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Trapezoidal Generalization Talk Overview

= Motivation

— Model-Based Fuzzing

=  Previous Work

— High-Level Spec

=  Proof

— Overview and Proof Pearls

= Future Efforts

— Sampling
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Model-Based Fuzzing

The use of Behavioral Models to perform Directed Fuzzing
in search of Cyber Vulnerabilities in Embedded System Targets

= Limited Knowledge of System Under Test

— Requirements Specifications (Grey Box)

= Limited Visibility of System Behavior

— Anomalous Behavior must Manifest at “System Level”

= Leverages Synergy Between Fuzzer and Solver Technologies
— Solver Targets Known Behavior

— Fuzzer Searches Unknown Behavior

Target What We Know
Fuzz What We Don't
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Model-Based Fuzzing Pipeline

Model Describes Fuzzing Target
— Functional Behaviors, Stateful Protocols _[%]-

Model

Model

Heuristics are used to generate constraints
— Driven by Testing Criteria/Metric Heuristic o=\

Constraint 4>

Target

Constraint Solver Generates Solutions
Solution — ]

— Solutions Target Interesting Model Behaviors
Generalizer [mmsg } Fuzz

_ Generalization
Generalizer Randomizes (Fuzzes) Solution -
erator } Test

— Explores Behavioral Boundaries

Test Vector

Generator Samples Generalization to produce Test Vectors

— Much Faster than Solver
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Generalization in Model-Based Fuzzing

= Generalization

Transforms a Concrete Solution
* Into a Set of Solutions

— Produces a symbolic expression

In terms of system inputs
« That Satisfies Constraint

We use Generalization to @)

— Randomize Solver Solutions Solution

— Influence Test Distributions

 Boundary Value Testing

Decouple Solver from Test Generation

Boost Test Generation Performance!
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Rectilinear Generalization

Upper Bound

100 < X < 200
0< y < 100
-50 < Z < 50

e
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Trapezoidal Generalization

Upper Bound

100 < X < 200
3X - 290 < y < -3x + 970
y + X —250 < Z <-y+7

e List of Variable Bounds sorted by arbitrary variable ordering
- Interpreted as a conjunction

e One Bound (Upper and Lower) Per Variable

e Bounds are rational 1st order multivariate polynomials
- Expressed in terms of “smaller” variables
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Trapezoidal Generalization

Upper Bound

100 < X < 200
3X - 290 < y < -3x + 970
y + X —250 < Z <-y+7

2.

8 | © 2018 Rockwell Collins. All rights reserved. Rockwe, .
Collins



Trapezoidal Generalization (vs. Intervals)

 Reduced Dependency on Original Solution

 Better Approximation of Linear Features (Boundaries)
— Enhanced Boundary Value Fuzzing

 Larger Generalization Regions
— Each Counterexample yields more test vectors

« Bounded Representation Size
— Worst Case Quadratic in #Inputs

o Efficient Computation
— Worst Case Cubic Intersection
— Worst Case Quartic for Integer Restriction

o Supports Efficient Sampling (Vector Generation)
— Nearly As Efficient As Intervals
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Sampling

Upper Bound

100 < X < 200

Test Values

x =110
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Sampling

Upper Bound

3x -290 =40 < Yy < 640 = -3x + 970

Test Values
x =110
y = 50
z
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Sampling

Upper Bound

y +Xx—250 =-90 < Z <-43=-y+7

Test Values

x =110
y = 50
= -50
1 18 Rockwell Collins. All rights reserved. Ro‘.'kwe A
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Trapezoidal Intersection Example 1

X <5

2 <= &
y <-X+6 33X + 2 < y

2 <= X <5

3X + 2 Yy <-X+6
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Trapezoidal Intersection Example 2

X=4
Y=1

&

Yy <X+ 2 Yy <-X+6
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Domain Restriction

15 | © 2018 Rockwell Collins. All rights reserved. Rockwe,
Collins



Domain Restriction
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Domain Restriction

2 <= X

Yy <-X+6

X >= 2 y<-X+06
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Trapezoidal Intersection Example 2

