Trapezoidal Generalization
Over Linear Constraints

David Greve
Andrew Gacek

This research was developed with funding from the Defense Advanced
Research Projects Agency (DARPA) under Contract FA8750-16-C-0218.

Distribution Statement A: Approved for Public Release; Distribution Unlimited. ROCkwe

The views, opinions, and/or findings expressed are those of the author(s) c.o I”S'
and should not be interpreted as representing the official views or policies

of the Department of Defense or the U.S. Government. Building trust every day

Trapezoidal Generalization Talk Overview

= Motivation

— Model-Based Fuzzing

= Previous Work

— High-Level Spec

= Proof

— Overview and Proof Pearls

= Future Efforts

— Sampling

2 | © 2018 Rockwell Collins. All rights reserved. Rockwe, .
Collins

Model-Based Fuzzing

The use of Behavioral Models to perform Directed Fuzzing
in search of Cyber Vulnerabilities in Embedded System Targets

= Limited Knowledge of System Under Test

— Requirements Specifications (Grey Box)

= Limited Visibility of System Behavior

— Anomalous Behavior must Manifest at “System Level”

= Leverages Synergy Between Fuzzer and Solver Technologies
— Solver Targets Known Behavior

— Fuzzer Searches Unknown Behavior

Target What We Know
Fuzz What We Don't

3 | © 2018 Rockwell Collins. All rights reserved. Rockwell
Collins

Model-Based Fuzzing Pipeline

Model Describes Fuzzing Target
— Functional Behaviors, Stateful Protocols _[%]-

Model

Model

Heuristics are used to generate constraints
— Driven by Testing Criteria/Metric Heuristic o=\

Constraint 4>

Target

Constraint Solver Generates Solutions
Solution —]

— Solutions Target Interesting Model Behaviors
Generalizer [mmsg } Fuzz

_ Generalization
Generalizer Randomizes (Fuzzes) Solution -
erator } Test

— Explores Behavioral Boundaries

Test Vector

Generator Samples Generalization to produce Test Vectors

— Much Faster than Solver

4 | © 2018 Rockwell Collins. All rights reserved. Rockwe, .
Collins

Generalization in Model-Based Fuzzing

= Generalization

Transforms a Concrete Solution
* Into a Set of Solutions

— Produces a symbolic expression

In terms of system inputs
« That Satisfies Constraint

We use Generalization to @)

— Randomize Solver Solutions Solution

— Influence Test Distributions

 Boundary Value Testing

Decouple Solver from Test Generation

Boost Test Generation Performance!

5 | © 2018 Rockwell Collins. All rights reserved.

B

Randomlzatlon

iR

Biased Dlstrlbutlon

Performance

Rockwe/ s

Rectilinear Generalization

Upper Bound

100 < X < 200
0< y < 100
-50 < Z < 50

e

6 | © 2018 Rockwell Collins. All rights reserved. Rockwe, .
Collins

Trapezoidal Generalization

Upper Bound

100 < X < 200
3X - 290 < y < -3x + 970
y + X —250 < Z <-y+7

e List of Variable Bounds sorted by arbitrary variable ordering
- Interpreted as a conjunction

e One Bound (Upper and Lower) Per Variable

e Bounds are rational 1st order multivariate polynomials
- Expressed in terms of “smaller” variables

7 | © 2018 Rockwell Collins. All rights reserved. Rockwe,
Collins

Trapezoidal Generalization

Upper Bound

100 < X < 200
3X - 290 < y < -3x + 970
y + X —250 < Z <-y+7

2.

8 | © 2018 Rockwell Collins. All rights reserved. Rockwe, .
Collins

Trapezoidal Generalization (vs. Intervals)

 Reduced Dependency on Original Solution

 Better Approximation of Linear Features (Boundaries)
— Enhanced Boundary Value Fuzzing

 Larger Generalization Regions
— Each Counterexample yields more test vectors

« Bounded Representation Size
— Worst Case Quadratic in #Inputs

o Efficient Computation
— Worst Case Cubic Intersection
— Worst Case Quartic for Integer Restriction

o Supports Efficient Sampling (Vector Generation)
— Nearly As Efficient As Intervals

9 | © 2018 Rockwell Collins. All rights reserved. Rockwe, .
9 Collins

Sampling

Upper Bound

100 < X < 200

Test Values

x =110

10 | © 2018 Rockwell Collins. All rights reserved. ROCkWE//_
olins

1

Sampling

Upper Bound

3x -290 =40 < Yy < 640 = -3x + 970

Test Values
x =110
y = 50
z

11 | © 2018 Rockwell Collins. All rights reserved. Rockwe, "

