1, 3.2 and 2 � � ) � � ! � . � Z\[^]� 
/2/� � ) � � 
 B ! , 2/� � � � � ! � . � Z��U]� 
/2/� � � � � 
 B ! finishes the proof. a
The corresponding ACL2 theorem:
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(defthm map-lemma-3.3
(implies (and (tuple-setp k A)

(tuple-setp k B)
(natp k)
(natp i)
(< 1 k)
(o< (tuple-set->ordinal-partial-sum

(1- k)
(tuple-set-projection (tuple-set-filter A i))
0)
(tuple-set->ordinal-partial-sum
(1- k)
(tuple-set-projection (tuple-set-filter B i))
0)))

(o< (tuple-set->ordinal-partial-sum k A i)
(tuple-set->ordinal-partial-sum k B i)))

A direct consequence of Lemma 3.3 and the totality of ordinal comparison:

Lemma 3.4 If
� A�B

and 2 � � ) � � ! �(2/� � � � � ! then NOHKJML� �(N`H
	dL� .

Proof. Use Lemma 3.3. a
The ACL2 form:

(defthm map-lemma-3.4
(implies (and (tuple-setp k A)

(tuple-setp k B)
(natp k)
(natp i)
(< 1 k)
(equal (tuple-set->ordinal-partial-sum k A i)

(tuple-set->ordinal-partial-sum k B i)))
(equal (equal (tuple-set->ordinal-partial-sum

(1- k)
(tuple-set-projection (tuple-set-filter A i))
0)
(tuple-set->ordinal-partial-sum
(1- k)
(tuple-set-projection (tuple-set-filter B i))
0))

T))

The following three lemmas rely on the above Lemma 3.4:

Lemma 3.5 If
� A�B

and 2 � � ) � � ! �(2 � � � � � ! then 2 � � ) � � 
 B ! �(2 � � � � � 
 B ! .
Proof. Use lemma 3.4 and that 2 � � ) � � ! � . � Z [ ]� 
 2 � � ) � � 
 B ! , 2 � � � � � ! � . � Z �U]� 
 2 � � � � � 
 B ! . a
Lemma 3.6 If

� A�B
, � � � and 2 � � ) � � ! ��2 � � � � � ! then 2 � � ) � � ! ��2 � � � � � ! .

Proof. Use induction on � and lemma 3.5. a
Lemma 3.7 If

� A�B
, � � � and 2 � � ) � � ! ��2 � � � � � ! then N HKJML� �DN H
	dL� .

Proof. Instantiate Lemmas 3.4 and 3.6. a
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The corresponding ACL2 theorems for the above lemmas are:

(defthm map-lemma-3.5
(implies (and (tuple-setp k A)

(tuple-setp k B)
(natp k)
(natp i)
(< 1 k)
(equal (tuple-set->ordinal-partial-sum k A i)

(tuple-set->ordinal-partial-sum k B i)))
(equal (tuple-set->ordinal-partial-sum k A (1+ i))

(tuple-set->ordinal-partial-sum k B (1+ i))))

(defthm map-lemma-3.6
(implies (and (tuple-setp k A)

(tuple-setp k B)
(natp k)
(< 1 k)
(natp i)
(natp j)
(<= i j)
(equal (tuple-set->ordinal-partial-sum k A i)

(tuple-set->ordinal-partial-sum k B i)))
(equal (equal (tuple-set->ordinal-partial-sum k A j)

(tuple-set->ordinal-partial-sum k B j))
T))

(defthm map-lemma-3.7
(implies (and (tuple-setp k A)

(tuple-setp k B)
(natp k)
(< 1 k)
(natp i)
(natp j)
(<= i j)
(equal (tuple-set->ordinal-partial-sum k A i)

(tuple-set->ordinal-partial-sum k B i)))
(equal (equal (tuple-set->ordinal-partial-sum

(1- k)
(tuple-set-projection (tuple-set-filter A j))
0)
(tuple-set->ordinal-partial-sum
(1- k)
(tuple-set-projection (tuple-set-filter B j))
0))

T))

The proof of Lemma 3 follows from Lemma 3.7 when �Y�(� . a
The following theorem is the key step in establishing that the ordinal sequence in question is strictly de-
creasing (under the right assumptions), by providing a link between 2 � and � � .
Lemma 4. If )���� � $E� , � � � � ) and 2 � � ) ! �D2 � � � ! then there is a � � ) such that ��� � � .

Proof. We prove the claim by induction on
�

. The statement for
� � B

is a trivial consequence of the
definition of 2 � and � � . Suppose that

� A B
and that we have the claim established for

� ��B
and

) � � ��� � � � � ��� ������ ��� ��� � ! are as described above.

By Lemma 3 we can conclude that N HKJML� ��N H
	dL� for any � � � . In particular for � � � � we have:

7



N HKJML��	 �D2 ��� � � G HKJML��	 ! where G HKJML��	 � ' � � ��� � �������� � ��� � ! + � � � � � �������� � ��� � ! � � � � � � � � 0 �

N H
	dL��	 ��2/�
� � � G HKJML��	 ! where G H 	 L��	 ��' � � � � � � ������ � ��� � ! + � � � � � � ������ � ��� �"! ��� � � � � � � 0 ! 
From ) � � it follows that GIHKJML� 	 � G H
	dL� 	 and that ��� � � � � ��� � �������� ��� �"! � G H
	dL� 	 . Suppose first that� � � G H=JML� 	 also holds. This means that there is a � � � � � � � � ���� � � ��� � ! � -tuple in ) such that � � � � � (in
fact no equality is possible) while � � � � � for � � B ��� ���� � � � B

and so ��� � will be a satisfying choice.
If ���	�� G HKJML��	 then by the induction hypothesis there is a � � � G H=JML��	 such that � � � ��� �f��� . By the definition
of G HKJML��	 there must be a ��� �

� � � � �������� � ��� � ! � ) for which � � � �
� ��� � � ������ � ��� � ! and it is obvious

that ����� � as required. a
To formalize the above argument in ACL2 we had to explicitly define witnesses, which capture the required
properties of the filtering and projecting functions. For example the witness function shown below called
exists-projection-filter-inverse-witness finds a tuple from a tuple set which is “projected” onto a specified
element of the projected filtered set of tuples. Precisely: if 
 � $ � and � � G H��^L� then we get an element
� � 
 which maps to � .
The following functions were defined to serve witness purposes:

(defun exists-partial-tuple-<=-set-witness (k S x)
(cond ((endp S) nil)

((partial-tuple-<= k (first S) x) (first S))
(t (exists-partial-tuple-<=-set-witness k (rest S) x))))

(defun exists-projection-filter-inverse-witness (S v i)
(cond ((endp S) nil)

((and (equal v (rest (first S)))
(<= (first (first S)) i))

(first S))
(T (exists-projection-filter-inverse-witness (rest S) v i))))

(defun exists-partial-tuple-<=-set (k S x)
(let ((w (exists-partial-tuple-<=-set-witness k S x)))

(and (natural-tuplep k w)
(tuple-in-set w S)
(partial-tuple-<= k w x))))

Several lemmas had to be proved to enable ACL2 to reason about these functions. These lemmas are very
similar to the lemmas obtained by using the defun-sk (macro) definition which allows existential quantifica-
tion to be formalized in ACL2 by defining a witness function. In this proof the sets requiring witnesses are
all from a finite set (represented by a list) and therefore these witnessing functions can be and were made
explicit (and executable). A theorem about the projection witness function:

(defthm exists-projection-filter-inverse-impl
(implies (and (tuple-setp k S)

(natural-tuplep (1- k) v)
(<= 1 k)
(exists-projection-filter-inverse S v i))

(and (equal (natural-tuplep
k
(exists-projection-filter-inverse-witness S v i))

T)
(equal (tuple-in-set

(exists-projection-filter-inverse-witness S v i)
S)

T)
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(equal (rest (exists-projection-filter-inverse-witness
S v i))

v)
(<= (first (exists-projection-filter-inverse-witness

S v i))
i))))

A main auxiliary lemma required for the proof of Lemma 4 was one that described the above mentioned
property of the witness function:

(defthm map-lemma-4.2
(implies (and (tuple-setp k S)

(natp k)
(<= 2 k)
(natural-tuplep k v)
(tuple-in-set v S))

(tuple-in-set
(cdr v)
(tuple-set-projection (tuple-set-filter S (car v))))))

And here is the ACL2 event describing Lemma 4. Please refer to the supporting materials for additional
definitions referred to.

(defthm map-lemma-4
(implies (and (tuple-setp k A)

(tuple-setp k B)
(tuple-set-subsetp A B)
(natural-tuplep k v)
(tuple-in-set v B)
(equal (tuple-set->ordinal-partial-sum k A 0)

(tuple-set->ordinal-partial-sum k B 0))
(natp k)
(<= 1 k))

(exists-partial-tuple-<=-set k A v)))

And finally the theorem that can be used for a termination argument implementing the Büchberger
algorithm:

Theorem (Dickson’s lemma equivalent) If Q � � Q � ������ Q � is a finite sequence of
�

-tuples of natural numbers
such that for any

B � � � � ��� we have Q � ���� Q � then the 2/� ��� � ! � 2/� ��� � ! ������ 2/� � ) � ! sequence of
ordinals is strictly decreasing where ) � denotes an initial segment of Q � : ) � � '�Q � + B � � � � 0 .
Proof. We will prove that 2 � � ) � � � ! A 2/� � ) ��! for an arbitrary

B � � ��� ��B
. It cannot be the case

that Q � � ) � � � because we would have Q � ��Q�� for some � � � � B
which implies Q�� ���&Q � . Apply lemma

4 with )���) � � � , �@��) � , and � � Q � and notice from lemma 1 that 2 � � ) � � �"! _ 2/� � ) �
! . If we had
equality here then there need to exist an � � � such that Q � ���7Q � contradicting our assumption. a
The above theorem in ACL2 looks like:

(defthm dickson-map-thm
(implies (and (tuple-setp k S)

(consp S)
(natp k)
(<= 1 k)
(not (exists-partial-tuple-<=-set

k (rest S) (first S))))
(o< (tuple-set->ordinal k S)

(tuple-set->ordinal k (rest S)))))
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For technical reasons—to operate on the native ordinal representation of ACL2—another theorem immedi-
ately derivable from the above was actually used in the termination proof.

The mapping function returns ordinals below � � and this fact can be proved using induction on the
number of variables. In fact the necessary inequalities were needed as supporting lemmas in the proof of
Dickson’s lemma, please see the proof script for details and also note that the ordinal representation allows
ordinals below ��� only.

Conclusion

The need for a machine verified proof of Dickson’s lemma lead to a new proof of the theorem. The explicit
construction of the ordinal mapping which asserts that there is no infinite chain of ‘offending’ sequence of
monomials (tuples) is not directly derivable from the classical proofs which are non-constructive in nature.

The proof effort enabled the verification of the termination of the Büchberger algorithm implemented in
ACL2 and also motivated the development of an ordinal book which may benefit other proof attempts in the
future.
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