&

y <-X+6 y <X+ 2

2 <= X

y < -X+ 06
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Trapezoid Intersection

If we intersect two trapezoids from smallest to largest

— Domain Restrictions will be applied from largest to smallest

= Intersection of two variable constraints

— May result in a Domain Restriction

=  Domain Restrictions

— EXxpressed in terms of Smaller Variables

= Intersection with a Domain Restriction

— May result in 1 more (even smaller) restriction
+ Etc.
= Computational Complexity

— Order N operations to intersect two trapezoids

— Order N2 operations to apply domain restrictions
— Interval Intersection is Order N

— Total Complexity Order N3
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Generalization Problem Statement
solution constraint

e Gi
—Ivzl;stem Model \ /

— Constraint

— Solution provided by Constraint
Solver

e Generate a Generalization

— Convert a single solution into a set of
solutions
— EXxpress Result Concisely
« Usually Generalization '= Constraint
* Result is Inexact

generalization
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Possible Generalizations

constraint solution

, generalization _
Conservative Conservative

Over-Approximation Under-Approximation
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Previous Work (2017 Rump Session)

e ldentified Conservative Under-Approximation
— As Appropriate for our Application

e Formalized this Concept in ACL2
— Expressed Correctness using 2 Invariants

e Refined a Set of Generalization Rules

— We initially assumed that “Doing Nothing” was conservative
e If you don’t change the expression, it trivially satisfies correctness

— We were wrong !

— It is easy to make these kinds of mistakes
e ACL2 can help during algorithmic development

e Motivated continued Formalism
— Verify Concrete Implementation
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Generalization Correctness Statements

« Top Level Correctness Statement solution  constraint
— Generalization Contains Original Solution \ /
— Generalization is a Subset of Original
Constraint

 |Invariants
— Can be enforced incrementally
* During Symbolic Simulation

— Reduce to Correctness when applied to top
level constraint

generalization

e Correctness Invariants

— 1. Evaluating Solution on Generalization must be the same as
Evaluating Solution on original expression

— 2. Any input whose evaluation differs from that of the solution on
the original expression must also differ on the Generalization
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Trapezoidal Generalization: ACL2 Formalism

Linear Rational Multi-Variate Polynomial Library
— Formalization of Solving Equality/Inequality for one variable
= Interval Bounds
— Bounds single variable w/to polynomials
— Upper and/or Lower Inequalities or a single Equality
= Trapezoidal Data Structure, Regions
— Ordered List of Interval Bounds
=  QOperational Building Blocks
— Model Derived From Implementation Source Code
= Generalization Procedure
— Generalizes a Solution Vector and produces a Region
— Relative to arbitrary Boolean combinations of Linear Constraints
=  Proof of Generalization Correctness

— w/to 2 Correctness Invariants
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Trapezoidal Data Types

(defun normalized-variableBound-p (term)
(declare (type t term))
(and (variableBound-p term)

(>-all (bound-varid term) (bounding-variables term))
(normalized-variableInterval-p term)))

(defun trapezoid-p (list)

(declare (type t list))
(if (not (consp list)) (null list)
(let ((bv (car list)))
(and (normalized-variableBound-p bv)
{variableBound-listp (cdr list))

(=-all (bound-varid bv) (all-bound-list-variables (cdr list))]}
(trapezoid-p (cdr Llist))))))
(defun region-p (term)
(declare (type t term))
(case-match term
(("not x) (trapezoid-p x))

((x) (trapezoid-p x))
(& nil)))
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Evaluator

26 | © 2018 Rockwell Collins. All rights reserved.

