
Formal Specification and Verification of the FM9001
Microprocessor Using the DE System

Cuong Chau
ckcuong@cs.utexas.edu

Department of Computer Science

The University of Texas at Austin

May 23, 2017

Cuong Chau (UT Austin) FM9001 Specification and Verification May 23, 2017 1 / 22

mailto:ckcuong@cs.utexas.edu


Outline

1 Introduction

2 The DE System

3 Monotonicity of DE

4 Conclusion

Cuong Chau (UT Austin) FM9001 Specification and Verification May 23, 2017 2 / 22



Outline

1 Introduction

2 The DE System

3 Monotonicity of DE

4 Conclusion

Cuong Chau (UT Austin) FM9001 Specification and Verification May 23, 2017 3 / 22



Introduction

FM9001 is a general-purpose 32-bit microprocessor whose gate-level netlist
was originally specified and verified in the Nqthm logic using the
DUAL-EVAL system [Brock & Hunt:1997].

We re-specify and re-verify the FM9001 netlist in the ACL2 logic using the
DE system.

Motivation: This work provides a library of verified hardware circuit
generators that can be applied when reasoning about the synthesis of
hardware circuits using DE.

Cuong Chau (UT Austin) FM9001 Specification and Verification May 23, 2017 4 / 22



FM9001 Specification Levels

Cuong Chau (UT Austin) FM9001 Specification and Verification May 23, 2017 5 / 22



Block Diagram of the FM9001

Cuong Chau (UT Austin) FM9001 Specification and Verification May 23, 2017 6 / 22



FM9001 Verification

The proof of correctness of the FM9001 gate-level design consists of three
major lemmas:

1 The FM9001 can be forced to a known state, i.e., reset, from any
initial state by a suitable sequence of inputs.

2 Given a set of initial conditions, the gate-level model correctly
implements the high-level instruction interpreter.

3 The state at the end of the reset sequence satisfies the initial
conditions for the previous lemma.

Strategy:

Prove that the desired reset state can be reached from an initial state of
all X (unknown) values.

By monotonicity of the DE semantics, we then prove that the desired reset
state can be reached from any initial state.

Cuong Chau (UT Austin) FM9001 Specification and Verification May 23, 2017 7 / 22



FM9001 Verification

The proof of correctness of the FM9001 gate-level design consists of three
major lemmas:

1 The FM9001 can be forced to a known state, i.e., reset, from any
initial state by a suitable sequence of inputs.

2 Given a set of initial conditions, the gate-level model correctly
implements the high-level instruction interpreter.

3 The state at the end of the reset sequence satisfies the initial
conditions for the previous lemma.

Strategy:

Prove that the desired reset state can be reached from an initial state of
all X (unknown) values.

By monotonicity of the DE semantics, we then prove that the desired reset
state can be reached from any initial state.

Cuong Chau (UT Austin) FM9001 Specification and Verification May 23, 2017 7 / 22



FM9001 Verification

The proof of correctness of the FM9001 gate-level design consists of three
major lemmas:

1 The FM9001 can be forced to a known state, i.e., reset, from any
initial state by a suitable sequence of inputs.

2 Given a set of initial conditions, the gate-level model correctly
implements the high-level instruction interpreter.

3 The state at the end of the reset sequence satisfies the initial
conditions for the previous lemma.

Strategy:

Prove that the desired reset state can be reached from an initial state of
all X (unknown) values.

By monotonicity of the DE semantics, we then prove that the desired reset
state can be reached from any initial state.

Cuong Chau (UT Austin) FM9001 Specification and Verification May 23, 2017 7 / 22



Challenge

The original work modeled the memory model using Nqthm’s shell
principle.

There is no such principle in ACL2.

Need a different approach to formalizing the memory model for FM9001.

Cuong Chau (UT Austin) FM9001 Specification and Verification May 23, 2017 8 / 22



Challenge

The original work modeled the memory model using Nqthm’s shell
principle.

