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Abstract. We have been using ACL2 to verify pipelined machine models for

several years and have compiled a suite of 18 problems that arosetlretiiem
proving process. We believe that this suite will be useful for the futuveldp-
ment of ACL2 because it consists of difficult problems that arise intm@cand
furthermore, these problems can be handled efficiently by other metRodex-
ample, ACL2 was able to prove the simplest problem in the suite Bﬁt?rdays,
but UCLID was able to prove the same theorem in seconds.

1 Introduction

We have compiled a suite of 18 theorems arising in refinerhaséd proofs of correct-
ness for term-level pipelined machine models in ACL2. Thedést of these problems
is a correctness theorem for a 5-stage DLX-like pipelinedhiree, which takes ACL2

aboutlB% days to prove. The other problems are significantly more d¢exnp

While ACL2 [7, 6] has been successfully applied to a wide ramiggommercially
interesting hardware verification problenesy, [14,17, 16, 2, 5, 4]), our suite identifies
a class of problems, naturally arising in practice, that 2@las extreme difficulty han-
dling, but which can be easily handled by existing toelg, UCLID [8, 9]. Our hope
is that our suite of problems will stimulate research on iovprg ACL2'’s reasoning

abilities.

The rest of the paper is organized as follows. In Section 2gwe an overview of
refinement-based processor verification, the domain fromstwine suite of problems
originates. In Section 3, we give an example of a refinemesdrdm in ACL2. In Sec-
tion 4, we review the UCLID decision procedure, and in SecBove give a detailed
description of the suite of problems. In Section 6, we ostém approach to improv-
ing ACL2’s reasoning abilities that we are currently woikion, and we conclude with

Section 7.

2 Refinement Based Processor Verification

In this section, we describe the theory of refinement that@aroprocessor correctness

proofs are based on. For the full details see [11, 12, 10].



The point of a correctness proof is to establish a meanirrgfationship between
ISA, a machine modeled at the instruction set architectewelland MA, a machine
modeled at the microarchitecture level, a low level desioiythat includes the pipeline.
We accomplish this by first definingrafinement mapr, a function from MA states
to ISA states; think ofr as showing us how to view an MA state as an ISA state.
We then prove a&tuttering bisimulation refinemerfior every pair of states, s such
thatw is an MA state and = r(w), for every infinite pathr starting ats, there is a
“matching” infinite pathd starting atw, and conversely. That andd match implies
that applyingr to the states i results in a sequence that can be obtained foom
by repeating, but only finitely often, some ofs states, as MA may require several
steps before matching a single step of ISA. A problem witls #ipproach is that it
requires reasoning about infinite paths, which is difficalatitomate. In [11], we give
an equivalent formulation, WEB-refinement, that requirdyg twtal reasoning. We now
give the relevant definitions, which are given in terms ofggahtransition systems (TS).
ATS Mis atriple(S, --+, L), consisting of a set of stateS, a transition relation;-»,
and a labeling functiot. with domainS, whereL(s) is what is visible as.

Definition 1. (WEB Refinement) Le¥! = (S, --+, L), M’ = (S’,--+',L’), andr :

S — S'. We say thait\! is a WEB refinement 081’ with respect to refinement map
written M =, M, if there exists a relation3, such that(vs € S :: sBr(s)) andB is

aWEB on the T$S W S/, --» W --»', L), whereL(s) = L'(s) for s an S’ state and
L(s) = L'(r(s)) otherwise.

In the above definition, it helps to think @¥1’ as corresponding to ISA ant! as
corresponding to MA. Note that in the disjoint union.bt and M’, the label of every
M state,s, matches the label of the correspondifgf state,r(s). WEBs are defined
next; the main property enjoyed by a WEB, sayis that all states related by have
the same (up to stuttering) visible behaviors.

Definition 2. B C S x SisaWEBon TSU = (S, --», L) iff:

(1) B is an equivalence relation ¢ and
(2) (Vs,we S ::sBw = L(s) = L(w)); and
(3) There exist functionsrankl : S x S — N, erankt : S — W, such that
(W, <) is well-founded, and
(Vs,u,w € S:: sBw A s--+u =
@ (Jvew-->v A uBv) V
(b) (uBw A erankt(u) < erankt(s)) V
) (uiw--+v A sBv A erankl(v,u) < erankl(w,u)))

The third WEB condition says that given statesndw in the same class, such that
s can step tau, u is either matched by a step from or v andw are in the same class
and a rank function decreases (to guaranteeuhiateventually forced to take a step),



or some successer of w is in the same class asand a rank function decreases (to
guarantee that is eventually matched). To prove that a relation is a WEB,arig)
about single steps of-» suffices.