(def::und eval-ineqg (term env)
(declare (xargs :signature ((t t) booleanp)
:congruence ((nil env-equiv) equall))

(case-match term
(('and x y)
(let ((x (eval-ineq
(y (eval-ineg
fand x y)))
(('or x y)
(let ((x (eval-ineg
(y (eval-ineg
for x y)))
(({"not x)
(let ((x (eval-ineq
(not x)))
({'= var poly)
(let ((x (eval-poly
(y (eval-poly
(equal x y)))
(('"!'= var poly)
(let ((x (eval-poly
(y (eval-poly

env) )
env)))

- X

env) )
env)))

- M

x env)))

(bound-poly
poly env)))

(bound-poly
poly env)))

(not (equal x y))))

("= x y)
(let ((x (eval-poly
(y (eval-poly
(= x yl))
(('== x y)
(let ((x (eval-poly

(y l(eval-poly
(== x y)))
(('= x y)

(let ((x (eval-poly
(y (eval-poly
(= x y)))
(('== x y)
(let ((x (eval-poly

(y l(eval-poly
(>= x y)))
(& nil)))

(bound-poly
y env)))

(bound-poly
y env)))

(bound-poly
y env)))

(bound-poly
y env)))

var) env))

var) env))

®)

%)

x)

%)

env) )

env))

env) )

env))
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a N N
(def::un generalize-ineqg (term sln)
(declare (xargs :signature ((t env-p) region-p)})
(case-match term
(({"and x y)
. (let ((x (generalize-ineg x sln))
Generallzer (y (generalize-ineq y sln)))
{and-regions x y sln)))
({'or x y)
{let ((x (generalize-ineq x sln))
(y (generalize-ineq y sln)))
(not-region (and-regions (not-region x) (not-region y) sln))))
(("not x)
(let ((x (generalize-ineg x sln)))
{not-region x)))
(('= var poly)
(let ((x (bound-poly war)})
{y (poly-fix! poly)})
(normalize-equal-@ (sub x y) sln)))
(("!= var poly)
(let ((x (bound-poly wvar))
(y (poly-fix! poly)))
{not-region (normalize-equal-@ (sub x y) sln))))
(("= x y)
(let ((x (bound-poly x])
{y (poly-fix! y)))
(normalize-gt-8 :exclusive (sub y x) sln)))
(('== x y)
(let ((x (bound-poly x))
(y (poly-fix! y)))
{normalize-gt-8 :inclusive (sub y x) sln))})
(('= x y)
(let ((x (bound-poly x])
{y (poly-fix! y)))
(normalize-gt-8 :exclusive (sub x y) sln)))
(('== x y)
(let ((x (bound-poly x))
(y (poly-fix! y)))
{normalize-gt-® :inclusive (sub x y) sln))})
(& (negated-region nil))))
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Generalization Correctness

(defthm invl-generalize-ineq
(implies
(env-p sln)
(and (wf-region-p (generalize-ineq term sln) sln)
(iff (eval-region (generalize-ineq term sln)} sln)
{eval-ineg term sln))))
thints (("Goal" :induct (generalize-ineq term sln)
:do-not-induct t)
(and stable-under-simplificationp
"{:in-theory (enable eval-ineq)))))

(def::signature generalize-ineq (t env-p) (lambdz (x) (wf-region-p x x1))
thints (("Goal" :in-theory (disable wf-region-p})))

(in-theory (disable wf-region-p alt-eval-region))

(defthm inv2-generalize-ineq
(implies
(and
(env-p sln)
(iff (eval-ineg term sln)
(not (eval-ineqg term any))))
(iff (eval-region (generalize-ineq term sln) any)
{eval-ineqg term any)))
:hints (("Goal"” :induct (generalize-ineg term sln)
:do-not-induct t)
(and stable-under-simplificationp
*(:in-theory (enable eval-ineqg)))))
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Proof Pearls (Weird Things Dave Does in ACL2)

= Non-Traditional Congruences (nary)

— Used to verify variable ordering invariants

= Delayed/Partial Termination (def::ung)

— Used to admit/reason about awkward functions

= Question about ACL2 Linear Capabilities
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Traditional backchaining (member/subset)

i3 Traditionally ..

