
INTRODUCTION REVIEW EXAMPLE 1 EXAMPLE 2 SHORTCUT APPLICATIONS CONCLUSION

Meta-extract: Using Existing Facts in
Meta-reasoning

Matt Kaufmann (UT Austin)
Sol Swords (Centaur Technology)

ACL2 Workshop 2017

1/27

INTRODUCTION REVIEW EXAMPLE 1 EXAMPLE 2 SHORTCUT APPLICATIONS CONCLUSION

OUTLINE

INTRODUCTION

REVIEW OF :Meta RULES

EXAMPLE 1: USING GLOBAL FACTS

EXAMPLE 2: USING CONTEXTS

A NICE SHORTCUT

SOME APPLICATIONS

CONCLUSION

2/27

INTRODUCTION REVIEW EXAMPLE 1 EXAMPLE 2 SHORTCUT APPLICATIONS CONCLUSION

INTRODUCTION

I ACL2 supports two kinds of user-defined, verified proof
routines:

I :meta rule class: term→ term, invoked by the rewriter,
I :clause-processor rule class: clause→ clauses,

invoked by hints.

I Previously could extract facts from the world and use
built-in proof tools, but could not assume them correct.

I Now (post-2012) these facts/tools may be assumed correct
via meta-extract hypotheses when proving soundness of
metafunctions.

I ? ? ? At run time, a metafunction may use facts that were
not available when it was proved correct! ? ? ?

3/27

INTRODUCTION REVIEW EXAMPLE 1 EXAMPLE 2 SHORTCUT APPLICATIONS CONCLUSION

THIS TALK

I reviews meta reasoning
I gives two simple examples to illustrate meta-extract

hypotheses
I discusses a nice shortcut
I summarizes some applications

4/27

INTRODUCTION REVIEW EXAMPLE 1 EXAMPLE 2 SHORTCUT APPLICATIONS CONCLUSION

OUTLINE

INTRODUCTION

REVIEW OF :Meta RULES

EXAMPLE 1: USING GLOBAL FACTS

EXAMPLE 2: USING CONTEXTS

A NICE SHORTCUT

SOME APPLICATIONS

CONCLUSION

5/27

INTRODUCTION REVIEW EXAMPLE 1 EXAMPLE 2 SHORTCUT APPLICATIONS CONCLUSION

REVIEW OF :Meta RULES

Canonical example of a :meta rule:
cancel_plus-equal (from “books/meta/meta-plus-equal.lisp”)
cancels like terms from the equality of two sums.

ACL2 !>:trans (equal (+ x y x z) (+ x z z z))

(EQUAL (BINARY-+ X (BINARY-+ Y (BINARY-+ X Z)))
(BINARY-+ X (BINARY-+ Z (BINARY-+ Z Z))))

=> *

ACL2 !>(cancel_plus-equal
’(EQUAL (BINARY-+ X (BINARY-+ Y (BINARY-+ X Z)))

(BINARY-+ X (BINARY-+ Z (BINARY-+ Z Z)))))
(EQUAL (BINARY-+ Y X) (BINARY-+ Z Z))

6/27

INTRODUCTION REVIEW EXAMPLE 1 EXAMPLE 2 SHORTCUT APPLICATIONS CONCLUSION

REVIEW OF :Meta RULES (2)

Key events:
I Define an evaluator:
(defevaluator ev-plus-equal ...)

(ev-plus-equal term alist) --> value

I Define the metafunction:
(defun cancel_plus-equal (x) ...)

I Prove the metafunction correct w.r.t. the evaluator:
(defthm cancel_plus-equal-correct
(equal
(ev-plus-equal x a)
(ev-plus-equal (cancel_plus-equal x) a))
:rule-classes ((:meta :trigger-fns (equal))))

Let’s see this rule used in a proof.

7/27

INTRODUCTION REVIEW EXAMPLE 1 EXAMPLE 2 SHORTCUT APPLICATIONS CONCLUSION

REVIEW OF :Meta RULES (2)

ACL2 !>(include-book "meta/meta-plus-equal" :dir :system)
....
ACL2 !>(trace$ cancel_plus-equal)
((CANCEL_PLUS-EQUAL))

ACL2 !>(thm (implies (and (acl2-numberp z)
(equal (+ x y x z) (+ x z z z)))

(equal z (/ (+ x y) 2)))
:hints (("Goal" :in-theory (disable (tau-system)))))

Goal’
1> (CANCEL_PLUS-EQUAL

(EQUAL (BINARY-+ X (BINARY-+ X (BINARY-+ Y Z)))
(BINARY-+ X (BINARY-+ Z (BINARY-+ Z Z)))))

<1 (CANCEL_PLUS-EQUAL (EQUAL (BINARY-+ X Y) (BINARY-+ Z Z)))
....
Proof succeeded.
ACL2 !>

