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@ Overview



The Theorem

Theorem

Suppose p is a non-constant, complex polynomial with complex coefficients, then
there is some complex number z such that p(z) = 0.




The Theorem

(defun-sk polynomial-has-a-root (poly)
(exists (z)
(equal (eval-polynomial poly z) 0)))

(defthm fundamental-theorem-of-algebra-sk
(implies (and (polynomial-p poly)
(not (constant-polynomial-p poly)))
(polynomial-has—-a-root poly))
thints ...)



Proof Outline
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@ Extreme Value Theorem



Extreme Value Theorem (Reals)

Theorem

Suppose f is a real function that is continuous on the interval [a, b]. Then there
exists some d € [a, b] such that (Vx € [a, b])(f(d) < f(x)).




Extreme Value Theorem (Reals)
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Extreme Value Theorem (Complex — Reals)

Theorem

Suppose f is a real-valued, complex function that is continuous on a closed,
bounded region A. Then there exists some d € A such that (Vx € A)(f(d) < f(x)).




Extreme Value Theorem (Complex — Reals)

(Tnsyn) = (z+ 5,y +3)
® ® ® ®

(z0,0) 7=



The Extreme Value Theorem

(defthm minimum-point-in-region-theorem-sk
(implies (and (acl2-numberp z0)

(realp s)

(< 0 s)

(inside-region-p z0 (crvcfn-domain))

(inside-region-p (+ z0 (complex s s)) (crvcfn-domain)))

(achieves—-minimum-point-in-region context z0 s))
thints ...)



The Extreme Value Theorem

(defun-sk achieves-minimum-point-in-region (context z0 s)
(exists (zmin)

(implies (and (acl2-numberp z0)

(
(realp s)
(< 0 s))
(and (inside-region-p
zmin

(cons (interval (realpart z0)

(+ s (realpart z0)))
(imagpart z0)

(+ s (imagpart z0)))))

(is—minimum-point-in-region context

(interval

zmin z0 s)))))



The Extreme Value Theorem

(defun-sk is-minimum-point-in-region (context zmin z0 s)
(forall (z)
(implies (and

(inside-region-p
Z
(cons (interval (realpart zO0)
(+ s (realpart z0)))
(imagpart z0)
(+ s (imagpart z0))))))

(<= (crvcfn context zmin) (crvcfn context z)))))

(interval
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@ Continuity



Continuity

Definition
A function f is continuous at a standard point xg if f(Xp) is close to f(x) whenever
Xp is close to x.




Continuity

Definition
A function f is continuous at a standard point xj in a standard context if
f(context, Xxp) is close to f(context, x) whenever xj is close to x.




Polynomials

e We use lists of coefficients to represent polynomials, e.g., ” (C B 2) to
represent the polynomial Ax? + Bx + C

e The function eval-polynomial is used to interpret polynomials



Polynomials

e We use lists of coefficients to represent polynomials, e.g., ” (C B 2) to
represent the polynomial Ax? + Bx + C

e The function eval-polynomial is used to interpret polynomials

e (eval-polynomial poly x) iscontinuous at x, using poly as the
“context”



Minimum Value for Polynomials

e If pis a polynomial, then the function ||p(z)|| from C to R is continuous
e By the EVT, it achieves its minimum value on any closed, bounded region
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@ Growth Lemma for Polynomials



A Useful Bound

o Suppose p(z) = ag + a1z + az? + --- + apz", where a, # 0
e Then for large enough z:
Ip(2)]| = ||ao + a1z + @2° + - - + anz"||
< [laol| + [la12]| + [|@22?|| + - -~ + ||anz"]|
< laol + llat ]| 112]] + [|@z| [ [|12%]| + - - - + [|@n] | 2"]]
< A(IIZ211+ 112"+ 120+ + 112"
< A(n+1)[|2"]

< K||z™|

e The last inequality holds for any real constant K



An Upper Bound

e Suppose p is any polynomial
« Then for large enough z and any constant K, ||p(z)|| < K||z"1||

« Consider another polynomial g(z) = by + b1z + bz + - - - + b 2"