There is no such principle in ACL2.

Need a different approach to formalizing the memory model for FM9001.

Cuong Chau (UT Austin) FM9001 Specification and Verification May 23, 2017 8 / 22



Approach

The original work used Nqthm’s shell principle to introduce three new data
structures for a memory cell:

1 ROM tags read-only locations of the memory.
2 RAM tags read-write locations of the memory.
3 STUB represents “unimplemented” portions.

Our approach: Represent a memory cell as a proper list of two elements:
1 The first element is a flag specifying the memory type of the cell

(i.e., ROM, or RAM, or STUB).
2 The second element is the value of the cell.

This change does not affect the proof strategy for FM9001 created in the
previous work, except for establishing the monotonicity property for DE,
which is part of the FM9001 verification procedure.

Cuong Chau (UT Austin) FM9001 Specification and Verification May 23, 2017 9 / 22



Approach

The original work used Nqthm’s shell principle to introduce three new data
structures for a memory cell:

1 ROM tags read-only locations of the memory.
2 RAM tags read-write locations of the memory.
3 STUB represents “unimplemented” portions.

Our approach: Represent a memory cell as a proper list of two elements:
1 The first element is a flag specifying the memory type of the cell

(i.e., ROM, or RAM, or STUB).
2 The second element is the value of the cell.

This change does not affect the proof strategy for FM9001 created in the
previous work, except for establishing the monotonicity property for DE,
which is part of the FM9001 verification procedure.

Cuong Chau (UT Austin) FM9001 Specification and Verification May 23, 2017 9 / 22



Approach

The original work used Nqthm’s shell principle to introduce three new data
structures for a memory cell:

1 ROM tags read-only locations of the memory.
2 RAM tags read-write locations of the memory.
3 STUB represents “unimplemented” portions.

Our approach: Represent a memory cell as a proper list of two elements:
1 The first element is a flag specifying the memory type of the cell

(i.e., ROM, or RAM, or STUB).
2 The second element is the value of the cell.

This change does not affect the proof strategy for FM9001 created in the
previous work, except for establishing the monotonicity property for DE,
which is part of the FM9001 verification procedure.

Cuong Chau (UT Austin) FM9001 Specification and Verification May 23, 2017 9 / 22



Outline

1 Introduction

2 The DE System

3 Monotonicity of DE

4 Conclusion

Cuong Chau (UT Austin) FM9001 Specification and Verification May 23, 2017 10 / 22



The DE Language

DE is a formal occurrence-oriented hardware description language
developed in ACL2 for describing Mealy machines [Hunt:2000].

A DE description is an ACL2 constant containing an ordered list of
modules, which we call a netlist.

The operational semantics for the DE language is implemented as an
output evaluator, se, and a state evaluator, de.

The se function evaluates a module and returns its outputs as a
function of its inputs and its internal state.
The de function evaluates a module and returns its next state; this
state will be structurally identical to the module’s current state, but
with updated values.

Cuong Chau (UT Austin) FM9001 Specification and Verification May 23, 2017 11 / 22



The DE Language

DE is a formal occurrence-oriented hardware description language
developed in ACL2 for describing Mealy machines [Hunt:2000].

A DE description is an ACL2 constant containing an ordered list of
modules, which we call a netlist.

The operational semantics for the DE language is implemented as an
output evaluator, se, and a state evaluator, de.

The se function evaluates a module and returns its outputs as a
function of its inputs and its internal state.
The de function evaluates a module and returns its next state; this
state will be structurally identical to the module’s current state, but
with updated values.

Cuong Chau (UT Austin) FM9001 Specification and Verification May 23, 2017 11 / 22



The DE Language

DE is a formal occurrence-oriented hardware description language
developed in ACL2 for describing Mealy machines [Hunt:2000].

A DE description is an ACL2 constant containing an ordered list of
modules, which we call a netlist.

The operational semantics for the DE language is implemented as an
output evaluator, se, and a state evaluator, de.

