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Motivation

Fourier series have many applications to a wide variety of mathematical
and physical problems, electrical engineering, signal processing, etc.

We are interested in formalizing Fourier series (and possibly, Fourier
transform) in ACL2 as a useful tool for formally analyzing analog circuits,
mixed-signal integrated circuits, hybrid systems, etc.
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Overview
In this work, we present our efforts in formalizing some basic properties of
Fourier series in the logic of ACL2(r), which is a variant of ACL2 that
supports reasoning about the real numbers by way of non-standard
analysis [R. Gamboa, 1999].
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Non-Standard Analysis

Formulate the operations of calculus using a logically rigorous notion of
infinitesimal numbers, instead of epsilon-delta definition of limit.

Two basic approaches to the foundations:
1 Extend the reals to a bigger set of hyperreals, which includes

infinitesimals [A. Robinson, 1996].
2 Nelson’s Internal Set Theory views the “reals” as “all the reals”,

including infinitesimals, and considers a subset of standard reals
[E. Nelson, 1977].

ACL2(r) follows (2).

Why use non-standard analysis in ACL2?

ACL2 has very limited support for reasoning with quantifiers.
Cool and fun!!!
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Non-Standard Analysis
Let’s consider some real number x .

x is standard if it can be defined. E.g., 1, -2, 3.65, π, e5,
√

2.

⇒ A natural number is considered standard if it is finite, otherwise it
is non-standard.
x is i-small (infinitesimal) iff |x | < r for all positive standard reals r .
⇒ 0 is the only standard i-small number.
x is i-large iff |x | > r for all positive standard reals r .
x is i-limited (finite) iff |x | < r for some positive standard real r.
⇒ x is i-limited iff x is not i-large.

If x is standard, then it must be i-limited.
x is i-close (≈) to a real y iff (x − y) is i-small.
If x is i-limited, standard-part(x), or simply st(x), is a unique
standard real that is i-close to x (st(x) ≈ x).
⇒ x is i-small iff st(x) = 0.

If x is standard, st(x) = x .
All terms introduced here are considered non-classical.
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FTC-2 Evaluation Procedure

Cowles and Gamboa [J. Cowles & R. Gamboa, 2014] implemented a
framework for evaluating definite integrals of real-valued continuous unary
functions on a closed and bounded interval using the Second Fundamental
Theorem of Calculus (FTC-2).∫ b

a
f (x)dx = g(b)− g(a),

where g ′(x) = f (x),∀x ∈ [a, b].

We extend this framework to functions containing free argument(s) and
call the extended framework the FTC-2 evaluation procedure.∫ b

a
f1(x , n)dx = g1(b, n)− g1(a, n),

where g ′1(x , n) = f1(x , n),∀x ∈ [a, b].
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FTC-2 Evaluation Procedure

∫ b

a
f (x)dx = g(b)− g(a) (1)

∫ b

a
f1(x , n)dx = g1(b, n)− g1(a, n) (2)

From (1), we obtain (2) by functionally substituting f (x) with λx .f1(x , n),
g(x) with λx .g1(x , n), etc.

The two following conditions must be satisfied in order to make such a
substitution valid:

1 The new function symbols satisfy the constraints on the replaced
function symbols.

2 Since (1) is a classical theorem, free variables are allowed to appear in
the functional substitution as long as classicalness is preserved
[R. Gamboa & J. Cowles, 2007].
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FTC-2 Evaluation Procedure

∫ b

a
f1(x , n)dx = g1(b, n)− g1(a, n)

There are two concepts in FTC-2 we need to formalize:

Definite integral

Formalizing the definite integral of a function as the Riemann integral
[M. Kaufmann, 2000].

Antiderivative

Specifying an antiderivative of a function via a computer algebra
system such as Mathematica [Wolfram Research, Inc., 2015].

Proving the correctness of the antiderivative via the automatic
differentiator (AD) implemented in ACL2(r) by Reid and Gamboa
[P. Reid & R. Gamboa, 2011].
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Fourier Coefficient Formulas

Theorem 1 (Fourier coefficient formulas)

Consider the following Fourier sum for a periodic function with period 2L:

f (x) = a0 +
∑N

n=1
(
an cos(nπL x) + bn sin(nπL x)

)
Then

a0 =
1

2L

∫ L

−L
f (x)dx ,

am =
1
L

∫ L

−L
f (x) cos(mπ

L x)dx ,

bm =
1
L

∫ L

−L
f (x) sin(mπ

L x)dx .

