
Stateman: Using Metafunctions to Manage

Large Terms Representing Machine States

J Strother Moore
Department of Computer Science
University of Texas at Austin

1



Terms Representing Machine States

(!I 6 ; set pc to 6

(!S NIL ; set status flag to NIL

(!R 0 8 4280 ; set mem[0..7] to 4280

(!R 16 8 (LOGAND x y)

(!R (+ 40 (* 8 i)) 8 111

(!R 4280 8 999

ST))))))

2



Terms Representing Machine States

; addr n val

(!I 6

(!S NIL

(!R 0 8 4280

(!R 16 8 (LOGAND x y)

(!R (+ 40 (* 8 i)) 8 111

(!R 4280 8 999

ST))))))

3



Terms Representing Machine States

(I

(!I 6

(!S NIL

(!R 0 8 4280

(!R 16 8 (LOGAND x y)

(!R (+ 40 (* 8 i)) 8 111

(!R 4280 8 999

ST)))))))

=

6

4



Terms Representing Machine States

(S

(!I 6

(!S NIL

(!R 0 8 4280

(!R 16 8 (LOGAND x y)

(!R (+ 40 (* 8 i)) 8 111

(!R 4280 8 999

ST)))))))

=

NIL

5



Terms Representing Machine States

(R 16 8

(!I 6

(!S NIL

(!R 0 8 4280

(!R 16 8 (LOGAND x y)

(!R (+ 40 (* 8 i)) 8 111

(!R 4280 8 999

ST)))))))

=

(MOD (LOGAND x y) 264)

6



Terms Representing Machine States

(R 4280 8

(!I 6

(!S NIL

(!R 0 8 4280

(!R 16 8 (LOGAND x y)

(!R (+ 40 (* 8 i)) 8 111

(!R 4280 8 999

ST)))))))

=

999

provided (+ 40 (* 8 i) 8) ≤ 4280

∨ (+ 4280 8) ≤ (+ 40 (* 8 i))

7



Rewrite Rules

• (I (!S v st)) = (I st)

• ((NATP a) ∧ (NATP b) ∧ (+ b k) ≤ a)

→ (R a n (!R b k v st)) = (R a n st)

• ((NATP a) ∧ (NATP b) ∧ (+ a n) ≤ b)

→ (R a n (!R b k v st)) = (R a n st)

Such rules suffice to manipulate state expressions.

8



Rewrite Rules

• (I (!S v st)) = (I st)

• ((NATP a) ∧ (NATP b) ∧ (+ b k) ≤ a)

→ (R a n (!R b k v st)) = (R a n st)

• ((NATP a) ∧ (NATP b) ∧ (+ a n) ≤ b)

→ (R a n (!R b k v st)) = (R a n st)

Such rules suffice to manipulate state expressions — except

when there are deep nests of !R-expressions and a, b, n, and k

are large expressions.

9



Terms Representing Machine States

(!I 6

(!S NIL

(!R 0 8 4280

(!R 16 8 (LOGAND x y)

(!R (+ 40 (* 8 i)) 8 111

(!R 4280 8 999

ST))))))

Size (in function applications): 9

Biggest Address or Value Expression: 2

10



Motivation for This Project

We have recently analyzed a piece of code (15,361

instructions of a formal ISA) involving states with:

Size (in function applications): 2,158,895

Biggest Address or Value Expression: 147,233

Backchaining to decide questions like

(+ 40 (* 8 i) 8) ≤ 4280

∨ (+ 4280 8) ≤ (+ 40 (* 8 i))

for every pair of addresses in such state expressions is

prohibitive.

11



Highlights

• Manage read-over-write and write-over-write expressions

exclusively with metafunctions

• Implement a syntactic interval inference mechanism

• Implement syntactic means of deciding some inequalities

• Implement syntactic means of simplifying some MOD

expressions

• Use syntactic means to decide overlap questions

• Insist that all byte counts be quoted constants

12



• Do not put nested !R-expressions into address order

• Eliminate perfectly shadowed writes

• Use hons rather than cons to create state expressions

• HIDE the state expressions produced by the metafunctions

• HIDE some values extracted by reads from hidden states to

avoid re-simplifying them

• Prove guards and well-formedness guarantees of the

metafunctions

13



Ainni — Our Interval Analyzer

Given

(+ 288 (* 8 (LOGAND 31 (ASH (R 4520 8 st) -3))))

our analyzer reports an interval of [288, 536].

But if (R 4520 8 st) < 24 is known by context, then the

interval shrinks to [288, 304].

The analyzer can compute the interval [0, 232 − 1] for the

largest value term encountered (147,233 function applications)

in 0.01 seconds.

14



Examples of Ainni

(switch to *shell* buffer)

15



Finding Assignments

(R 4280 8

(!I 6

(!S NIL

(!R 0 8 4280

(!R 16 8 (LOGAND x y)

(!R (+ 40 (* 8 i)) 8 111

(!R 4280 8 999

ST)))))))

=

16



Finding Assignments

(R 4280 8

(!S NIL

(!R 0 8 4280

(!R 16 8 (LOGAND x y)

(!R (+ 40 (* 8 i)) 8 111

(!R 4280 8 999

ST))))))

=

17



Finding Assignments

(R 4280 8 ; [4280,4287] vs [0,7]

(!R 0 8 4280

(!R 16 8 (LOGAND x y)

(!R (+ 40 (* 8 i)) 8 111

(!R 4280 8 999

ST))))))

=

18



Finding Assignments

(R 4280 8 ; [4280,4287] vs [16,23]

(!R 16 8 (LOGAND x y)

(!R (+ 40 (* 8 i)) 8 111

(!R 4280 8 999

ST))))))

=

19



Finding Assignments

(R 4280 8 ; [4280,4287] vs [40,167] w/ i < 16

(!R (+ 40 (* 8 i)) 8 111

(!R 4280 8 999

ST))))))

=

20



Finding Assignments

(R 4280 8 ; same!

(!R 4280 8 999

ST))))))

=

999

21



Preliminary Performance Results

A: guard verification

B: well-formedness

C: honsing

D: memoization

– 988 secs

A 955 secs

A+B 618 secs

A+B+C 494 secs

A+B+C+D 375 secs

22



Future Work

• provide a metafunction to prove state equality

• engineer ACL2 to cope better with large definitions

23



More Generally

This project illustrates a very common industrial application of

ACL2: as a programming language suitable for writing verified

programs.

By mixing verified metafunctions with the rest of ACL2, one

can build a powerful domain-specific prover.

24