The se function evaluates a module and returns its outputs as a
function of its inputs and its internal state.
The de function evaluates a module and returns its next state; this
state will be structurally identical to the module’s current state, but
with updated values.

Cuong Chau (UT Austin) FM9001 Specification and Verification May 23, 2017 11 / 22



The DE Language

DE is a formal occurrence-oriented hardware description language
developed in ACL2 for describing Mealy machines [Hunt:2000].

A DE description is an ACL2 constant containing an ordered list of
modules, which we call a netlist.

The operational semantics for the DE language is implemented as an
output evaluator, se, and a state evaluator, de.

The se function evaluates a module and returns its outputs as a
function of its inputs and its internal state.

The de function evaluates a module and returns its next state; this
state will be structurally identical to the module’s current state, but
with updated values.

Cuong Chau (UT Austin) FM9001 Specification and Verification May 23, 2017 11 / 22



The DE Language

DE is a formal occurrence-oriented hardware description language
developed in ACL2 for describing Mealy machines [Hunt:2000].

A DE description is an ACL2 constant containing an ordered list of
modules, which we call a netlist.

The operational semantics for the DE language is implemented as an
output evaluator, se, and a state evaluator, de.

The se function evaluates a module and returns its outputs as a
function of its inputs and its internal state.
The de function evaluates a module and returns its next state; this
state will be structurally identical to the module’s current state, but
with updated values.

Cuong Chau (UT Austin) FM9001 Specification and Verification May 23, 2017 11 / 22



Outline

1 Introduction

2 The DE System

3 Monotonicity of DE

4 Conclusion

Cuong Chau (UT Austin) FM9001 Specification and Verification May 23, 2017 12 / 22



FM9001 Verification

The proof of correctness of the FM9001 gate-level design consists of three
major lemmas:

1 The FM9001 can be forced to a known state, i.e., reset, from any
initial state by a suitable sequence of inputs.

2 Given a set of initial conditions, the gate-level model correctly
implements the high-level instruction interpreter.

3 The state at the end of the reset sequence satisfies the initial
conditions for the previous lemma.

Strategy:

Prove that the desired reset state can be reached from an initial state of
all X (unknown) values.

By monotonicity of the DE semantics, we then prove that the desired reset
state can be reached from any initial state.

Cuong Chau (UT Austin) FM9001 Specification and Verification May 23, 2017 13 / 22



Monotonicity

We define a partial ordering with a binary relation ≤ over the four-valued
constants: a ≤ b if a = b or a = X.

X

T NIL Z

A function f (x) is monotonic if a ≤ b ⇒ f (a) ≤ f (b).

A function f (x1, x2, ..., xn) is monotonic if
a1 ≤ b1 & a2 ≤ b2 & ... & an ≤ bn ⇒ f (a1, a2, ..., an) ≤ f (b1, b2, ..., bn).

Primitive four-valued logic functions (e.g., F-AND, F-OR, F-NOT, F-XOR)
are monotonic.

Cuong Chau (UT Austin) FM9001 Specification and Verification May 23, 2017 14 / 22



Monotonicity

We define a partial ordering with a binary relation ≤ over the four-valued
constants: a ≤ b if a = b or a = X.

X

T NIL Z

A function f (x) is monotonic if a ≤ b ⇒ f (a) ≤ f (b).

A function f (x1, x2, ..., xn) is monotonic if
a1 ≤ b1 & a2 ≤ b2 & ... & an ≤ bn ⇒ f (a1, a2, ..., an) ≤ f (b1, b2, ..., bn).

Primitive four-valued logic functions (e.g., F-AND, F-OR, F-NOT, F-XOR)
are monotonic.

Cuong Chau (UT Austin) FM9001 Specification and Verification May 23, 2017 14 / 22



Monotonicity

We define a partial ordering with a binary relation ≤ over the four-valued
constants: a ≤ b if a = b or a = X.