(defund choose-one (list)
{car list))

(defthm choose-one-is-member
(implies
(consp list)
(list::memberp (choose-one list) list))
thints (("Goal" :in-theory (enable choose-one))))

(defthm memberp-from-memberp-subsetp-backchain
{implies

(and
(subset-p x y) <":|

(list::memberp a x))
(list::memberp a y)))

(defthm some-other-proof-subgoal
{implies
(and
(subset-p x y)
(consp x))
(list: :memberp (choose-one x} y)))

30 | © 2018 Rockwell Collins. All rights reserved.

(defthm =-all-is-greater-than-members
(implies
(and
(=-all v list)
(list::memberp x list))
(= (varid-fix x) (varid-fix v))))
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Non-Traditional (one-way) “equivalences”

(include-book "coi/nary/nary" :dir :system)

(encapsulate

(defequiv+ (subset-p x y)
tequiv  set-upper-bound-equiv
:context set-upper-bound-ctx
ipred set-upper-bound-pred
:congruences ((y set-equiv-quant))
tkeywords nil
:skip nil
)

(defequiv+ (list::memberp a x)
tpred memberp-upper-bound-pred
iequiv  memberp-upper-bound-equiv
:context memberp-upper-bound-ctx
:congruences ((x set-equiv-quant))
:chaining-ctx set-upper-bound-ctx
tkeywords nil
:skip nil

31 | © 2018 Rockwell Collins. All rights reserved. Rockwe//,
Collins



Non-Traditional Congruences

(defcongp+ memberp-upper-bound-equiv-cons-1
(cons x y)
:rhs (append maxx y)
:cong ((x (equal maxx (memberp-upper-bound-ctx x))))
tequiv set-upper-bound-equiv
:skip nil
)

(defcongp+ memberp-upper-bound-equiv-cons-2
(cons x y)
:rhs (cons x maxy)
:cong ((y (equal maxy (set-upper-bound-ctx y))))
tequiv set-upper-bound-equiv
:skip nil
)

(defcongp+ set-upper-bound-append
(append x y)
:rhs (append a b)
tequiv set-upper-bound-equiv
:cong ((x (equal a (set-upper-bound-ctx x)))
(y (equal b (set-upper-bound-ctx y))]}]
:skip nil
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Non-Traditional “Driver” Rules

(defthm memberp-upper-bound-driver
(implies
(and
(bind-contextp (a (equal max (memberp-upper-bound-ctx all)) :asymmetric t)
(double-rewrite (subset-p max x)))
(list: :memberp a x)))

Goal' 4’
(defthm not-memberp-upper-bound-driver (IMPLIES (AND (LIST::MEMBERP A MAX)
(implies (SUBSET-P MAX X))
(and (LIST::MEMBERP A X)).

(bind-contextp (x (equal max (set-upper-bound-ctx x))])
(double-rewrite (not (list::memberp a max))))
(not (list::memberp a x1)))

(defthm subset-p-upper-bound-driver
(implies
(and
(bind-contextp (x (equal max (set-upper-bound-ctx x))])
(force (double-rewrite (subset-p max z))))
(subset-p x z)))

(defthm =-all-upper-bound-driver
(implies
(and
(bind-contextp (list (equal max (set-upper-bound-ctx list)))])
(force (double-rewrite (=-all wvarid max))))
[=-3ll wvarid list)))

(defthm ==all-upper-bound-driver
(implies
(and
(bind-contextp (list (equal max (set-upper-bound-ctx list)))])
(force (double-rewrite (==all wvarid max))))
[==all wvarid Llist)))
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Proof Using Non-Traditional Congruences

;; Non-Traditional Congruence

(defund choose-one (list)
{car list))

(defthm choose-one-to-list
(implies
(consp list)
(memberp-upper-bound-equiv (choose-one list) Llist))
hints (({and stable-under-simplificationp '(:in-theory (enable choose-one)))))

;ACLZ !=:transl (memberp-upper-bound-equiv (choose-one list) list)
;; (EQUAL (MEMBERP-UPPER-BOUND-CTX (CHOODSE-ONE LIST))
P (MEMEERP - UPPER-BOUND-PRED T (CHOOSE-ONE LIST) LIST))