The refinement theorem contains quantifiers and involveibitixiy the existence
of certain rank functions. We would prefer to reduce the potdigation to a decidable
fragment of first-order logic, which we do as follows. First strengthen the refine-
ment theorem in such a way that it can be reduced to a formplessible in CLU (the
logic of Counter arithmetic with Lambda expressions andnitarpreted functions).
Second, we show how to define rank functions in a general watydibes not require
deep understanding of the pipelined machine.

To strengthen the WEB-refinement proof obligation so that tv@io a CLU ex-
pressible statement, we start by defining the equivalerasses of3 to consist of one
ISA state and all the MA states that map to the ISA state undsow, condition 2 of
the WEB definition clearly holds. Our ISA and MA machines aredainistic (actually
they are nondeterministic, but we use oracle variables teertteem deterministic [12]),
thus, after some symbolic manipulation, we can strengtbadition 3 of the WEB def-
inition to the following “core theorem”, whereunk is a function that maps states of
MA into the natural numbers.

MweM 1 s=r(w) A u=1SA-step(s) A
v=MA-step(w) A u#r(v)
= s=rw) A rank(v) < rank(w))

In the formula above andu are ISA states, and andv are MA statest SA- st ep
is a function corresponding to stepping the ISA machine amcivVA- st ep is a func-
tion corresponding to stepping the MA machine once. The twerem says that it
refiness, uis obtained by stepping v is obtained by stepping, andv does not refine
u, theno refiness and therank of v is less than theank of w. The proof obligation re-
lating s andv is the safety component, and the proof obligation that (v) < rank(w)
is the liveness component.

We use two types of refinement maps. One is based on flushiregevaartially ex-
ecuted instructions in the microprocessor state are caatpleithout fetching any new
instructions. Thus, all the pipeline latches are invakdagiving rise to an instruction
architecture state. The other is based on the commitmembagip that can be loosely
thought of as the dual of flushing, since partially completstructions are invalidated
instead of being completed.

3 Refinement Theorems in ACL2

In this section we examine the ACL2 core WEB-refinement theofer the 5-stage
pipelined model mentioned previously.

The refinement theorem has three parts: one describes thepmticessor model,
one describes the instruction set architecture model, aedcontains the actual the-
orem that relates these models. The models are at the teehile, the data path is
abstracted away, as is combinational circuitry such as the Ausing encapsulate).



Recall that the term-level refinement theorem is specifiea dtecidable fragment of
first-order logic. The complexity of the refinement theorames from defining refine-
ment maps that map microprocessor states to instructi@rdatecture states and from
invariants that characterize the set of reachable stabhesréfinement maps and invari-
ants are defined using sequences of symbolic simulatios stefhe microprocessor
model, and for brevity, are not shown.

The ACL2 code fragment below shows part of the refinementrdmdor the 5-
stage DLX pipeline. The implementation and specificati@test are initialized with
arbitrary constants using theni ti al i ze function. The types of these constants are
defined in the antecedent of the implication. Then, the impletation and specification
states are “stepped” using teé mul at e function. This example uses the refinement
map based on the commitment approach and requires the usganfants such as
Good_MA. Since the theorem also checks liveness, we see that a raatdiu is used
in the consequent.

(deft hm VVEB_CORE
(implies
(and
(i ntegerp fdpPQ0)
(i ntegerp depPQ0)
(bool eanp deRegWit e0)

)
(let* ((STO (initialize fdpPCO depPCO ...))

(ST1 (simulate STO nil pcO nil nil pcO

(g "pRF (g "inpl ST0))

(g 'pDMenHi st 1 (g 'inpl STO))))
(ST2 (simulate ST1 nil pcO nil nil pcO

(g "pRF (g "inpl ST1))

(g 'pDMenHi st 1 (g "inmpl ST1))))

(Good_MALV ( Good_MA a
Equi v_.MAO
Equi v_MA_1
Equi v_MA_ 2
Equi v_MA_3
Equi v_.MA4))

(RankV (rank_a (g 'mWART (g 'inpl ST34))
(g "em\RT (g "inpl ST34))
(g "deWRT (g 'inpl ST34))
(g "fdWRT (g 'inpl ST34))
ZERQ))
(Spcl (g 'sPC (g 'speci ST35)))
(Sxrfl (g "sRF (g 'speci ST35)))
(Sdneml (g 'sDMem (g 'speci ST35))))
(and
Good_MALV