X

T NIL Z

A function f (x) is monotonic if a ≤ b ⇒ f (a) ≤ f (b).

A function f (x1, x2, ..., xn) is monotonic if
a1 ≤ b1 & a2 ≤ b2 & ... & an ≤ bn ⇒ f (a1, a2, ..., an) ≤ f (b1, b2, ..., bn).

Primitive four-valued logic functions (e.g., F-AND, F-OR, F-NOT, F-XOR)
are monotonic.

Cuong Chau (UT Austin) FM9001 Specification and Verification May 23, 2017 14 / 22



Monotonicity

We define a partial ordering with a binary relation ≤ over the four-valued
constants: a ≤ b if a = b or a = X.

X

T NIL Z

A function f (x) is monotonic if a ≤ b ⇒ f (a) ≤ f (b).

A function f (x1, x2, ..., xn) is monotonic if
a1 ≤ b1 & a2 ≤ b2 & ... & an ≤ bn ⇒ f (a1, a2, ..., an) ≤ f (b1, b2, ..., bn).

Primitive four-valued logic functions (e.g., F-AND, F-OR, F-NOT, F-XOR)
are monotonic.

Cuong Chau (UT Austin) FM9001 Specification and Verification May 23, 2017 14 / 22



Monotonicity of DE

Given two states st1 and st2, the relation st1 ≤ st2 can be loosely
interpreted that st2 may differ from st1 only by replacing X values in st1
with any values. We call st1 approximates st2.

st1 ≤ st2
⇒
(de fn ins st1 netlist) ≤ (de fn ins st2 netlist)
⇒
(run fn ins-seq st1 netlist) ≤ (run fn ins-seq st2 netlist)

If (run fn ins-seq st1 netlist) contains no X value, then
(run fn ins-seq st1 netlist) = (run fn ins-seq st2 netlist)

If st1 is contains only X values, and (run fn ins-seq st1 netlist) is
the desired reset state, then this state can be reached from any state st2.

Cuong Chau (UT Austin) FM9001 Specification and Verification May 23, 2017 15 / 22



Monotonicity of DE

Given two states st1 and st2, the relation st1 ≤ st2 can be loosely
interpreted that st2 may differ from st1 only by replacing X values in st1
with any values. We call st1 approximates st2.

st1 ≤ st2
⇒
(de fn ins st1 netlist) ≤ (de fn ins st2 netlist)

⇒
(run fn ins-seq st1 netlist) ≤ (run fn ins-seq st2 netlist)

If (run fn ins-seq st1 netlist) contains no X value, then
(run fn ins-seq st1 netlist) = (run fn ins-seq st2 netlist)

If st1 is contains only X values, and (run fn ins-seq st1 netlist) is
the desired reset state, then this state can be reached from any state st2.

Cuong Chau (UT Austin) FM9001 Specification and Verification May 23, 2017 15 / 22



Monotonicity of DE

Given two states st1 and st2, the relation st1 ≤ st2 can be loosely
interpreted that st2 may differ from st1 only by replacing X values in st1
with any values. We call st1 approximates st2.

st1 ≤ st2
⇒
(de fn ins st1 netlist) ≤ (de fn ins st2 netlist)
⇒
(run fn ins-seq st1 netlist) ≤ (run fn ins-seq st2 netlist)

If (run fn ins-seq st1 netlist) contains no X value, then
(run fn ins-seq st1 netlist) = (run fn ins-seq st2 netlist)

If st1 is contains only X values, and (run fn ins-seq st1 netlist) is
the desired reset state, then this state can be reached from any state st2.