8/27

INTRODUCTION REVIEW EXAMPLE 1 EXAMPLE 2 SHORTCUT APPLICATIONS CONCLUSION

OUTLINE

INTRODUCTION

REVIEW OF :Meta RULES

EXAMPLE 1: USING GLOBAL FACTS

EXAMPLE 2: USING CONTEXTS

A NICE SHORTCUT

SOME APPLICATIONS

CONCLUSION

9/27

INTRODUCTION REVIEW EXAMPLE 1 EXAMPLE 2 SHORTCUT APPLICATIONS CONCLUSION

EXAMPLE 1: USING GLOBAL FACTS

Goal: Rewrite stobj (accessor (updater val foo$))
terms without either:

I proving n2 individual rules per stobj
I enabling accessors/updaters to expand to
nth/update-nth

An approach: nth-update-nth-ev-meta-fn checks that
accessor is defined as a call of nth and updater is defined
as a call of update-nth and rewrites accordingly.

10/27

INTRODUCTION REVIEW EXAMPLE 1 EXAMPLE 2 SHORTCUT APPLICATIONS CONCLUSION

EXAMPLE 1: USING GLOBAL FACTS

I Can look up function definitons from the world.
I But: how can we prove this correct?
I Before meta-extract we’d need to somehow verify that the

definitions found in the world were correct
I E.g., have a hypothesis metafunction that produces the

corresponding assumption.

I Meta-extract lets you assume this while proving your
metafunction correct.

I Accessor & updater functions don’t need to be known by
evaluator

I Can prove it operates correctly even on functions that
haven’t been defined yet!

11/27

INTRODUCTION REVIEW EXAMPLE 1 EXAMPLE 2 SHORTCUT APPLICATIONS CONCLUSION

EXAMPLE 1: USING GLOBAL FACTS

; demos/nth-update-nth-meta-extract.lisp
(defthm nth-update-nth-meta-rule-st
(implies
(and (nth-update-nth-ev ; (f (update-g val st))

(meta-extract-global-fact
(list :formula (car term)) state)

(meta-extract-alist term a state))
...)

(equal (nth-update-nth-ev term a)
(nth-update-nth-ev
(nth-update-nth-meta-fn term mfc state)
a)))

:hints ...
:rule-classes ((:meta :trigger-fns ...)))

12/27

INTRODUCTION REVIEW EXAMPLE 1 EXAMPLE 2 SHORTCUT APPLICATIONS CONCLUSION

EXAMPLE 1: META-EXTRACT HYPOTHESIS

Meta-extract-global-fact:
I Returns various terms expressing known facts.
I Only produces terms that are known true.
I Meta rule/clause processor theorems are allowed to

assume the terms it produces evaluate to true as a special
hypothesis.

Part of the definition:
(case-match obj

((’:formula name)
(meta-extract-formula name st))
...)

13/27

INTRODUCTION REVIEW EXAMPLE 1 EXAMPLE 2 SHORTCUT APPLICATIONS CONCLUSION

META-EXTRACT-GLOBAL-FACT

Supports:
I Theorem bodies, function definitions, and constraints

(meta-extract-formula)
I Rewrite rules from functions’ lemmas properties
I Evaluation of ground function calls (magic-ev-fncall).

14/27

INTRODUCTION REVIEW EXAMPLE 1 EXAMPLE 2 SHORTCUT APPLICATIONS CONCLUSION

OUTLINE

INTRODUCTION

REVIEW OF :Meta RULES

EXAMPLE 1: USING GLOBAL FACTS

EXAMPLE 2: USING CONTEXTS

A NICE SHORTCUT

SOME APPLICATIONS

CONCLUSION

15/27

INTRODUCTION REVIEW EXAMPLE 1 EXAMPLE 2 SHORTCUT APPLICATIONS CONCLUSION

EXAMPLE 2: USING CONTEXTS

Consider this metafunction:
(defun nth-symbolp-metafn (term mfc state)
(declare (xargs :stobjs state))
(case-match term
((’nth n x)
(if (equal (mfc-ts n mfc state :forcep nil)

ts-symbol)
(list ’car x)

term))
(& term)))

Approximately: “If term is (nth n x) and n is known to be a
symbol in the current context, rewrite term to (car x).”

16/27

INTRODUCTION REVIEW EXAMPLE 1 EXAMPLE 2 SHORTCUT APPLICATIONS CONCLUSION

EXAMPLE 2: USING CONTEXTS

I How can we prove this correct?
I Before meta-extract we’d need to somehow verify that
mfc-ts was “telling the truth”

I E.g., have a hypothesis metafunction that produces the
corresponding assumption.

I Meta-extract lets you assume this while proving your
metafunction correct.