;: Goal®'
;: (IMPLIES (CONSP LIST)
H- (LIST: :MEMBERP (CHOOSE-ONE LIST) LIST))

(defthm memberp-upper-bound-driver
(implies
(and
(bind-contextp (a (equal max (memberp-upper-bound-ctx a))) :tasymmetric t)
(double-rewrite (subset-p max x)))
(list::memberp a x)))

(defthm some-other-proof-subgoal
(implies
(and
(consp x)
(subset-p x yl)
(list::memberp (choose-one x) y))
thints (("Goal" :in-theory '(memberp-upper-bound-driver
choose-one-to-list
MEMEERP-UPPER-BOUND-CTX_ UNFIX CHECK REDUCTION 2
IBDD
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Admitting Awkward Functions (def::ung)

(def::ung intersect (key arg res cex)
(declare (xargs :default-value nil
:signature ((t (lambda (x) (if (equal key :wvar) (variableBound-p x) (variableBound-listp x)))
variableBound-listp
env-p)
variableBound-listp)))
(if (equal key :var)
{if (not (consp res)) (list war)
(if (< (bound-varid (car res)) (bound-varid var)) (cons var res)

(if (= (bound-varid wvar) (bound-varid (car res))) leper Merge
(cons (car res) (intersect :var var (cdr res) cex))
imetlist ((z zres) (andTrue-variableBound-variableBound var (car res) cex)) [)C"1151"1
{let ((res (intersect :list zres (cdr res) cex))) . .
(cons z res)))))) ReSt“Ctlon

(if (not (consp list]}) res
{let {((res {(intersect :var (car list) res cex)))
(intersect :list Ncdr list) res cex)))))

Reflexive Recursion
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Intersect type theorems

(defthm trapezoid-p-intersect
(implies
{and
(if (equal key :var) (normalized-variableBound-p arg) (normalized-variableBound-listp arg))
(trapezoid-p res)
(env-p cex))
(and
(trapezoid-p (inmtersect key arg res cex))
(subset-p (all-bound-list-variables (intersect key arg res cex))
(append
(if (equal key :var) (all-bound-variables arg) (all-bound-list-wvariables arg))
(all-bound-list-variables res)))))
:hints (("Goal" :do-not-induct t
:induct (intersect key arg res cex))))
(defthm set-upper-bound-equiv-all-bound-list-variables-intersect
(implies
{and
(if (equal key :var) (normalized-variableBound-p arg) (normalized-variableBound-listp arg))
(trapezoid-p res)

(env-p cex)) &
(set-upper-bound-equiv (all-bound-list-variables (intersect key arg res cex))
(append

(if (equal key :var) (all-bound-variables arg) (all-bound-list-wariables arg))
(all-bound-list-variables res))))
thints (("Goal" :in-theory (disable trapezoid-p-intersect)
:use trapezoid-p-intersect)))
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Intersect measure and (conditional) termination

(defun intersection-measure (key arg res cex)
(declare (ignore cex))
(llist (if (equal key :var) (bound-varid arg) (if (consp arg) (largest-varid (bound-varid-list arg)) 8))
(if (equal key :wvar) @ (len arg))
(len res)))

(def::total intersect (key arg res cex)
(declare (xargs :measure (intersection-measure key arg res cex)
thints (("Goal" :do-not-induct t))
:well-founded-relation 1<))
(and
(if (egual key :var) (normalized-variableBound-p arg) (normalized-variableBound-listp arg))
(trapezoid-p res)
(env-p cex)]))
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What are ACL2’s Linear Reasoning Capabilities?