Cuong Chau (UT Austin) FM9001 Specification and Verification May 23, 2017 15 / 22



Monotonicity of DE

Given two states st1 and st2, the relation st1 ≤ st2 can be loosely
interpreted that st2 may differ from st1 only by replacing X values in st1
with any values. We call st1 approximates st2.

st1 ≤ st2
⇒
(de fn ins st1 netlist) ≤ (de fn ins st2 netlist)
⇒
(run fn ins-seq st1 netlist) ≤ (run fn ins-seq st2 netlist)

If (run fn ins-seq st1 netlist) contains no X value, then
(run fn ins-seq st1 netlist) = (run fn ins-seq st2 netlist)

If st1 is contains only X values, and (run fn ins-seq st1 netlist) is
the desired reset state, then this state can be reached from any state st2.

Cuong Chau (UT Austin) FM9001 Specification and Verification May 23, 2017 15 / 22



Monotonicity of DE

Given two states st1 and st2, the relation st1 ≤ st2 can be loosely
interpreted that st2 may differ from st1 only by replacing X values in st1
with any values. We call st1 approximates st2.

st1 ≤ st2
⇒
(de fn ins st1 netlist) ≤ (de fn ins st2 netlist)
⇒
(run fn ins-seq st1 netlist) ≤ (run fn ins-seq st2 netlist)

If (run fn ins-seq st1 netlist) contains no X value, then
(run fn ins-seq st1 netlist) = (run fn ins-seq st2 netlist)

If st1 is contains only X values, and (run fn ins-seq st1 netlist) is
the desired reset state, then this state can be reached from any state st2.

Cuong Chau (UT Austin) FM9001 Specification and Verification May 23, 2017 15 / 22



State Approximation

The state approximation notion is changed under our proposed
representation of the memory model.

Below is the ACL2 version of the state approximation definition introduced
in the previous work.
(defun s-approx (s1 s2)

(cond ((or (consp s1) (consp s2)) ;; (1)
(if (consp s1)

(if (consp s2)
(and (s-approx (car s1) (car s2))

(s-approx (cdr s1) (cdr s2)))
nil) nil))

((or (ramp s1) (ramp s2)) ...) ;; (2)
((or (romp s1) (romp s2)) ...) ;; (3)
((or (stubp s1) (stubp s2)) ...) ;; (4)
(t ...)))

Memory cells are defined as CONSES: cases (2), (3), and (4) in the above
definition will never be satisfied. They are all subsumed in case (1).

Cuong Chau (UT Austin) FM9001 Specification and Verification May 23, 2017 16 / 22



State Approximation

The state approximation notion is changed under our proposed
representation of the memory model.

Below is the ACL2 version of the state approximation definition introduced
in the previous work.
(defun s-approx (s1 s2)

(cond ((or (consp s1) (consp s2)) ;; (1)
(if (consp s1)

(if (consp s2)
(and (s-approx (car s1) (car s2))

(s-approx (cdr s1) (cdr s2)))
nil) nil))

((or (ramp s1) (ramp s2)) ...) ;; (2)
((or (romp s1) (romp s2)) ...) ;; (3)
((or (stubp s1) (stubp s2)) ...) ;; (4)
(t ...)))

Memory cells are defined as CONSES: cases (2), (3), and (4) in the above
definition will never be satisfied. They are all subsumed in case (1).

Cuong Chau (UT Austin) FM9001 Specification and Verification May 23, 2017 16 / 22



State Approximation

The state approximation notion is changed under our proposed
representation of the memory model.

Below is the ACL2 version of the state approximation definition introduced
in the previous work.
(defun s-approx (s1 s2)

(cond ((or (consp s1) (consp s2)) ;; (1)
(if (consp s1)

(if (consp s2)
(and (s-approx (car s1) (car s2))

(s-approx (cdr s1) (cdr s2)))
nil) nil))

((or (ramp s1) (ramp s2)) ...) ;; (2)
((or (romp s1) (romp s2)) ...) ;; (3)
((or (stubp s1) (stubp s2)) ...) ;; (4)
(t ...)))

Memory cells are defined as CONSES: cases (2), (3), and (4) in the above
definition will never be satisfied. They are all subsumed in case (1).

