
A Proof of the Group Properties
of an Elliptic Curve

David M. Russinoff

ACL2 Workshop 2017

May 22, 2017

1/21

CURVE25519
Let ℘ = 2255 − 19, A = 486662, and

E = {(x, y) ∈ F℘ × F℘ | y2 = x3 + Ax2 + x} ∪ {∞}.

Our goal is to show that E is an abelian group under the
following operation:

(1) P⊕∞ =∞⊕ P = P.
(2) If P = (x, y), then P⊕ (x,−y) =∞.
(3) If P = (x1, y1), Q = (x2, y2) 6= (x1,−y1), and

λ =

{ y2−y1
x2−x1

if x1 6= x2
3x2

1+2Ax1+1
2y1

if x1 = x2,

then P⊕Q = (x, y), where x = λ2 − A− x1 − x2 and
y = λ(x1 − x)− y1.

2/21

ELLIPTIC CURVE ADDITION

3/21

CURVE25519
Let ℘ = 2255 − 19, A = 486662, and

E = {(x, y) ∈ F℘ × F℘ | y2 = x3 + Ax2 + x} ∪ {∞}.

Our goal is to show that E is an abelian group under the
following operation:

(1) P⊕∞ =∞⊕ P = P.
(2) If P = (x, y), then P⊕ (x,−y) =∞.
(3) If P = (x1, y1), Q = (x2, y2) 6= (x1,−y1), and

λ =

{ y2−y1
x2−x1

if x1 6= x2
3x2

1+2Ax1+1
2y1

if x1 = x2,

then P⊕Q = (x, y), where x = λ2 − A− x1 − x2 and
y = λ(x1 − x)− y1.

4/21

HOW HARD COULD IT BE?
In principle, associativity could be verified by equating two
compositions of the defining functions (for each of several
cases), cross-multiplying, expanding into monomials, applying
the curve equation, and canceling terms.

“Standard (although lengthy) calculations show that E is a
commutative group under∞, −, +.”

– D. J. Bernstein, Curve25519: new Diffie-Hellman speed records

“Of course, there are a lot of cases to consider But in a few
days you will be able to check associativity using these
formulas. So we need say nothing more about the proof of the
associative law!”

– J.H. Silverman and J.T. Tate, Rational Points on Elliptic Curves

But the number of terms produced would exceed 1025.

5/21

HOW HARD COULD IT BE?
In principle, associativity could be verified by equating two
compositions of the defining functions (for each of several
cases), cross-multiplying, expanding into monomials, applying
the curve equation, and canceling terms.

“Standard (although lengthy) calculations show that E is a
commutative group under∞, −, +.”

– D. J. Bernstein, Curve25519: new Diffie-Hellman speed records

“Of course, there are a lot of cases to consider But in a few
days you will be able to check associativity using these
formulas. So we need say nothing more about the proof of the
associative law!”

– J.H. Silverman and J.T. Tate, Rational Points on Elliptic Curves

But the number of terms produced would exceed 1025.

5/21

HOW HARD COULD IT BE?
In principle, associativity could be verified by equating two
compositions of the defining functions (for each of several
cases), cross-multiplying, expanding into monomials, applying
the curve equation, and canceling terms.

“Standard (although lengthy) calculations show that E is a
commutative group under∞, −, +.”

– D. J. Bernstein, Curve25519: new Diffie-Hellman speed records

“Of course, there are a lot of cases to consider But in a few
days you will be able to check associativity using these
formulas. So we need say nothing more about the proof of the
associative law!”

– J.H. Silverman and J.T. Tate, Rational Points on Elliptic Curves

But the number of terms produced would exceed 1025.

5/21

HOW HARD COULD IT BE?
In principle, associativity could be verified by equating two
compositions of the defining functions (for each of several
cases), cross-multiplying, expanding into monomials, applying
the curve equation, and canceling terms.

“Standard (although lengthy) calculations show that E is a
commutative group under∞, −, +.”

– D. J. Bernstein, Curve25519: new Diffie-Hellman speed records

“Of course, there are a lot of cases to consider But in a few
days you will be able to check associativity using these
formulas. So we need say nothing more about the proof of the
associative law!”

– J.H. Silverman and J.T. Tate, Rational Points on Elliptic Curves

But the number of terms produced would exceed 1025.

5/21

A CRITERION OF PROOF

A proof may be said to be computationally surveyable if its only
departure from strict surveyability is its dependence on
unproved assertions that satisfy the following:
(1) Each such assertion pertains to a function for which a clear

constructive definition has been provided, and merely
specifies the value of that function corresponding to a
concrete set of arguments.