= Doublecheck
— Framework can emit ACL2 theorems during generalization
— Instances of invariants 1 & 2

* Trapezoids : Conjunctions of linear constraints

= Original Theorems Failed/Took Forever

— Function Applications rather than Variables

= Generalized Theorems Don’t Prove Consistently
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What are ACL2’s Linear Reasoning Capabilities?

|{include—bcuc|k "arithmetic-5/top" :dir :system)
(defthm hmm
(IMPLIES (RND (RATIONALP GETVAL)
(RATICNALF GETVALYE)
(RATIONALF GETVAL131)
(RATIONALF GETVAL132)
(€= 128 GETVAL)
(€= -128 GETVALYE)
(< GETVALSE 113)
(€= GETVALSE GETVALYE)
(< GETVALSE 128)
(€= GETVALYSE GETVAL1OL)
(< (+ GETVAL1OL (* 2/3 GETVALS98))
(+ 5 (* 5/3 GETVALYE)))
(€= (+ 15 (* 5 GETVALSE))
(+ GETVAL1O1l (* 2 GETVAL1OT)
(* 2 GETVALSH)))
(<= (+ GETVAL1O0l GETVALIOT (* 2 GETVALSH))
(+ 15 (* 4 GETVALSE)))
(€<= GETVALYSE GETVAL114)
(< GETVAL114 GETVALSS)
(< GETVAL9S8 GETVAL)
(€< (+ GETVAL10l GETVALLODT
GETVAL114 GETVALSE (* 2 GETVAL))
{(+ 15 (* & GETVALSE))))
(NOT (EQUAL (+ GETVAL GETVALI1O1
GETVAL1O7 GETVAL114 GETVALIZT7 GETVALSE)
{(+ 15 (* & GETVALSE)})))
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What are ACL2’s Linear Reasoning Capabilities?

(include-book "arithmetic-5/top" :dir :system)
{(include-book "projects/smtlink/top" :dir :system)
{add-default-hints ' ({smt::smt-computed-hint clause)))

(defthm hmm

{(IMPLIES (AND (RATIONALE GETVAL)
(RATICONALE GETVALSE)

(RATIONALEP GETVAL1Z1)

(RATICNALE GETVAL1ZZ)

(<= 128 GETVAL)

(€= -128 GETVALSE)

(< GETVRALSE 113)

(<= GETVALYSE GETVALSH)

(< GETVRLSE8 128)

(<= GETVALYE GETVALIOL)

(< (+ GETVALIOL (* 2/3 GETVALSH))
(+ 5 (* 5/3 GETVALYE)))

(<= (+
(+

(== (+
(+

15 (* 5 GETVALYE))
GETVAL101l (* 2 GETVAL107)

(* 2 GETVALY9S)))

GETVAL101l GETVAL107 (* 2 GETVALSS))
15 (* 4 GETVALYE)))

(<= GETVALSE GETVAL114)
(< GETVAL114 GETVALSH)

(< GETVALSE GETVAL)

(< (+ GETVAL1O01l GETVAL1OT

GETVAL114 GETVALSE (* 2 GETVAL))

(+ 15 (* & GETVALSE))))

(NOT (EQUATL

(+ GETVAL GETVALIO1
GETVAL107 GETVAL1l4 GETVAL127 GETVALYS)
(+ 15 (* € GETVALYE)))))

:hints (("Goal™ :smtlink nil)))
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What are ACL2’s Linear Reasoning Capabilities?

= Doublecheck
— Framework can emit ACL2 theorems during generalization
— Instances of invariants 1 & 2

* Trapezoids : Conjunctions of linear constraints

= Original Theorems Failed/Took Forever

— Function Applications rather than Variables

= Generalized Theorems Don’t Prove Consistently

How does Linear Reasoning differ from LP?
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Sampling (Oops ..)

Upper Bound

y + x—250 5 490 < Z < -623|= -y + 7

Test Values

x =110
y = 630
z =77
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Integer Intervals

re e

30 [

If we choose a
value of x in this
region, there is
no integer value
2 0 o for y satisfying
our constraints

10

~
rd

&
<

1 2 3 4 5
We)V,V/1g Variable Upper
0 <= X <=5
OX — 4 <= y <= 74X + 4
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Future Work

= We have defined a technique for restricting trapezoids
— Restricted Trapezoids can be sampled
* Without Inconsistencies
« Without Backtracking

— Even for Integer Valued Variables

= Remaining Challenge:

— Prove that Restriction Works
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