1q(2)|| = ||bo + b1Z + boZ® + -+ + by_12"" 1 + bp2"||
< |lbo + b1z + boz? + - + b1 2™ V|| + [|ba2"|
< KI[2]| + [|1bn2"|
[|bnl|
< 127+ bl 1127

3
= 5 [1ball[127]]

e The last inequality comes from letting K be @



A Lower Bound

o Consider the polynomial q(z) = by + b1z + baz? + - - + bpz"

HQ(Z)H = anzn - (—bo — bz - b222 e — bn—1zn71)H
2 anz”” —||—bo— b1z — b222 _"'—bn,12n_1||

— (1Ba2"| — [[bo + b1z + bpZ2 + -+ + b2
1
> |1ball11271] = 5 llball 112

’
= 5 [1ball 1127]]



A Lower Bound

o Consider the polynomial q(z) = by + b1z + baz? + - - - + bpz"

1 3
5 [1eall 112711 < lla(2)I] < 5 [1bal[112°]]

e This holds for large enough z

e The most important fact for us is that for large enough z, the value of ||g(z)|
can’t be that small



The Global Minimum of ||g(z)||

laCz)l < a1 = llao

llg(O)1 = flall
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@ D’Alembert’'s Lemma



D’Alembert’s Lemma

Theorem

Suppose p is a non-constant polynomial, and z € C is such that p(z) # 0. Then

there is some zy such that ||p(zo)|| < ||p(2)||- In particular, if p(z) # 0 then z
cannot be a global minimum of ||p(-)|].




Proof

e We prove this for a special case and only when z = 0:

p(z) =1+ a1z +az®+ -+ apz"
-1 +akzk+zk+1q(z)

 This last equality works for some value of k and some polynomial g(z)




Proof

So |lp(2)I| < 11 + ak2"|| + |21 q(2)]]

Suppose sisreal with 0 < s < 1
We can always find a z such that a,z¥ = —s
So for any s with 0 < s < 1, we can find a z such that |1 + axz¥|| =1 —s



Proof

1Pl < 1—s+ 12| la(2)|
=1-s+ HZHKHZH la(2)]]

=1-st+o HHZHHQ( )|

—1-s(1- 2 a1



Proof

1Pl < 1—s+ 12| la(2)|
=1-s+ HZHKHZH la(2)]]

=1-st+o HHZHHQ( )|

—1-s(1- 2 a1

121l
<1—s<1 —’akHA(n+1))



Proof

1Pl < 1—s+ 12| la(2)|
=1-s+ HZHkI!ZH la(2)]]

=1-st+o HHZHHQ( )|

—1s(1- 2 )

2]l
<1—s<1 —’akHA(n+1)>

<1-s
<1
= [|p(0)]]

e We can choose a value of z such that l'“;‘h An+1) <1

e And now we can pick the s that will result in that particular z




D’Alembert’s Lemma

(defthm lowest-exponent-split-10
(implies (and (polynomial-p poly)
(equal (car poly) 1)
(<1 (len poly))
(not (equal (leading-coeff poly) 0)))
(< (norm2 (eval-polynomial
poly
(fta-bound-1 poly
(input-with-smaller-value
poly))))

thints ...)



Wrapping Up the Proof

We know that p(0) = 1 and 0 cannot be the global minimum of ||p(-)||
That was a special case, but we can extend it to any polynomial

Divide by ag, so that p(0) # 0
Shift the polynomial, so that p(xp) # 0
Handle the case when the leading coefficient is 0
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@ Conclusion



Wrapping Up the Main Proof

o We know that there is some xp,j, that is a global minimum of ||p(-)||
e We also know that if p(xmin) # 0, then xp,j, can’t be a global minimum

e S0 p(Xmin) =0



The Fundamental Theorem of Algebra

(defun-sk polynomial-has—-a-root

(poly)
(exists (z)

(equal (eval-polynomial poly z) 0)))

(defthm fundamental-theorem-of-algebra-sk
(implies (and (polynomial-p poly)
(not (constant-polynomial-p poly)))

(polynomial-has—-a-root poly))
thints ...)
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