Cuong Chau (UT Austin) FM9001 Specification and Verification May 23, 2017 16 / 22



State Approximation

We change the state approximation definition by rearranging the order of
cases to (2), (3), (4), and (1).

(defun s-approx (s1 s2)
(cond ((or (ramp s1) (ramp s2)) ...) ;; (2)

((or (romp s1) (romp s2)) ...) ;; (3)
((or (stubp s1) (stubp s2)) ...) ;; (4)
((or (consp s1) (consp s2)) ;; (1)
(if (consp s1)

(if (consp s2)
(and (s-approx (car s1) (car s2))

(s-approx (cdr s1) (cdr s2)))
nil) nil))

(t ...)))

Cuong Chau (UT Austin) FM9001 Specification and Verification May 23, 2017 17 / 22



Monotonicity of DE

We need the following property in order to establish the monotonicity
property for DE.

(implies (s-approx s1 s2)
(s-approx (cdr s1) (cdr s2)))

The above property holds when we impose a constraint on the value of
each memory cell that it must be a four-valued vector.

This constraint does not affect the correctness proofs for FM9001
since the FM9001 specification enforces a restriction that only bit
vectors are stored in memory.

We establish the monotonicity property for DE with stricter hypotheses:
the structures of states and netlist must be syntactically
well-formed.

Cuong Chau (UT Austin) FM9001 Specification and Verification May 23, 2017 18 / 22



Monotonicity of DE

We need the following property in order to establish the monotonicity
property for DE.

(implies (s-approx s1 s2)
(s-approx (cdr s1) (cdr s2)))

The above property holds when we impose a constraint on the value of
each memory cell that it must be a four-valued vector.

This constraint does not affect the correctness proofs for FM9001
since the FM9001 specification enforces a restriction that only bit
vectors are stored in memory.

We establish the monotonicity property for DE with stricter hypotheses:
the structures of states and netlist must be syntactically
well-formed.

Cuong Chau (UT Austin) FM9001 Specification and Verification May 23, 2017 18 / 22



Monotonicity of DE

We need the following property in order to establish the monotonicity
property for DE.

(implies (s-approx s1 s2)
(s-approx (cdr s1) (cdr s2)))

The above property holds when we impose a constraint on the value of
each memory cell that it must be a four-valued vector.

This constraint does not affect the correctness proofs for FM9001
since the FM9001 specification enforces a restriction that only bit
vectors are stored in memory.

We establish the monotonicity property for DE with stricter hypotheses:
the structures of states and netlist must be syntactically
well-formed.

Cuong Chau (UT Austin) FM9001 Specification and Verification May 23, 2017 18 / 22



Monotonicity of DE

We need the following property in order to establish the monotonicity
property for DE.

(implies (s-approx s1 s2)
(s-approx (cdr s1) (cdr s2)))

The above property holds when we impose a constraint on the value of
each memory cell that it must be a four-valued vector.

This constraint does not affect the correctness proofs for FM9001
since the FM9001 specification enforces a restriction that only bit
vectors are stored in memory.

We establish the monotonicity property for DE with stricter hypotheses:
the structures of states and netlist must be syntactically
well-formed.

Cuong Chau (UT Austin) FM9001 Specification and Verification May 23, 2017 18 / 22



Outline

1 Introduction

2 The DE System

3 Monotonicity of DE

4 Conclusion

Cuong Chau (UT Austin) FM9001 Specification and Verification May 23, 2017 19 / 22



Conclusion

We successfully verify the correctness the FM9001 microprocessor design.

This work provides a library of verified hardware circuit generators
that can be applied when reasoning about the synthesis of hardware
circuits using DE.
We also verify guards for the DE system.

This work is also a contribution to ACL2 for two reasons.

First, it moves into the ACL2 regression suite one of the most
important theorems proved by Nqthm.
Second, it is the first step toward porting the entire Computational
Logic verified stack [Bevier et al.:1989, Moore:1996] from Nqthm to
ACL2.