1 1Co 1ns

Sampling

Upper Bound

y +Xx—250 =-90 < Z <-43=-y+7

Test Values

x =110
y = 50
= -50
1 18 Rockwell Collins. All rights reserved. Ro‘.'kwe A
2| © 2018 kwell Coll Il righ d O/Ans

1%

Trapezoidal Intersection Example 1

X <5

2 <= &
y <-X+6 33X + 2 < y

2 <= X <5

3X + 2 Yy <-X+6

13 | © 2018 Rockwell Collins. All rights reserved. ROC'kWE/
ns

Trapezoidal Intersection Example 2

X=4
Y=1

&

Yy <X+ 2 Yy <-X+6

14 | © 2018 Rockwell Collins. All rights reserved. Rockwe, "
1 4‘0 Iins

Domain Restriction

15 | © 2018 Rockwell Collins. All rights reserved. Rockwe,
Collins

Domain Restriction

16 | © 2018 Rockwell Collins. All rights reserved. Rockwe,
Collins

Domain Restriction

2 <= X

Yy <-X+6

X >= 2 y<-X+06

17 | © 2018 Rockwell Collins. All rights reserved. Rockwe "
Collins

Trapezoidal Intersection Example 2

&

y <-X+6 y <X+ 2

2 <= X

y < -X+ 06

18 | © 2018 Rockwell Collins. All rights reserved. Rockwe, "
1 8"0 Iins

Trapezoid Intersection

If we intersect two trapezoids from smallest to largest

— Domain Restrictions will be applied from largest to smallest

= Intersection of two variable constraints

— May result in a Domain Restriction

= Domain Restrictions

— EXxpressed in terms of Smaller Variables

= Intersection with a Domain Restriction

— May result in 1 more (even smaller) restriction
+ Etc.
= Computational Complexity

— Order N operations to intersect two trapezoids

— Order N2 operations to apply domain restrictions
— Interval Intersection is Order N

— Total Complexity Order N3

19 | © 2018 Rockwell Collins. All rights reserved. Rockwe,
Collins

Generalization Problem Statement
solution constraint

e Gi
—Ivzl;stem Model \ /

— Constraint

— Solution provided by Constraint
Solver

e Generate a Generalization

— Convert a single solution into a set of
solutions
— EXxpress Result Concisely
« Usually Generalization '= Constraint
* Result is Inexact

generalization

20

Possible Generalizations

constraint solution

, generalization _
Conservative Conservative

Over-Approximation Under-Approximation

21

Previous Work (2017 Rump Session)

e ldentified Conservative Under-Approximation
— As Appropriate for our Application

e Formalized this Concept in ACL2
— Expressed Correctness using 2 Invariants

e Refined a Set of Generalization Rules

— We initially assumed that “Doing Nothing” was conservative
e If you don’t change the expression, it trivially satisfies correctness

— We were wrong !

— It is easy to make these kinds of mistakes
e ACL2 can help during algorithmic development

e Motivated continued Formalism
— Verify Concrete Implementation

22

Generalization Correctness Statements

« Top Level Correctness Statement solution constraint
— Generalization Contains Original Solution \ /
— Generalization is a Subset of Original
Constraint

 |Invariants
— Can be enforced incrementally
* During Symbolic Simulation

— Reduce to Correctness when applied to top
level constraint

generalization

e Correctness Invariants

— 1. Evaluating Solution on Generalization must be the same as
Evaluating Solution on original expression

— 2. Any input whose evaluation differs from that of the solution on
the original expression must also differ on the Generalization

23 | © 2018 Rockwell Collins. All rights reserved. Rockwe,

2 3‘0 Ins

Trapezoidal Generalization: ACL2 Formalism

Linear Rational Multi-Variate Polynomial Library
— Formalization of Solving Equality/Inequality for one variable
= Interval Bounds
— Bounds single variable w/to polynomials
— Upper and/or Lower Inequalities or a single Equality
= Trapezoidal Data Structure, Regions
— Ordered List of Interval Bounds
= QOperational Building Blocks
— Model Derived From Implementation Source Code
= Generalization Procedure
— Generalizes a Solution Vector and produces a Region
— Relative to arbitrary Boolean combinations of Linear Constraints
= Proof of Generalization Correctness