(2) The computation of this value has been performed
mechanically by the author of the proof in a reasonably
short time.

(3) A competent reader could readily code the function in the
programming language of his choice and verify the
asserted result on his own computing platform.

6/21

MANAGING COMPUTATIONAL COMPLEXITY

We combine three techniques:

I Sparse Horner Normal Form: an efficient method of
establishing equality of multivariable polynomials

I Efficient reduction of SHNFs modulo the curve equation

I Encoding points on the curve as integer triples

7/21

POLYNOMIAL TERMS

Standard encoding of polynomial terms as S-expressions:

Let
V = (X Y Z).

If
τ = (* X (EXPT (+ Y Z) 3)) ∈ T (V)

and
A = ((X . 2) (Y . 3) (Z . 0)),

then
evalp(τ,A) = 2 · (3 + 0)3 = 54.

8/21

SPARSE HORNER NORMAL FORM

A SHNF is an element of a certain setH of S-expressions.
We define two mappings:

I Given V = (v0 . . . vk) and τ ∈ T (V), norm(τ,V) ∈ H.
I Given N = (n0 . . . nk) and h ∈ H, evalh(h,N) ∈ Z.

Lemma Let A = ((v0 . n0) . . . (vk . nk)).

evalh(norm(τ,V),N) = evalp(τ,A).

Corollary If norm(τ1,V) = norm(τ2,V), then

evalp(τ1,A) = evalp(τ2,A).

9/21

SHNF EVALUATION

A SHNF h ∈ H has one of three forms:

(1) h ∈ Z:
evalh(h,N) = h.

(2) h = (POW i p q), where i ∈ Z+, p ∈ H, and q ∈ H:

evalh(h,N) = car(N)i · evalh(p,N) + evalh(q, cdr(N)).

(3) h = (POP i p), where i ∈ Z+, p ∈ H:

evalh(h,N) = evalh(q,nthcdr(i,N)).

10/21

NORMALIZATION (EXAMPLE)

Let V = (x y z) and

τ = 4x4y2 + 3x3 + 2z4 + 5 = x3(4xy2 + 3) + (2z4 + 5).

Then
norm(τ,V) = (POW 3 p q),

where

p = norm(4xy2 + 3,V)

= (POW 1 norm(4y2,V) norm(3, cdr(V)))

= (POW 1 (POP 1 (POW 2 4 0)) 3),

q = norm(2z4 + 5, cdr(V)) = (POP 1 (POW 4 2 5)).

11/21

REDUCTION MODULO THE CURVE EQUATION

Let Pi = (xi, yi), i = 0, 1, 2, be fixed points on E.

N = (y0 y1 y2 x0 x1 x2), V = (Y0 Y1 Y2 X0 X1 X2),
A = ((Y0 . y0) (Y1 . y1) (Y2 . y2) (X0 . x0) (X1 . x0) (X2 . x2)).

We define a mapping

reduce : T (V)→ H

that effectively substitutes x3
i + Ax2

i + xi for y2
i wherever

possible.

Lemma evalh(reduce(τ),N) ≡ evalh(norm(τ),N) (mod ℘).

Corollary If reduce(σ) = reduce(τ), then

evalp(σ,A) ≡ evalp(τ,A) (mod ℘).

12/21

ENCODING POINTS OF E AS INTEGER TRIPLES

A point P ∈ E is represented by P = (m,n, z) ∈ Z3 if

decode(P) =

(
m̄
z̄2 ,

n̄
z̄3

)
= P.

Note that every P = (z, y) ∈ E admits the canonical
representation P = (x, y, 1).
For two important cases, we define an efficiently computable
operation “⊕” on Z3, involving no division in F℘, such that if

decode(P) = P ∈ E and decode(Q) = Q ∈ E,

then
decode(P ⊕Q) = P⊕Q.

Case 1: P = (x, y, 1) and P 6= Q
Case 2: P = Q

13/21

CASE 1

If P = (x, y, 1) and Q = (m,n, z), define P ⊕Q = (m′,n′, z′),
where

z′ = z(z2x−m),

m′ =
(

z3y− n
)2
−
(

z2(A + x) + m
)(

z2x−m
)2

n′ =
(

z3y− n
)(

z′2x−m′
)
− z′3y.

Lemma If decode(P) = P ∈ E, decode(Q) = Q ∈ E, and P 6= ±Q,
then

decode(P ⊕Q) = P⊕Q.