(or
(not
(and
(equal S_pcO 1 _pcO0)
(equal (read-sRF.a a Srf0) (read-pRFa a | rf0))
(equal S.dmenD | _dnenD)))
(or
(and
(equal S_pcl | _pc)
(equal (read-sRF.a a Srfl) (read-pRFa a | _rf))
(equal S.dmeml | _dmemn))
(and
(equal S_pcO | pc)
(equal (read-sRFa a Srf0) (read-pRFa a | rf))
(equal S.dmenD | _dnem
(< Rank_V Rank_W)))

))))

4 UCLID System

UCLID [3,9] is a decision procedure for formulas expressed idecidable fragment
of first order logic called CLU. The CLU logic contains Boatsaconnectives, uninter-
preted functions, equality, counter arithmetic, orderiagd restricted lambda expres-
sions. Terms of the logic are used to abstract word-levelesaind uninterpreted func-
tions are used to abstract combinational circuit blocksintémpreted functions only
satisfy the property of functional consistenicg,, if the inputs of two different instances
of an uninterpreted function are equal, then their outpregsegual.

The UCLID specification language is used to model procesamisto specify the
correctness formulas. The processor models in UCLID areifépe at the term level.
A symbolic simulation engine that is part of UCLID takes thiegessor model and the
correctness formula as input, and generates the correisigp@d U formula, which is
then translated to a propositional formula. The transtaioocess takes advantage of
innovative encoding techniques. The propositional foansiichecked using a state-of-
the-art SAT solvers such as Chaff [15] and Siege [18]. The IDC4ystem has been
used to verify out-of-order microprocessors models at¢hm tevel [8].

Using UCLID, we were able to prove the core refinement thecoéthe 5-stage
pipeline example in about 3 seconds. Note that the UCLIDesystoes not have enough
expressive power to state the full correctness theoremABGUR was able to complete
the rest of the proof in under a minute.

5 Suite of Theorems

The problem suite is a set of refinement theorems for processdels in ACL2. As we
have stated earlier, the simplest of these refinement thesoteok ACL215% days to
prove. The other benchmarks are an order of magnitude hakdenteresting feature



of the suite is that the ACL2 theorems are restricted to adaddté fragment of first
order logic. We used the UCLID decision procedure to proeettieorems and report
the verification times below, but first we give a detailed digsion of each benchmark.

5S, 5S-Part: The ‘5S’ benchmark is a refinement theorem for a 5-stageipgeima-
chine model with register-register, register-immediate] store instruction types.
The pipelined machine model is similar to the DLX pipelindéeTrefinement map
is based on the commitment approach. The 5S-Part benchepékti of the cor-
rectness proof described in 5S. We ran 5S-Part to complasong ACL2 and the
proof took15 3 days to complete. When ACL2 was configured to suppress pgintin
the proof took 10 days.

CXS: This benchmark is a refinement theorem for a 7 stage pipelim&chine in-
spired by the Intel XScale architecture. It has 5 abstraattuiation types including
register-register, register-immediate, branch, loand stores. The refinement map
used is based on the commitment approach. The benchmaunkl@scACL2 models
of both the 7 stage pipelined machine (implementation nmjcatad its instruction
set architecture (specification model).

CXS-BP: This benchmark is an extension of the CXS benchmark. It isinbtl by
adding branch prediction to the 7 stage pipelined machingeind he refinement
map is based on the commitment approach and is modified fro® BXaccom-
modate branch prediction.

CXS-BP-EX: This benchmark is obtained by including exceptions to CXShaple-
mentation model. The refinement map is again based on the itorent approach.
The specification model and the refinement map are modifietttyporate excep-
tions.

CXS-BP-EX-INP: This benchmark adds interrupts to CXS-BP-EX. The refinement
map is based on the commitment approach and makes use of oea@bles to
deal with the interrupts.

FXS, FXS-BP, FXS-BP-EX, FXS-BP-EX-INP: The benchmarks FXS, FXS-BP, FXS-
BP-EX, FXS-BP-EX-INP are similar to CXS, CXS-BP, CXS-BP-EFahd CXS-
BP-EX-INP, respectively, in that they are refinement prdofsthe same imple-
mentation models. The main difference is that these bendtsnse flushing as a
refinement map.

Table 1 lists the problems and also provides the time takehd{CLID decision
procedure to prove the theorems. UCLID was run with the S®4E solver, and we
also report statistics for the CNF formulas produced by UZ0The UCLID results are
based on our previous work [13]. The suffix “-S” indicatest ttee theorem is a safety
theorem, while the suffix “-SL” indicates that the theorenthe full core theorem,
containing both the safety and liveness components.