— w/to 2 Correctness Invariants

24 | © 2018 Rockwell Collins. All rights reserved. Rockwe,
Collins

Trapezoidal Data Types

(defun normalized-variableBound-p (term)
(declare (type t term))
(and (variableBound-p term)

(>-all (bound-varid term) (bounding-variables term))
(normalized-variableInterval-p term)))

(defun trapezoid-p (list)

(declare (type t list))
(if (not (consp list)) (null list)
(let ((bv (car list)))
(and (normalized-variableBound-p bv)
{variableBound-listp (cdr list))

(=-all (bound-varid bv) (all-bound-list-variables (cdr list))]}
(trapezoid-p (cdr Llist))))))
(defun region-p (term)
(declare (type t term))
(case-match term
(("not x) (trapezoid-p x))

((x) (trapezoid-p x))
(& nil)))

25 | © 2018 Rockwell Collins. All rights reserved.

Rockwell
Collins

Evaluator

26 | © 2018 Rockwell Collins. All rights reserved.

(def::und eval-ineqg (term env)
(declare (xargs :signature ((t t) booleanp)
:congruence ((nil env-equiv) equall))

(case-match term
(('and x y)
(let ((x (eval-ineq
(y (eval-ineg
fand x y)))
(('or x y)
(let ((x (eval-ineg
(y (eval-ineg
for x y)))
(({"not x)
(let ((x (eval-ineq
(not x)))
({'= var poly)
(let ((x (eval-poly
(y (eval-poly
(equal x y)))
(('"!'= var poly)
(let ((x (eval-poly
(y (eval-poly

env))
env)))

- X

env))
env)))

- M

x env)))

(bound-poly
poly env)))

(bound-poly
poly env)))

(not (equal x y))))

("= x y)
(let ((x (eval-poly
(y (eval-poly
(= x yl))
(('== x y)
(let ((x (eval-poly

(y l(eval-poly
(== x y)))
(('= x y)

(let ((x (eval-poly
(y (eval-poly
(= x y)))
(('== x y)
(let ((x (eval-poly

(y l(eval-poly
(>= x y)))
(& nil)))

(bound-poly
y env)))

(bound-poly
y env)))

(bound-poly
y env)))

(bound-poly
y env)))

var) env))

var) env))

®)

%)

x)

%)

env))

env))

env))

env))

Rockwell
Collins

a N N
(def::un generalize-ineqg (term sln)
(declare (xargs :signature ((t env-p) region-p)})
(case-match term
(({"and x y)
. (let ((x (generalize-ineg x sln))
Generallzer (y (generalize-ineq y sln)))
{and-regions x y sln)))
({'or x y)
{let ((x (generalize-ineq x sln))
(y (generalize-ineq y sln)))
(not-region (and-regions (not-region x) (not-region y) sln))))
(("not x)
(let ((x (generalize-ineg x sln)))
{not-region x)))
(('= var poly)
(let ((x (bound-poly war)})
{y (poly-fix! poly)})
(normalize-equal-@ (sub x y) sln)))
(("!= var poly)
(let ((x (bound-poly wvar))
(y (poly-fix! poly)))
{not-region (normalize-equal-@ (sub x y) sln))))
(("= x y)
(let ((x (bound-poly x])
{y (poly-fix! y)))
(normalize-gt-8 :exclusive (sub y x) sln)))
(('== x y)
(let ((x (bound-poly x))
(y (poly-fix! y)))
{normalize-gt-8 :inclusive (sub y x) sln))})
(('= x y)
(let ((x (bound-poly x])
{y (poly-fix! y)))
(normalize-gt-8 :exclusive (sub x y) sln)))
(('== x y)
(let ((x (bound-poly x))
(y (poly-fix! y)))
{normalize-gt-® :inclusive (sub x y) sln))})
(& (negated-region nil))))

27 | © 2018 Rockwell Collins. All rights reserved. Rockwe "
Collins

Generalization Correctness

(defthm invl-generalize-ineq
(implies
(env-p sln)
(and (wf-region-p (generalize-ineq term sln) sln)
(iff (eval-region (generalize-ineq term sln)} sln)
{eval-ineg term sln))))
thints (("Goal" :induct (generalize-ineq term sln)
:do-not-induct t)
(and stable-under-simplificationp
"{:in-theory (enable eval-ineq)))))

(def::signature generalize-ineq (t env-p) (lambdz (x) (wf-region-p x x1))
thints (("Goal" :in-theory (disable wf-region-p})))

(in-theory (disable wf-region-p alt-eval-region))