14/21

CASE 2

If P = (m,n, z) ∈ Z3, define P ⊕ P = (m′,n′, z′), where

z′ = 2nz,
w′ = 3m2 + 2Amz2 + z4,

m′ = w′2 − 4n2(Az2 + 2m),

n′ = w′(4mn2 −m′)− 8n4.

Lemma If decode(P) = P ∈ E, then

decode(P ⊕ P) = P⊕ P.

15/21

ENCODING POINTS ON THE CURVE AS TERM TRIPLES

Notation:
I T = T (V).
I If τ ∈ T , then τ̂ = evalp(τ,A).
I If Π = (µ, ν, ζ) ∈ T 3, then Π̂ = (µ̂, ν̂, ζ̂) and

decode(Π) = decode(Π̂).
I Π0 = (X0,Y0,1), Π1 = (X1,Y1,1), Π2 = (X2,Y2,1).

Note that for i = 0, 1, 2,

decode(Πi) = decode(Π̂i) = decode(xi, yi, 1) = Pi.

The operation “⊕” that we defined on Z3 may be lifted to T 3 in
a straightforward manner.

16/21

CASE 1
If Π = (θ, φ, 1) ∈ T 3 and Λ = (µ, ν, ζ) ∈ T 3,
then we define Π⊕ Λ = (µ′, ν ′, ζ ′), where

ζ ′ = (* ζ(- (* (EXPT ζ 2) θ) µ),

µ′ = (- (EXPT (- (* (EXPT ζ 3) ν) 2)
(* (+ (* (EXPT ζ 2) (+ A θ)) µ)

(EXPT (- (* (EXPT ζ 2) θ) µ) 2))),

nu′ = (- (* (- (* (EXPT ζ 3) φ) ν)
(- (* (EXPT ζ ′ 2) θ) µ′))

(* (EXPT ζ 3) φ)).

Lemma If decode(Π) = P ∈ E, decode(Λ) = Q ∈ E, and P 6= ±Q,
then

decode(Π⊕ Λ) = P⊕Q.

17/21

CASE 2

Similarly, given Π = (µ, ν, ζ) ∈ T 3, we define Π⊕Π so that the
following holds:

Lemma If decode(Π) = P ∈ E, then

decode(Π⊕Π) = P⊕ P.

18/21

AN EQUIVALENCE RELATION ON T 3

Given Π = (µ, ν, ζ) ∈ T 3 and Π′ = (µ′, ν ′, ζ ′) ∈ T 3, let

σ =(* µ (EXPT ζ ′ 2)), σ′ =(* µ′ (EXPT ζ 2)),
τ =(* ν (EXPT ζ ′ 3)), τ ′ =(* ν (EXPT ζ 3)).

If reduce(σ) = reduce(σ′) and reduce(τ) = reduce(τ ′), then we
shall write Π ∼ Π′.

A consequence of our main result pertaining to reduce:

Lemma If decode(Π) = P ∈ E, decode(Π′) = P′ ∈ E, and Π ∼ Π′,
then P = P′.

19/21

COMMUTATIVITY
We need only show that P0 ⊕ P1 = P1 ⊕ P0; commutativity
follows by functional instantiation. We may assume P0 6= ±P1.
By direct computation,

Π0 ⊕Π1 ∼ Π1 ⊕Π0.

It follows that

decode(Π0 ⊕Π1) = decode(Π1 ⊕Π0),

where

decode(Π0 ⊕Π1) = decode(Π0)⊕ decode(Π1) = P0 ⊕ P1

and

decode(Π1 ⊕Π0) = decode(Π1)⊕ decode(Π0) = P1 ⊕ P0.

20/21

ASSOCIATIVITY
The proof of associativity is similar in principle, but requires
extensive case analysis.
By direct computation,

(Π0 ⊕Π1)⊕Π2 ∼ Π0 ⊕ (Π1 ⊕Π2)

and therefore

decode((Π0 ⊕Π1)⊕Π2) = decode(Π0 ⊕ (Π1 ⊕Π2)).

Associativity follows under the conditions P0 6= ±P1,
P0 ⊕ P1 6= ±P2, P1 6= ±P2, and P1 ⊕ P2 6= ±P0.
Other cases require additional computations:

(Π0 ⊕Π0)⊕Π1 ∼ Π0 ⊕ (Π0 ⊕Π1),

(Π0 ⊕Π1)⊕ (Π0 ⊕Π1) ∼ Π0 ⊕ (Π1 ⊕ (Π0 ⊕Π1)),

etc.
21/21