Sum Rule for Definite Integrals of Indexed Sums.
Orthogonality Relations of Trigonometric Functions.
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Sum Rule for Definite Integrals of Indexed Sums

Lemma 2 (Sum rule for definite integrals of indexed sums)

Let {fn} be a set of real-valued continuous functions on [a, b], where
n = 0, 1, 2, ...,N. Then

∫ b

a

N∑
n=0

fn(x)dx =
N∑

n=0

∫ b

a
fn(x)dx

Prove by applying FTC-1, FTC-2, and the sum rule for differentiation.
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Orthogonality Relations of Trigonometric Functions

Lemma 3 (Orthogonality relations of trigonometric functions)

∫ L

−L
sin(mπ

L x) sin(nπL x)dx =

{
0, if m 6= n ∨m = n = 0
L, if m = n 6= 0

∫ L

−L
cos(mπ

L x) cos(nπL x)dx =


0, if m 6= n
L, if m = n 6= 0
2L, if m = n = 0∫ L

−L
sin(mπ

L x) cos(nπL x)dx = 0

Prove by applying the FTC-2 evaluation procedure.
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Fourier Coefficient Formulas

Fourier coefficients of periodic functions are then formalized from the sum
rule for integration (Lemma 2) and the orthogonality relations (Lemma 3).

Theorem 1 (Fourier coefficient formulas)
Consider the following Fourier sum for a periodic function with period 2L:
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∑N

n=1
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Uniqueness of Fourier Sums

Consequently, the uniqueness of Fourier sums is a straightforward corollary
of the Fourier coefficient formulas (Theorem 1).

Corollary 4 (Uniqueness of Fourier sums)
Let

f (x) = a0 +
N∑

n=1
(an cos(nπL x) + bn sin(nπL x))

and

g(x) = A0 +
N∑

n=1
(An cos(nπL x) + Bn sin(nπL x))

Then f = g ⇔


a0 = A0

an = An, for all n = 1, 2, ...,N
bn = Bn, for all n = 1, 2, ...,N
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Inner Product Formula

Our framework can also be applied to prove other Fourier series’ properties,
e.g., the following inner product formula (not presented in the paper):

Theorem 5 (Inner product formula)
Let

f (x) = a0 +
M∑

n=1
(an cos(nπL x) + bn sin(nπL x))

and

g(x) = A0 +
N∑

n=1
(An cos(nπL x) + Bn sin(nπL x))

Then

1
L

∫ L

−L
f (x)g(x)dx = 2a0A0 +

min{M,N}∑
n=1

anAn +

min{M,N}∑
n=1

bnBn
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Sum Rule for Definite Integrals of Infinite Series

The results presented so far just apply to finite sums. However, Fourier
series can be infinite.

Formalizing the sum rule for definite integrals of infinite series under each
of two sufficient conditions (discussed later).

∫ b

a
lim

N→∞

( N∑
n=0

fn(x)
)

dx ?
= lim

N→∞

( N∑
n=0

∫ b

a
fn(x)dx

)

In non-standard analysis,

∫ b

a
st

 H0∑
n=0

fn(x)

 dx ?
= st

 H1∑
n=0

∫ b

a
fn(x)dx


for all infinitely large natural numbers H0 and H1,
where st is the standard-part function in non-standard analysis.
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Pointwise Convergence vs. Uniform Convergence

Pointwise convergence: Suppose {fn} is a sequence of functions defined on
an interval I. The sequence {fn} converges pointwise to the limit function
f on the interval I if fH(x) ≈ f (x) for all standard x ∈ I and for all
infinitely large natural numbers H.

Uniform convergence: Suppose {fn} is a sequence of functions defined on
an interval I. The sequence {fn} converges uniformly to the limit function
f on the interval I if fH(x) ≈ f (x) for all x ∈ I (both standard and
non-standard) and for all infinitely large natural numbers H.

