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Motivation

I Hardware/software implementation systems attempt to
optimize task execution:

I break-up tasks into more manageable chunks..
I ..schedule chunks for execution over time and resources

I Intuitive specification:
I all tasks eventually complete..
I ..with results consistent with atomic (as possible) task

execution

I Assume specification defined as simpler system and show that
the behaviors of the implementation are consistent with the
specification.

I Additional theorems or properties could be proven about the
simpler specification system as needed..
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Fair Stuttering Refinement

I Assume implementation and specification defined as systems
and prove:

I all fair runs of implementation map to valid runs of
specification upto finite stutter:

1. a run is fair if every task is eventually selected.
2. a run is valid if every task is eventually selected

AND changes state.
3. specification either matches implementation or stutters.

I A task which is selected must change state unless it is blocked

I Refinement compactly encapsulates safety and progress
properties of the implementation.

I Unwieldy to prove properties on infinite runs directly..

I ..define functions and properties over single steps of a small
number of tasks and derive results relating infinite runs.
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Example: Bakery Algorithm

Algorithm Bakery Task

1: choosing← ’t
2: temp← shared.max
3: pos← temp + 1
4: if (shared.max ≤ temp) shared.max← pos
5: choosing← ’nil
6: for every task do
7: wait if task.choosing
8: wait if lex<(task.pos, task.id, pos, id)

9: ..critical section.. goto 1
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Example: Bakery Specification

Algorithm Specification Task

1: state← ’interested
2: state← ’go if task.state 6= ’go for all task
3: ..critical section..
4: state← ’idle goto 1

I Ensures at most one task in critical section at any time..
I A fair run does NOT ensure every task eventually reaches

critical section.. BUT..
I A valid run does ensure every task eventually reaches critical

section!
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Requirements for Refinement Proofs

1. Split step into an update function and blocking relation.

2. Prove that specification can match implementation
I Specification can stutter a finite amount between steps

3. Prove that implementation has no deadlocks amongst tasks.

4. Prove that implementation has no starvation of tasks.

5. Prove sufficient conditions are invariant in implementation.

I Primary contribution is a theory that demonstrates
(fair stuttering) refinement as a result of defining the
necessary functions and proving these properties.
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Bakery Algorithm: Update and Blocking

I Split step into update function and blocking relation:

1: choosing← ’t

2: temp← shared.max

3: pos← temp + 1

4: if (shared.max ≤ temp) shared.max← pos

5: choosing← ’nil
6: for every task do
7: wait if task.choosing

8: wait if lex<(task.pos, task.id, pos, id)

9: ..critical section.. goto 1
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Bakery Algorithm: Blocking Relation

for every task do
wait if task.choosing

wait if lex<(task.pos, task.id, pos, id)

I Split task step into update and blocking relations..

(defun t-block (a b)

(or (and (= (g :loc a) 5) (g :choosing b))

(and (= (g :loc a) 6)

(lex< (g :pos b) (ndx (g :id b))

(g :pos a) (ndx (g :id a))))))
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Refinement Proof: Matching Specification-1

I Mapping Bakery Task states to ’idle , ’interested , and ’go :

1: choosing← ’t

2: temp← shared.max

3: pos← temp + 1

4: if (shared.max ≤ temp) shared.max← pos

5: choosing← ’nil
6: for every task do
7: wait if task.choosing

8: wait if lex<(task.pos, task.id, pos, id)

9: ..critical section.. goto 1
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Refinement Proof: Matching Specification-2

I Define (t-map a) and (t-rank a):
I (t-map a) maps a bakery task state to a specification task.
I (t-rank a) returns ordinal decreases on bakery steps which

are not matched in specification.

I t-rank for ’interested states returns “distance” remaining to

transition to ’go state
I when specification match is blocked, then implementation

must have been blocked..

(implies (and ... (t-next a b))

(if (equal (t-map a) (t-map b))

(o< (t-rank b) (t-rank a))

(and (spec-next (t-map a) (t-map b))

(implies (spec-block (t-map a) (t-map c))

(t-block a c)))))
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Refinement Proof: Ensuring No Deadlocks

for every task do
wait if task.choosing

wait if lex<(task.pos, task.id, pos, id)

I Ensuring lack of deadlock: define a rank which decreases
when one task blocks another..

(defun t-nlock (a)

(make-ord 2 (if (g :choosing a) 1 2)

(make-ord 1 (1+ (nfix (g :pos a)))

(ndx (g :id a)))))

....

(thm (implies (and ... (t-block a b))

(o< (t-nlock b) (t-nlock a)))
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Refinement Proof: Ensuring No Starvation - 1

for every task do
wait if task.choosing

wait if lex<(task.pos, task.id, pos, id)

I Ensuring No Starvation: first define a predicate which defines
when a task can no longer be blocked by another task..

(defun t-noblk (a b)

(or (and (!= (g :loc a) 5) (!= (g :loc a) 6))

(and (not (g :choosing b))

(> (g :pos b) (g :pos a)))))

....

(thm (implies (and .. (t-next b c) (t-noblk a b))

(and (not (t-block a b))

(t-noblk a c))))
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Refinement Proof: Ensuring No Starvation - 2

for every task do
wait if task.choosing

wait if lex<(task.pos, task.id, pos, id)

I Ensuring No Starvation: ..and then define a rank which
decreases until we reach t-noblk state.

(defun t-nstrv (a b)

... "distance" from task state b to reach a state where

... b is no longer choosing and b.pos greater than a.pos)

....

(thm (implies (and .. (t-next b c)

(not (t-noblk a b))

(not (t-noblk a c)))

(bnl< (t-nstrv a c) (t-nstrv a b) ..))
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Refinement Proof: Prove Sufficient Conditions are
Invariant

I For the sake of this paper.. no magic here.. we have to define
an invariant which:

I Implies the conditions sufficient to prove the other properties..
I ..and is inductive – holds on initial states and across steps.

I For the Bakery.. the invariants were fairly straightforward
properties relating task positions, code locations, and the
shared variables..

I ..but nonetheless relatively substantial compared to the other
definitions and proofs
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Comparison to Previous Efforts..

I Previous efforts at proving concurrent program refinements:

‘‘Specification and Verification of Concurrent

Programs Through Refinements’’

-- S. Ray and R. Sumners, J. Autom. Reasoning, 2013

I In comparison, the previous efforts...
I Supported more general forms of system definition with less

assumptions.
I Required bolting definition of specific fairness and progress

tracking apparatus onto the system state.
I Used simpler refinement properties, but required more complex

rank functions and more components in invariants.
I Muddled correctness of specification by need to review

correctness of measures for fairness and progress.
I Did not facilitate efficient finite-state property checking.
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Further Considerations, Questions.

I This is one step along the path.. to take it further:
I Relaxing system definition requirements?

I For example, allowing synchronous task updates?

I Efficiently reducing to finite-state checks?
I Can we break properties down into smaller theorems,

GL/GLMC checks

I Many other considerations...

I Rump Session: Efficient Checking of Fair Stuttering
Refinements of Finite State Systems in ACL2!

Questions?
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