17/27

INTRODUCTION REVIEW EXAMPLE 1 EXAMPLE 2 SHORTCUT APPLICATIONS CONCLUSION

EXAMPLE 2: USING CONTEXTS

Correctness theorem for nth-symbolp-metafn:

; workshops/2017/kaufmann-swords/support/intro.lisp
(defthm nth-symbolp-meta

(implies
;; Meta-extract hypothesis:
(nthmeta-ev (meta-extract-contextual-fact

‘(:typeset ,(cadr term))
mfc
state)

a)
;; Standard meta rule conclusion:
(equal (nthmeta-ev term a)

(nthmeta-ev (nth-symbolp-metafn
term mfc state)

a)))
:rule-classes ((:meta :trigger-fns (nth))))

18/27

INTRODUCTION REVIEW EXAMPLE 1 EXAMPLE 2 SHORTCUT APPLICATIONS CONCLUSION

EXAMPLE 2: META-EXTRACT HYPOTHESIS

Meta-extract-contextual-fact:
I Returns various terms expressing facts known under a

given context.
I Only produces terms that are known true.
I Meta rule theorems are allowed to assume the terms it

produces evaluate to true.
Part of the definition:
(case-match obj

((’:typeset term . &) ; mfc-ts produces correct results
‘(typespec-check
’,(mfc-ts term mfc state :forcep nil :ttreep nil)
,term))

19/27

INTRODUCTION REVIEW EXAMPLE 1 EXAMPLE 2 SHORTCUT APPLICATIONS CONCLUSION

META-EXTRACT-CONTEXTUAL-FACT

Supports:
I Typeset reasoning (mfc-ts)
I Rewriting (mfc-rw, mfc-rw+, mfc-relieve-hyp)
I Linear arithmetic (mfc-ap)

20/27

INTRODUCTION REVIEW EXAMPLE 1 EXAMPLE 2 SHORTCUT APPLICATIONS CONCLUSION

OUTLINE

INTRODUCTION

REVIEW OF :Meta RULES

EXAMPLE 1: USING GLOBAL FACTS

EXAMPLE 2: USING CONTEXTS

A NICE SHORTCUT

SOME APPLICATIONS

CONCLUSION

21/27

INTRODUCTION REVIEW EXAMPLE 1 EXAMPLE 2 SHORTCUT APPLICATIONS CONCLUSION

A NICE SHORTCUT

(my-evl (meta-extract-contextual-fact obj mfc state) a)
(my-evl (meta-extract-global-fact obj state) alist)

The above meta-extract hyps are accepted with any term in
place of obj and alist.
(defchoose my-evl-contextual-badguy (obj) (a mfc state)

(not (my-evl (meta-extract-contextual-fact
obj mfc state)

a)))

I Means: “If there is an obj such that the evaluation of the
meta-extract is false, return one”

I Using this as the obj implies the hyp for all obj.
I → At most two meta-extract hyps cover all uses.

22/27

INTRODUCTION REVIEW EXAMPLE 1 EXAMPLE 2 SHORTCUT APPLICATIONS CONCLUSION

A NICE SHORTCUT

Community book “clause-processors/meta-extract-user”
defines event-generating macro def-meta-extract, which
produces:

I bad guy functions for a given evaluator
I macros for meta-extract hyps using bad-guys
I theorems showing how these hyps imply the correctness of

various tools/facts.
E.g.,

(defthm my-evl-meta-extract-formula
(implies (and (my-evl-meta-extract-global-facts)

(equal (w st) (w state)))
(my-evl (meta-extract-formula name st) a)))

23/27

INTRODUCTION REVIEW EXAMPLE 1 EXAMPLE 2 SHORTCUT APPLICATIONS CONCLUSION

OUTLINE

INTRODUCTION

REVIEW OF :Meta RULES

EXAMPLE 1: USING GLOBAL FACTS

EXAMPLE 2: USING CONTEXTS

A NICE SHORTCUT

SOME APPLICATIONS

CONCLUSION

24/27

INTRODUCTION REVIEW EXAMPLE 1 EXAMPLE 2 SHORTCUT APPLICATIONS CONCLUSION

SOME APPLICATIONS

I The GL symbolic interpreter uses meta-extract hypotheses
to call functions, use rewrite rules, etc., without additional
proof obligations

I The community book
centaur/misc/bound-rewriter.lisp provides a tool
for solving certain inequalities

I A meta rule for context-sensitive rewriting (like Greve’s
“nary” framework) is defined in
centaur/misc/context-rw.lisp

I Others....

25/27

INTRODUCTION REVIEW EXAMPLE 1 EXAMPLE 2 SHORTCUT APPLICATIONS CONCLUSION

OUTLINE

INTRODUCTION

REVIEW OF :Meta RULES

EXAMPLE 1: USING GLOBAL FACTS

EXAMPLE 2: USING CONTEXTS

A NICE SHORTCUT

SOME APPLICATIONS

CONCLUSION

26/27

INTRODUCTION REVIEW EXAMPLE 1 EXAMPLE 2 SHORTCUT APPLICATIONS CONCLUSION

CONCLUSION

Some concluding thoughts....

I This talk is just an introduction; meta reasoning is a bit
complex to absorb in real time!

I The paper develops the ideas from this talk more
thoroughly, with more illustrative examples.

I If you use GL then you are already taking advantage of
meta-extract.

27/27

	Introduction
	Review of :Meta Rules
	Example 1: Using Global Facts
	Example 2: Using Contexts
	A Nice Shortcut
	Some Applications
	Conclusion