The texts in red show the differences between pointwise and uniform
convergence.
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Sum Rule for Definite Integrals of Infinite Series

Our goal is to prove

∫ b

a
st

 H0∑
n=0

fn(x)

 dx = st

 H1∑
n=0

∫ b

a
fn(x)dx

 (3)

Our proof of (3) requires that a sequence of partial sums of real-valued
continuous functions converges uniformly to a continuous limit
function on the interval of interest. We come up with this requirement in
two ways corresponding to two different conditions:

Condition 1: A monotone sequence of partial sums of real-valued
continuous functions converges pointwise to a continuous limit
function on the closed and bounded interval of interest.
Condition 2: A sequence of partial sums of real-valued continuous
functions converges uniformly to a limit function on the interval of
interest.
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Sum Rule for Definite Integrals of Infinite Series

Requirement: A sequence of partial sums of real-valued continuous
functions converges uniformly to a continuous limit function on the
interval of interest.

Condition 1: A monotone sequence of partial sums of real-valued
continuous functions converges pointwise to a continuous limit
function on the closed and bounded interval of interest.

⇒ By Dini Uniform Convergence Theorem
[W. A. J. Luxemburg, 1971], the sequence also converges uniformly
to the continuous limit function.

Condition 2: A sequence of partial sums of real-valued continuous
functions converges uniformly to a limit function on the interval of
interest.

⇒ Using the overspill principle, we proved that the limit function is
also continuous.
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Dini Uniform Convergence Theorem

Theorem 6 (Dini Uniform Convergence Theorem)
A monotone sequence of continuous functions {fn} that converges
pointwise to a continuous function f on a closed and bounded interval
[a, b] is uniformly convergent.

A key technique in our proof of Dini’s theorem is to apply the overspill
principle from non-standard analysis [R. Goldblatt, 1998].

Cuong Chau et al. (UT Austin) Fourier Series Formalization in ACL2(r) September 30, 2015 24 / 31



Dini Uniform Convergence Theorem

Theorem 6 (Dini Uniform Convergence Theorem)
A monotone sequence of continuous functions {fn} that converges
pointwise to a continuous function f on a closed and bounded interval
[a, b] is uniformly convergent.

A key technique in our proof of Dini’s theorem is to apply the overspill
principle from non-standard analysis [R. Goldblatt, 1998].

Cuong Chau et al. (UT Austin) Fourier Series Formalization in ACL2(r) September 30, 2015 24 / 31



Overspill Principle

Weak version: Let P(n, x) be a classical predicate. Then

∀x .((∀stn ∈ N.P(n, x))⇒ ∃¬stk ∈ N.P(k, x))

In words: If a classical predicate P holds for all standard natural numbers
n, P must be hold for some non-standard natural number k.

Strong version: Let P(n, x) be a classical predicate. Then

∀x .((∀stn ∈ N.P(n, x))⇒ ∃¬stk ∈ N,∀m ∈ N.(m ≤ k ⇒ P(m, x)))

In words: If a classical predicate P holds for all standard natural numbers
n, there must exist some non-standard natural number k s.t. P holds for
all natural numbers less than or equal to k.
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Sum Rule for Definite Integrals of Infinite Series

Requirement: A sequence of partial sums of real-valued continuous
functions converges uniformly to a continuous limit function on the
interval of interest.

Condition 1: A monotone sequence of partial sums of real-valued
continuous functions converges pointwise to a continuous limit
function on the closed and bounded interval of interest.

⇒ By Dini Uniform Convergence Theorem
[W. A. J. Luxemburg, 1971], the sequence also converges uniformly
to the continuous limit function.

Condition 2: A sequence of partial sums of real-valued continuous
functions converges uniformly to a limit function on the interval of
interest.

⇒ Using the overspill principle, we proved that the limit function is
also continuous.
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⇒ By Dini Uniform Convergence Theorem
[W. A. J. Luxemburg, 1971], the sequence also converges uniformly
to the continuous limit function.
Condition 2: A sequence of partial sums of real-valued continuous
functions converges uniformly to a limit function on the interval of
interest.

⇒ Using the overspill principle, we proved that the limit function is
also continuous.
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Conclusions

We have extended a framework for formally evaluating definite integrals of
real-valued continuous functions using FTC-2. Our framework can handle
functions with free arguments.

We have formalized the Fourier coefficient formulas and the sum rule for
definite integrals of infinite series in ACL2(r).

We have formalized the overspill principle in ACL2(r). We have built a
simple interface that makes the overspill principle very easy to apply, thus
strengthening the reasoning capability of non-standard analysis in ACL2(r).
Our proofs of Dini’s theorem and the continuity of the limit function
illustrate this capability.

We are confident that our frameworks can be applied to future work on
Fourier series and, more generally, continuous mathematics, to be carried
out in ACL2(r).
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Thank You!
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