(defthm inv2-generalize-ineq
(implies
(and
(env-p sln)
(iff (eval-ineg term sln)
(not (eval-ineqg term any))))
(iff (eval-region (generalize-ineq term sln) any)
{eval-ineqg term any)))
:hints (("Goal"” :induct (generalize-ineg term sln)
:do-not-induct t)
(and stable-under-simplificationp
*(:in-theory (enable eval-ineqg)))))

28 | © 2018 Rockwell Collins. All rights reserved. ROCkWE//
Collins

Proof Pearls (Weird Things Dave Does in ACL2)

= Non-Traditional Congruences (nary)

— Used to verify variable ordering invariants

= Delayed/Partial Termination (def::ung)

— Used to admit/reason about awkward functions

= Question about ACL2 Linear Capabilities

29 | © 2018 Rockwell Collins. All rights reserved. Rockwe,
Collins

Traditional backchaining (member/subset)

i3 Traditionally ..

(defund choose-one (list)
{car list))

(defthm choose-one-is-member
(implies
(consp list)
(list::memberp (choose-one list) list))
thints (("Goal" :in-theory (enable choose-one))))

(defthm memberp-from-memberp-subsetp-backchain
{implies

(and
(subset-p x y) <":|

(list::memberp a x))
(list::memberp a y)))

(defthm some-other-proof-subgoal
{implies
(and
(subset-p x y)
(consp x))
(list: :memberp (choose-one x} y)))

30 | © 2018 Rockwell Collins. All rights reserved.

(defthm =-all-is-greater-than-members
(implies
(and
(=-all v list)
(list::memberp x list))
(= (varid-fix x) (varid-fix v))))

Rockwell
Collins

Non-Traditional (one-way) “equivalences”

(include-book "coi/nary/nary" :dir :system)

(encapsulate

(defequiv+ (subset-p x y)
tequiv set-upper-bound-equiv
:context set-upper-bound-ctx
ipred set-upper-bound-pred
:congruences ((y set-equiv-quant))
tkeywords nil
:skip nil
)

(defequiv+ (list::memberp a x)
tpred memberp-upper-bound-pred
iequiv memberp-upper-bound-equiv
:context memberp-upper-bound-ctx
:congruences ((x set-equiv-quant))
:chaining-ctx set-upper-bound-ctx
tkeywords nil
:skip nil

31 | © 2018 Rockwell Collins. All rights reserved. Rockwe//,
Collins

Non-Traditional Congruences

(defcongp+ memberp-upper-bound-equiv-cons-1
(cons x y)
:rhs (append maxx y)
:cong ((x (equal maxx (memberp-upper-bound-ctx x))))
tequiv set-upper-bound-equiv
:skip nil
)

(defcongp+ memberp-upper-bound-equiv-cons-2
(cons x y)
:rhs (cons x maxy)
:cong ((y (equal maxy (set-upper-bound-ctx y))))
tequiv set-upper-bound-equiv
:skip nil
)

(defcongp+ set-upper-bound-append
(append x y)
:rhs (append a b)
tequiv set-upper-bound-equiv
:cong ((x (equal a (set-upper-bound-ctx x)))
(y (equal b (set-upper-bound-ctx y))]}]
:skip nil

32 | © 2018 Rockwell Collins. All rights reserved.

Goal"'"’

(IMPLIES (LIST::MEMBERP X MAXX)

(SUBSET-P

(CONS X ¥)

(APPEND MAXX Y))).

Rockwell
Collins

Non-Traditional “Driver” Rules

(defthm memberp-upper-bound-driver
(implies
(and
(bind-contextp (a (equal max (memberp-upper-bound-ctx all)) :asymmetric t)
(double-rewrite (subset-p max x)))
(list: :memberp a x)))

Goal' 4’
(defthm not-memberp-upper-bound-driver (IMPLIES (AND (LIST::MEMBERP A MAX)
(implies (SUBSET-P MAX X))
(and (LIST::MEMBERP A X)).