Cuong Chau (UT Austin) FM9001 Specification and Verification May 23, 2017 20 / 22



Conclusion

We successfully verify the correctness the FM9001 microprocessor design.

This work provides a library of verified hardware circuit generators
that can be applied when reasoning about the synthesis of hardware
circuits using DE.
We also verify guards for the DE system.

This work is also a contribution to ACL2 for two reasons.

First, it moves into the ACL2 regression suite one of the most
important theorems proved by Nqthm.
Second, it is the first step toward porting the entire Computational
Logic verified stack [Bevier et al.:1989, Moore:1996] from Nqthm to
ACL2.

Cuong Chau (UT Austin) FM9001 Specification and Verification May 23, 2017 20 / 22



References

W. Hunt (2000)
The DE Language
Computer-Aided Reasoning: ACL2 Case Studies, Kluwer Academic Publishers
Norwell, MA, USA, 151 – 166.

B. Brock & W. Hunt (1997)
The DUAL-EVAL Hardware Description Language and Its Use in the Formal
Specification and Verification of the FM9001 Microprocessor
Formal Methods in System Design, 11, 71 – 104.

W. R. Bevier and Hunt, Jr., W. A. and J S. Moore and W. D. Young (1989)
Special Issue on System Verification
Journal of Automated Reasoning, 5(4), 409 – 530.

J S. Moore (1996)
Piton: A Mechanically Verified Assembly-Level Language
Automated Reasoning Series, Kluwer Academic Publishers.

Cuong Chau (UT Austin) FM9001 Specification and Verification May 23, 2017 21 / 22



Questions?

Cuong Chau (UT Austin) FM9001 Specification and Verification May 23, 2017 22 / 22



Half-Adder

(defconst *half-adder*
’((half-adder ;; module name

(a b) ;; module inputs
(sum carry) ;; module outputs
() ;; internal states
;; occurrences
((g0 ;; occurrence name

(sum) ;; occurrence outputs
b-xor ;; primitive reference or defined module
(a b)) ;; occurrence inputs

(g1 (carry) b-and (a b))))))

Cuong Chau (UT Austin) FM9001 Specification and Verification May 23, 2017 23 / 22



Full-Adder

(defconst *full-adder*
(cons ’(full-adder

(a b c)
(sum carry)
()
((t0 (sum1 carry1) half-adder (a b))
(t1 (sum carry2) half-adder (sum1 c))
(t2 (carry) b-or (carry1 carry2))))

*half-adder*))
Cuong Chau (UT Austin) FM9001 Specification and Verification May 23, 2017 24 / 22



One-Bit Counter

Cuong Chau (UT Austin) FM9001 Specification and Verification May 23, 2017 25 / 22



One-Bit Counter

(defconst *one-bit-counter*
(cons
’(one-bit-counter

(clk carry-in reset-)
(out carry)
(g0)
((g0 (out out˜) fd1 (clk sum-reset-))
(g1 (sum carry) half-adder (carry-in out))
(g2 (sum-reset-) b-and (sum reset-))))

*half-adder*))

Cuong Chau (UT Austin) FM9001 Specification and Verification May 23, 2017 26 / 22



Four-Bit Counter

Cuong Chau (UT Austin) FM9001 Specification and Verification May 23, 2017 27 / 22



Four-Bit Counter

(defconst *four-bit-counter*
(cons
’(four-bit-counter

(clk incr reset-)
(out0 out1 out2 out3)
(h0 h1 h2 h3)
((h0 (out0 carry0) one-bit-counter (clk incr reset-))
(h1 (out1 carry1) one-bit-counter (clk carry0 reset-))
(h2 (out2 carry2) one-bit-counter (clk carry1 reset-))
(h3 (out3 carry3) one-bit-counter (clk carry2 reset-))
))

*one-bit-counter*))

Cuong Chau (UT Austin) FM9001 Specification and Verification May 23, 2017 28 / 22


	Introduction
	The DE System
	Monotonicity of DE
	Conclusion

