
A challenge problem:
Toward better ACL2 proof technique

Matt Kaufmann
The University of Texas at Austin

Dept. of Computer Science, GDC 7.804

ACL2 Workshop 2015

October 1, 2015



INTRODUCTION

I took a break this summer to return to my roots as a
mathematical logician, hosted by Prof. Ali Enayat of the
University of Gothenburg, Sweden.

I Lots of fun chats!
I We are co-authoring a tutorial paper on iterated ultrapowers.
I A key lemma in that paper can be abstracted to a lemma

about finite sequences, with a pretty simple hand proof.
I Why not prove the abstracted lemma in ACL2?

Horrors!
It took me about 16 hours to complete that exercise in ACL2.

2/13



INTRODUCTION (PAGE 2)

Possible conclusions:

I I suck at using ACL2?
I ACL2 sucks?
I There are ways to use ACL2 more productively that I

didn’t use.
I Structured development methodologies?
I More help from existing libraries?
I Nicer formalization of the problem?
I . . .

3/13



INTRODUCTION (PAGE 3)

Goal for today:

Present a challenge to construct an ACL2 proof more
efficiently and to present lessons learned . . .
perhaps in a future ACL2 Workshop.

In this talk I’ll point you to relevant books and I’ll also present
a very informal hand proof.

4/13



THE CHALLENGE(S)
The community book
books/demos/proofs/tightness-lemma.lisp contains:

I a self-contained informal proof (as a Lisp comment) using
standard mathematical notation;

I encapsulate and defun events introducing the requisite
notions; and

I a statement of the final theorem.

I’m putting forth the following challenges.

I Preferred challenge: Do a better, faster job than the proof
given in community book
books/demos/proofs/tightness-lemma-proof.lisp.
NOTE: It’s OK to change the formalization!

I Alternate challenge: “Reverse engineer” that proof into
one that shows how to complete such proofs more
efficiently.

5/13

https://raw.githubusercontent.com/acl2/acl2/master/books/demos/proofs/tightness-lemma.lisp
https://raw.githubusercontent.com/acl2/acl2/master/books/demos/proofs/tightness-lemma-proof.lisp


VERY INFORMAL THEOREM STATEMENT

I’ll be sloppy here and using pictures, just to give the idea. A
more careful hand proof is in the aforementioned
tightness-lemma.lisp book.

Assume that we have:

I a set I and strict total ordering ≺ on I;
I functions f (s) and g(s), on ≺-increasing sequences from I

of length nf and ng, respectively; and
I a unary predicate P.

The next slide illustrates the remaining assumptions for nf = 4
and ng = 3.

6/13



VERY INFORMAL THEOREM STATEMENT (2)

ASSUMPTIONS

(d) If f (s1) = f (s2) and all of s1 precedes all of s2, then P(f (s1)):
(s1) a a a a
(s2) b b b b

(e) For disjoint sequences s1 and s2, the truth of the equation
f (s1) = g(s2) depends only on how s1 and s2 are interleaved.
(s1) x x x x
(s2) y y y

(g) For two specific disjoint sequences sf and sg, f (sf ) = g(sg).

CONCLUSION: P(f (sf )).

7/13



VERY INFORMAL PROOF SKETCH

(d) If f (s1) = f (s2) and all of s1 precedes all of s2, then P(f (s1)):
(s1) a a a a
(s2) b b b b

(e) For disjoint sequences s1 and s2, the truth of the equation
f (s1) = g(s2) depends only on how s1 and s2 are interleaved.
(s1) x x x x
(s2) y y y

(g) For two specific disjoint sequences sf and sg, f (sf ) = g(sg).

Plan: We will see how to derive P(f (sf )) from (g) by applying
(e) repeatedly and then (d).

x x y y x y x

8/13



We wish to show P(f (sf )).
Below, all f (sf ) and g(sg) equal the first f (sf ) and g(sg):

x x y y x y x

x x y y x y x

x x y y x y x

x x y y x y x

x x y y x y x

x x y y x y x

x x y y x y x

x x y y x y x

Now let’s erase all but the first and last lines. . .

9/13



x x y y x y x

x x y y x y x

Now let’s erase each y. . .

10/13



x x x x

x x x x

11/13



So, we have the same value of f (sf ) for the first and final sf :
x x x x

x x x x

But recall:

(d) If f (s1) = f (s2) and all of s1 precedes all of s2, then P(f (s1)):
(s1) a a a a
(s2) b b b b

So P(f (sf )), as was to be shown!

12/13



CONCLUSION

For a more complete informal proof, see community book
books/demos/proofs/tightness-lemma.lisp.

(E.g.: The ordered set I must have “room” to move to the right.)

I probably did do a few good things:

I I left comments describing the next main goal.

I I introduced a predicate for the inductive theorem I was
trying to prove.

I I put the proof in a separate book and used
SET-ENFORCE-REDUNDANCY, to keep the problem
statement clean.

BUT DID IT REALLY NEED TO TAKE 16 HOURS?

13/13

https://raw.githubusercontent.com/acl2/acl2/master/books/demos/proofs/tightness-lemma.lisp
http://www.cs.utexas.edu/users/moore/acl2/workshop-2015/slides/kaufmann-tightness-lemma/main-trick.lisp