(bind-contextp (x (equal max (set-upper-bound-ctx x))])
(double-rewrite (not (list::memberp a max))))
(not (list::memberp a x1)))

(defthm subset-p-upper-bound-driver
(implies
(and
(bind-contextp (x (equal max (set-upper-bound-ctx x))])
(force (double-rewrite (subset-p max z))))
(subset-p x z)))

(defthm =-all-upper-bound-driver
(implies
(and
(bind-contextp (list (equal max (set-upper-bound-ctx list)))])
(force (double-rewrite (=-all wvarid max))))
[=-3ll wvarid list)))

(defthm ==all-upper-bound-driver
(implies
(and
(bind-contextp (list (equal max (set-upper-bound-ctx list)))])
(force (double-rewrite (==all wvarid max))))
[==all wvarid Llist)))

33 | © 2018 Rockwell Collins. All rights reserved. Rockwe "
Collins

Proof Using Non-Traditional Congruences

;; Non-Traditional Congruence

(defund choose-one (list)
{car list))

(defthm choose-one-to-list
(implies
(consp list)
(memberp-upper-bound-equiv (choose-one list) Llist))
hints (({and stable-under-simplificationp '(:in-theory (enable choose-one)))))

;ACLZ !=:transl (memberp-upper-bound-equiv (choose-one list) list)
;; (EQUAL (MEMBERP-UPPER-BOUND-CTX (CHOODSE-ONE LIST))
P (MEMEERP - UPPER-BOUND-PRED T (CHOOSE-ONE LIST) LIST))

;: Goal®'
;: (IMPLIES (CONSP LIST)
H- (LIST: :MEMBERP (CHOOSE-ONE LIST) LIST))

(defthm memberp-upper-bound-driver
(implies
(and
(bind-contextp (a (equal max (memberp-upper-bound-ctx a))) :tasymmetric t)
(double-rewrite (subset-p max x)))
(list::memberp a x)))

(defthm some-other-proof-subgoal
(implies
(and
(consp x)
(subset-p x yl)
(list::memberp (choose-one x) y))
thints (("Goal" :in-theory '(memberp-upper-bound-driver
choose-one-to-list
MEMEERP-UPPER-BOUND-CTX_ UNFIX CHECK REDUCTION 2
IBDD

34 | © 2018 Rockwell Collins. All rights reserved.

Rockwre,

Collins

Admitting Awkward Functions (def::ung)

(def::ung intersect (key arg res cex)
(declare (xargs :default-value nil
:signature ((t (lambda (x) (if (equal key :wvar) (variableBound-p x) (variableBound-listp x)))
variableBound-listp
env-p)
variableBound-listp)))
(if (equal key :var)
{if (not (consp res)) (list war)
(if (< (bound-varid (car res)) (bound-varid var)) (cons var res)

(if (= (bound-varid wvar) (bound-varid (car res))) leper Merge
(cons (car res) (intersect :var var (cdr res) cex))
imetlist ((z zres) (andTrue-variableBound-variableBound var (car res) cex)) [)C"1151"1
{let ((res (intersect :list zres (cdr res) cex))) . .
(cons z res)))))) ReSt“Ctlon

(if (not (consp list]}) res
{let {((res {(intersect :var (car list) res cex)))
(intersect :list Ncdr list) res cex)))))

Reflexive Recursion

35 | © 2018 Rockwell Collins. All rights reserved. Rockwe "
Collins

Intersect type theorems

(defthm trapezoid-p-intersect
(implies
{and
(if (equal key :var) (normalized-variableBound-p arg) (normalized-variableBound-listp arg))
(trapezoid-p res)
(env-p cex))
(and
(trapezoid-p (inmtersect key arg res cex))
(subset-p (all-bound-list-variables (intersect key arg res cex))
(append
(if (equal key :var) (all-bound-variables arg) (all-bound-list-wvariables arg))
(all-bound-list-variables res)))))
:hints (("Goal" :do-not-induct t
:induct (intersect key arg res cex))))
(defthm set-upper-bound-equiv-all-bound-list-variables-intersect
(implies
{and
(if (equal key :var) (normalized-variableBound-p arg) (normalized-variableBound-listp arg))
(trapezoid-p res)

(env-p cex)) &
(set-upper-bound-equiv (all-bound-list-variables (intersect key arg res cex))
(append

(if (equal key :var) (all-bound-variables arg) (all-bound-list-wariables arg))
(all-bound-list-variables res))))
thints (("Goal" :in-theory (disable trapezoid-p-intersect)
:use trapezoid-p-intersect)))

36 | © 2018 Rockwell Collins. All rights reserved. Rockwe,

Collins

Intersect measure and (conditional) termination

(defun intersection-measure (key arg res cex)
(declare (ignore cex))
(llist (if (equal key :var) (bound-varid arg) (if (consp arg) (largest-varid (bound-varid-list arg)) 8))
(if (equal key :wvar) @ (len arg))
(len res)))

(def::total intersect (key arg res cex)
(declare (xargs :measure (intersection-measure key arg res cex)
thints (("Goal" :do-not-induct t))
:well-founded-relation 1<))
(and
(if (egual key :var) (normalized-variableBound-p arg) (normalized-variableBound-listp arg))
(trapezoid-p res)
(env-p cex)]))

37 | © 2018 Rockwell Collins. All rights reserved. Rockwe "
Collins

What are ACL2’s Linear Reasoning Capabilities?

