Stateman: Using Metafunctions to Manage Large Terms Representing Machine States

J Strother Moore Department of Computer Science University of Texas at Austin

(!I 6 (!S NIL (!R 0 8 4280 (!R 16 8 (LOGAND x y) (!R (+ 40 (* 8 i)) 8 111 (!R 4280 8 999 ST))))))

- ; set pc to 6
- ; set status flag to NIL
- ; set mem[0..7] to 4280

•	addr	n	val
(!I			6
(!S			NIL
(!R	0	8	4280
(!R	16	8	(LOGAND $x y$)
(!R	(+ 40 (* 8 <i>i</i>))	8	111
(!R	, 4280	8	999
ST	'))))))		

(I			
(!I			6
(!S			NIL
(!R	0	8	4280
(!R	16	8	(LOGAND $x y$)
(!R	(+ 40 (* 8 <i>i</i>))	8	111
(!R	4280	8	999
ST)))))))		

6

(S			
(!I			6
(!S			NIL
(!R	0	8	4280
(!R	16	8	(LOGAND $x y$)
(!R	(+ 40 (* 8 <i>i</i>))	8	111
(!R	4280	8	999
ST)))))))		

NIL

(R 16 8			
(!I			6
(!S			NIL
(!R	0	8	4280
(!R	16	8	(LOGAND $x y$)
(!R	(+ 40 (* 8 <i>i</i>))	8	111
(!R	4280	8	999
ST)))))))		

(MOD (LOGAND x y) 2^{64})

(R 4280 8			
(!I			6
(!S			NIL
(!R	0	8	4280
(!R	16	8	(LOGAND $x y$)
(!R	(+ 40 (* 8 <i>i</i>))	8	111
(!R	4280	8	999
ST))))))		

=

999

provided (+ 40 (* 8 i) 8) \leq 4280 \lor (+ 4280 8) \leq (+ 40 (* 8 i))

Rewrite Rules

- (I (!S v st)) = (I st)
- ((NATP a) \land (NATP b) \land (+ b k) \leq a) \rightarrow (R a n (!R b k v st)) = (R a n st)
- ((NATP a) \land (NATP b) \land (+ a n) \leq b) \rightarrow (R a n (!R b k v st)) = (R a n st)

Such rules suffice to manipulate state expressions.

Rewrite Rules

- (I (!S v st)) = (I st)
- ((NATP a) \land (NATP b) \land (+ b k) \leq a) \rightarrow (R a n (!R b k v st)) = (R a n st)
- ((NATP a) \land (NATP b) \land (+ a n) \leq b) \rightarrow (R a n (!R b k v st)) = (R a n st)

Such rules suffice to manipulate state expressions — except when there are deep nests of !R-expressions and a, b, n, and kare large expressions.

(!I			6
(!S			NIL
(!R	0	8	4280
(!R	16	8	(LOGAND $x y$)
(!R	(+ 40 (* 8 <i>i</i>))	8	111
(!R	4280	8	999
ST))))))			

Size (in function applications):9Biggest Address or Value Expression:2

Motivation for This Project

We have recently analyzed a piece of code (15,361 instructions of a formal ISA) involving states with:

Size (in function applications): 2,158,895 Biggest Address or Value Expression: 147,233

Backchaining to decide questions like (+ 40 (* 8 *i*) 8) \leq 4280 \lor (+ 4280 8) \leq (+ 40 (* 8 *i*))

for every pair of addresses in such state expressions is prohibitive.

Highlights

- Manage read-over-write and write-over-write expressions exclusively with metafunctions
- Implement a syntactic interval inference mechanism
- Implement syntactic means of deciding some inequalities
- Implement syntactic means of simplifying some MOD expressions
- Use syntactic means to decide overlap questions
- Insist that all byte counts be quoted constants

- Do not put nested !R-expressions into address order
- Eliminate perfectly shadowed writes
- Use hons rather than cons to create state expressions
- HIDE the state expressions produced by the metafunctions
- HIDE some values extracted by reads from hidden states to avoid re-simplifying them
- Prove guards and well-formedness guarantees of the metafunctions

Ainni — Our Interval Analyzer

Given

(+ 288 (* 8 (LOGAND 31 (ASH (R 4520 8 st) -3)))

our analyzer reports an interval of [288, 536].

But if (R 4520 8 st) < 24 is known by context, then the interval shrinks to [288, 304].

The analyzer can compute the interval $[0, 2^{32} - 1]$ for the largest value term encountered (147,233 function applications) in 0.01 seconds.

Examples of Ainni

(switch to *shell* buffer)

(R 4280 8			
(!I			6
(!S			NIL
(!R	0	8	4280
(!R	16	8	(LOGAND $x y$)
(!R	(+ 40 (* 8 <i>i</i>))	8	111
(!R	4280	8	999
ST))))))		

=

=

(R 4280 8 ; [4280,4287] vs [0,7] (!R 0 8 4280 (!R 16 8 (LOGAND x y) (!R (+ 40 (* 8 i)) 8 111 (!R 4280 8 999 ST)))))

=

(R 4280 8 ; [4280,4287] vs [40,167] w/ i < 16
(!R (+ 40 (* 8 i)) 8 111
(!R 4280 8 999
ST))))))</pre>

Preliminary Performance Results

- A: guard verification
- B: well-formedness
- C: honsing
- D: memoization

_	988 secs
А	955 secs
A+B	618 secs
A+B+C	494 secs
A+B+C+D	375 secs

Future Work

- provide a metafunction to prove state equality
- engineer ACL2 to cope better with large definitions

More Generally

This project illustrates a very common industrial application of ACL2: as a programming language suitable for writing verified programs.

By mixing verified metafunctions with the rest of ACL2, one can build a powerful domain-specific prover.