The total column in Table 1 is the sum of the time taken for mgrUCLID and
Siege. We would like to point out here that only the 5S-Pasbfam was run to com-
pletion in ACL2. The other problems are an order of magnithaeler, as can be seen
from the UCLID verification times. The ACL2 times for the oth@oblems are there-
fore extrapolated values and are shown in italics.



Table 1 Verification times and CNF statistics for the benchmarkesuging UCLID and
Siege

UCLID [sec]
Benchmark CNF VargCNF Clauseg CLID|SiequotaI ACL2 [sec]|
5S-Part 5,285 15,457 1 2| 3| 1,339,20
5S 5,285 15,457 1 2| 3| 1,339,20(
CXS-S 12,930 38,215 3| 35 38| 16,963,20
CXS-SL 12,495 36,925 3| 29 32| 14,284,80
CXS-BP-S 24,640 72,859 5| 284 289129,009,60
CXS-BP-SL 23,913 70,693 5| 300 305136,152,00
CXS-BP-EX-S 24,651 72,841 5| 244 249111,153,60
CXS-BP-EX-SL 24,149 71,350 5| 233 238106,243,20
CXS-BP-EX-INP-S | 24,669 72,880 6| 255 261116,510,40

CXS-BP-EX-INP-SIL 24,478 72,322 6

FXS-S 28,505 84,619 14| 140 154 68,745,60
FXS-SL 53,441 159,010 15| 160 175 78,120,00
FXS-BP-S 33,964 100,624 15| 170 185 82,584,00
FXS-BP-SL 71,184 211,723 16| 187 203 90,619,20
FXS-BP-EX-S 35,827 106,114 16| 179 195 87,048,00
FXS-BP-EX-SL 74,591 221,817 17| 163 180 80,352,00

FXS-BP-EX-INP-S 38,711 11,4742 19| 128 147 65,620,80
FXS-BP-EX-INP-SL 781,121 241,345 19| 170 189 84,369,60

D
D
D
D
D
D
D
263 269120,081,600
D
D
D
D
D
D
D
D

The ACL2 theorems were obtained by translating UCLID spegiiibns to ACL2
with a translator we wrote. There is the danger that the la#ina is what is respon-
sible for the slow ACL2 verification times. To better undarst how the translator
affects verification times, we considered the correctrigsgrem for a 3 stage pipelined
machine written for ACL2. After considerable effort was d&d to ACL2 efficiency
considerations, ACL2 took 130 seconds to prove the theovéenthen translated (by
hand) the theorem to UCLID, which took about 1.7 seconds toptete the proof. We
then used our tool to translate the UCLID specification bacR€L2. The resulting
theorem took ACL2 430 seconds to prove. Even accountinghiofactor of four slow-
down, there is still a big gap between the time taken by UCLHD the time taken by
ACL2.

6 Integrating Decision Procedures in ACL2

Our suite of problems convincingly shows that UCLID is a usebol for pipeline
machine verification, but why do we need ACL2 and why would vantito integrate
UCLID into ACL27? We give three reasons, though there arers¢ether good reasons.
First, UCLID models are at the term-level and are not exdatats&second, ACL?2 is far
more expressive than the CLU specification language, whicioi expressive enough
to even state the WEB refinement theorem, though it can be osstate the “core”
theorem. ACL2 allows us to state the WEB theorem and to fogmadluce it to the core



theorem. Third, ACL2 can be used to model and reason aboatip#a machines at
various levels of abstraction, including at the term andawi¢éls. However, the UCLID
decision procedure is only suitable for term-level models.

We believe that integrating UCLID (and other similar demisiprocedures) into
ACL2 will result in a system that is more powerful than the sofits parts. We are
currently exploring this possibility. The difficulty witthe fine-grained integration of
decision procedures into heuristic theorem provers is-lr@dwn [1], but we hope to
avoid these problems by integrating UCLID in a course-grdiway. The idea is to
embed the CLU logic into ACL2, something that is not entirglyial, as it is possible
in UCLID to have variables that are assigned lambdas and @2Auniverse does
not contain functions. However, the lambdas used in UCLI®safficiently restricted
that this obstacle can be overcome. Once this embeddingriplete, we plan to verify
processor models too complex to handle with ACL2 or UCLIDnaldout which can be
easily handled by our combined system.

7 Conclusion

We have presented a benchmark suite of 18 theorems from thaidwf processor
verification that ACL2 has difficulty proving. We hope thagtsuite will help stimulate
research on extending ACL2’s ability to reason about suoblpms, and we proposed
a first step in this direction.
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