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perfect number n:

• n is a positive integer

• n equals the sum of all positive integer

proper divisors of n.

◦ k is proper divisor of n iff k < n and

k | n.

• n =
n−1∑
k=1
k|n

k

• Examples

◦ 6 = 1 + 2 + 3 is perfect

◦ 12 6= 1 + 2 + 3 + 4 + 6 is not perfect
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• The smallest perfect numbers:

◦ 6 = 2 · 3

◦ 28 = 4 · 7

◦ 496 = 16 · 31

◦ 8128 = 64 · 127

• Each first factor, 2,4,16,64, is a power of

2.

• Each second factor, 3,7,31,127, has the

form 2k − 1.

• Each second factor, 3,7,31,127, is a

prime.
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The Greek Euclid proved:

Theorem 1 If 2k − 1 is prime, then

n = 2k−1(2k − 1) is perfect.

• Primes of the form 2k − 1 are called

Mersenne primes.

• Every new Mersenne prime leads to a new

perfect number.
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Wikipedia:

• Less than 50 Mersenne primes are known.

• Largest known Mersenne prime is

257,885,161 − 1.

• Largest known perfect number, with over

34 million digits,

257,885,160(257,885,161 − 1)

• Not known if there are infinitely many

Mersenne primes.

• Not known if there are infinitely many

perfect numbers.
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• If there are only finitely many perfect

numbers, then clearly the series below, of

the reciprocals of all perfect numbers,

converges.

•
∑

perfectn

1

n
=

1

6
+

1

28
+

1

496
+

1

8128
+ · · ·

• An ACL2 theory of perfect numbers is

used to state and prove, in ACL2(r):

◦ Even if there are infinitely many

perfect numbers, the series converges.

6



All perfect numbers built from Mersenne

primes are even.

The Swiss Euler proved every even perfect

number is built from some Mersenne prime:

Theorem 2 If n is an even perfect number,

then n = 2k−1(2k − 1), where 2k − 1 is prime.
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No odd perfect numbers are known.

Euler also proved

Theorem 3 If n is an odd perfect number,

then n = pim2, where p is prime and i, p, m

are odd.
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The ACL2 Theory

• For positive integer n, the function σ(n)

has many useful properties.

• σ(n) denotes the sum of all (including n)

positive integer divisors of n.

• σ(n) =
n∑

k=1
k|n

k

• Reformulate definition of perfect number

in terms of σ:

perfect(n) if and only if σ(n) = 2n
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The ACL2 Theory

Some properties of σ formulated and proved
in ACL2:

1. p is prime if and only if σ(p) = p+ 1

2. If p is prime, then

σ(pk) =
k∑
i=0

pi =
pk+1 − 1

p− 1

3. If p and q are different primes, then

σ(p · q) = σ(p) · σ(q)

4. σ(k · n) ≤ σ(k) · σ(n)

5. If gcd(k, n) = 1, then σ(k · n) = σ(k) · σ(n)

6. If p is prime, then gcd(pk, σ(pk)) = 1
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The ACL2 Theory

n = 2i(2i+1 − 1) is an even perfect number

• the exponent i is computed by an ACL2

term

◦ (cdr (odd-2^i n))

◦ returns the largest value of i such that

2i divides n
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The ACL2 Theory

n = pim2 is an odd perfect number

• the prime p and exponent i are computed

by the ACL2 terms

◦ (car (find-pair-with-odd-cdr

(prime-power-factors n)))

◦ (cdr (find-pair-with-odd-cdr

(prime-power-factors n)))
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The ACL2 Theory

n = pim2 is an odd perfect number

• m is computed by the ACL2 term

• (product-pair-lst

(pairlis$

(strip-cars

(remove1-equal

(find-pair-with-odd-cdr

(prime-power-factors n))

(prime-power-factors n)))

(map-nbr-product

1/2

(strip-cdrs

(remove1-equal

(find-pair-with-odd-cdr

(prime-power-factors n))

(prime-power-factors n))))))
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The ACL2 Theory

n = pim2 is an odd perfect number

The three terms implement the following
computation:

1. Factor n =
∏k
j=0 p

ej
j into the product of

powers of distinct odd primes.

2. Exactly one of the exponents, say e0, will
be odd and all the other exponents will be
even.

3. p is the prime with the odd exponent and
i is the unique odd exponent. So

n = pi ·
k∏

j=1

p
2fj
j

4. Then m =
∏k
j=1 p

fj
j and n = pim2.
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The ACL2 Theory

ACL2 verifies each of the three theorems.

Theorem 1. If 2k − 1 is prime, then

n = 2k−1(2k − 1) is perfect.

Theorem 2. If n is an even perfect number,

then n = 2k−1(2k − 1), where 2k − 1 is

prime.

Theorem 3. If n is an odd perfect number,

then n = pim2, where p is prime and i, p,

m are odd.
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The ACL2 Theory

ACL2 verifies a result of B. Hornfeck

• Different odd perfect numbers,

n1 = p
i1
1 m

2
1 6= n2 = p

i2
2 m

2
2

have distinct mi:

Theorem 4 If n1 = p
i1
1 m

2
1 and n2 = p

i2
2 m

2
2 are

odd perfect numbers and m1 = m2, then

n1 = n2.

Theorems 2, 3, and 4 are enough to prove

that the series, of the reciprocals of all

perfect numbers, converges.
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ACL2(r) is based on Nonstandard Analysis

Rigorous foundations for reasoning about

real, complex, infinitesimal, and infinite

quantities

• Two versions of the reals

1. Standard Reals: stR

2. HyperReals: ?R
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• Standard Reals: stR

◦ The unique complete ordered field.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Every nonempty subset of stR that is

bounded above has a least upper

bound

◦ No non-zero infinitesimal elements

◦ No infinite elements

• HyperReals: ?R

◦ ?R is a proper field extension of stR

stR & ?R

◦ Has non-zero infinitesimal elements

◦ Has infinite elements
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• x ∈ ?R is infinitesimal:

For all positive r ∈ stR, (|x| < r)

0 is the only infinitesimal in stR

• x ∈ ?R is finite:

For some r ∈ stR, (|x| < r)

• x ∈ ?R is infinite:

For all r ∈ stR, (|x| > r)

• x, y ∈ ?R are infinitely close, x ≈ y:

x− y is infinitesimal

• n∞ is an infinite positive integer constant.

19



Every (partial) function

f : stRn 7−→ stRk

has an extension

?f : ?Rn 7−→ ?Rk

such that

• For x1, · · · , xn ∈ stR
?f(x1, · · · , xn) = f(x1, · · · , xn)

• Every first-order statement about f true

in stR is true about ?f in ?R

Example.

(∀x)[sin2(x) + cos2(x) = 1] is true in stR.

(∀x)[?sin2(x) + ?cos2(x) = 1] is true in ?R.
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Any (partial) function

f : stRn 7−→ stRk

is said to be classical.

• Identify a classical f with its extension ?f .

That is, use f for both the original
classical function f and its extension ?f .

• Use (∀stx) for (∀x ∈ stR)
i.e. “for all standard x”

Use (∃stx) for (∃x ∈ stR)
i.e. “there is some standard x”

• (∀x)[sin2(x) + cos2(x) = 1] is true in stR
becomes (∀stx)[sin2(x) + cos2(x) = 1]
(is true in ?R).

(∀x)[?sin2(x) + ?cos2(x) = 1] is true in ?R
becomes
(∀x)[sin2(x) + cos2(x) = 1] (is true in ?R).
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Numeric constants are viewed as 0-ary

functions.

Thus

• Elements of stR are classical

2,4,−1 are classical

• Elements of ?R− stR are not classical

The infinite positive integer constant, n∞,

is not classical

Functions defined using the nonstandard

concepts of infinitesimal, finite, infinite, and

infinitely close are not classical.
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The real series
∑∞
i=0 f(i) converges.

Three proposed definitions:

1. (defun-sk

Series-Converges-Traditional-Standard ()

(∃stL)(∀stε > 0)(∃st int M > 0)(∀st int n)

(n > M ⇒ |
∑n
i=0 f(i)− L| < ε)

)

2. (defun-sk

Series-Converges-Traditional-Hyper ()

(∃L)(∀ε > 0)(∃ int M > 0)(∀ int n)

(n > M ⇒ |
∑n
i=0 f(i)− L| < ε)

)

3. (defun-sk

Series-Converges-Infinitesimal ()

(∃stL)(∀ infinite int n > 0)(
∑n
i=0 f(i) ≈ L)

)
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For classical f , ACL2(r) verifies these three

definitions are equivalent

For classical f , with nonnegative range,

these definitions are equivalent to this

nonstandard definition:

• (defun

Series-Converges-Nonstandard ( )
n∞∑
i=0

f(i) is finite

)

Recall n∞ is an infinite positive integer

constant.
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Use the definition,

Series-Converges-Nonstandard, to verify, in

ACL2(r), the convergence of

∑
perfect(k)

1

k
=

∞∑
k=1

perfect(k)

1

k

by showing this sum is finite:

n∞∑
k=1

perfect(k)

1

k

Recall n∞ is an infinite positive integer

constant.
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Show both summands on the right side are

finite:
n∞∑
k=1

perfect(k)

1

k
=

n∞∑
k=1

perfect(k)
even(k)

1

k
+

n∞∑
k=1

perfect(k)
odd(k)

1

k
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By Theorem 2, even perfect numbers, k, have
the form k = 2i(2i+1 − 1).

Since 2i(2i+1 − 1) ≥ 2i,
1

2i(2i+1 − 1)
≤

1

2i
.

Induction on n verifies
∑n
i=0

1
2i

= 2− 1
2n.

Thus for any positive integer, n, including
n = n∞:

0 ≤
n∑

k=1
perfect(k)

even(k)

1

k
=

n∑
k=1

perfect(k)
k=2i(2i+1−1)

1

2i(2i+1 − 1)

≤
n∑

k=1
perfect(k)

k=2i(2i+1−1)

1

2i

≤
n∑
i=0

1

2i

= 2−
1

2n
< 2
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By Theorem 3, odd perfect numbers, k, have

the form k = pim2.

Since pim2 ≥ m2,
1

pim2
≤

1

m2
.

By Theorem 4, no square, m2, appears more

than once in
n∑

k=1
perfect(k)
k=pim2

1

m2

Induction on n verifies
∑n
m=1

1
m2 ≤ 2− 1

n,
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Thus for any positive integer, n, including

n = n∞:

0 ≤
n∑

k=1
perfect(k)

odd(k)

1

k
=

n∑
k=1

perfect(k)
k=pim2

1

pim2

≤
n∑

k=1
perfect(k)
k=pim2

1

m2

≤
n∑

m=1

1

m2

≤ 2−
1

n
< 2
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Therefore, for any positive integer, n,

including n = n∞:

0 ≤
n∑

k=1
perfect(k)

1

k
=

n∑
k=1

perfect(k)
even(k)

1

k
+

n∑
k=1

perfect(k)
odd(k)

1

k

< 2 + 2 = 4

and
n∞∑
k=1

perfect(k)

1

k
is finite.

30



The heart of this proof:

• The partial sums

n∑
k=1

perfect(k)

1

k

are bounded above (by 4).

• This can be stated and carried out

entirely in ACL2.

• The Reals and ACL2(r) are required to

formally state and prove the series

converges.
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