= Doublecheck
— Framework can emit ACL2 theorems during generalization
— Instances of invariants 1 & 2

* Trapezoids : Conjunctions of linear constraints

= Original Theorems Failed/Took Forever

— Function Applications rather than Variables

= Generalized Theorems Don’t Prove Consistently

38 | © 2018 Rockwell Collins. All rights reserved. Rockwe "
Collins

What are ACL2’s Linear Reasoning Capabilities?

|{include—bcuc|k "arithmetic-5/top" :dir :system)
(defthm hmm
(IMPLIES (RND (RATIONALP GETVAL)
(RATICNALF GETVALYE)
(RATIONALF GETVAL131)
(RATIONALF GETVAL132)
(€= 128 GETVAL)
(€= -128 GETVALYE)
(< GETVALSE 113)
(€= GETVALSE GETVALYE)
(< GETVALSE 128)
(€= GETVALYSE GETVAL1OL)
(< (+ GETVAL1OL (* 2/3 GETVALS98))
(+ 5 (* 5/3 GETVALYE)))
(€= (+ 15 (* 5 GETVALSE))
(+ GETVAL1O1l (* 2 GETVAL1OT)
(* 2 GETVALSH)))
(<= (+ GETVAL1O0l GETVALIOT (* 2 GETVALSH))
(+ 15 (* 4 GETVALSE)))
(€<= GETVALYSE GETVAL114)
(< GETVAL114 GETVALSS)
(< GETVAL9S8 GETVAL)
(€< (+ GETVAL10l GETVALLODT
GETVAL114 GETVALSE (* 2 GETVAL))
{(+ 15 (* & GETVALSE))))
(NOT (EQUAL (+ GETVAL GETVALI1O1
GETVAL1O7 GETVAL114 GETVALIZT7 GETVALSE)
{(+ 15 (* & GETVALSE)})))

39 | © 2018 Rockwell Collins. All rights reserved.

Rockwell
Collins

What are ACL2’s Linear Reasoning Capabilities?

(include-book "arithmetic-5/top" :dir :system)
{(include-book "projects/smtlink/top" :dir :system)
{add-default-hints ' ({smt::smt-computed-hint clause)))

(defthm hmm

{(IMPLIES (AND (RATIONALE GETVAL)
(RATICONALE GETVALSE)

(RATIONALEP GETVAL1Z1)

(RATICNALE GETVAL1ZZ)

(<= 128 GETVAL)

(€= -128 GETVALSE)

(< GETVRALSE 113)

(<= GETVALYSE GETVALSH)

(< GETVRLSE8 128)

(<= GETVALYE GETVALIOL)

(< (+ GETVALIOL (* 2/3 GETVALSH))
(+ 5 (* 5/3 GETVALYE)))

(<= (+
(+

(== (+
(+

15 (* 5 GETVALYE))
GETVAL101l (* 2 GETVAL107)

(* 2 GETVALY9S)))

GETVAL101l GETVAL107 (* 2 GETVALSS))
15 (* 4 GETVALYE)))

(<= GETVALSE GETVAL114)
(< GETVAL114 GETVALSH)

(< GETVALSE GETVAL)

(< (+ GETVAL1O01l GETVAL1OT

GETVAL114 GETVALSE (* 2 GETVAL))

(+ 15 (* & GETVALSE))))

(NOT (EQUATL

(+ GETVAL GETVALIO1
GETVAL107 GETVAL1l4 GETVAL127 GETVALYS)
(+ 15 (* € GETVALYE)))))

:hints (("Goal™ :smtlink nil)))

40 | © 2018 Rockwell Collins. All rights reserved.

Rockwell
Collins

What are ACL2’s Linear Reasoning Capabilities?

= Doublecheck
— Framework can emit ACL2 theorems during generalization
— Instances of invariants 1 & 2

* Trapezoids : Conjunctions of linear constraints

= Original Theorems Failed/Took Forever

— Function Applications rather than Variables

= Generalized Theorems Don’t Prove Consistently

How does Linear Reasoning differ from LP?

41 | © 2018 Rockwell Collins. All rights reserved.

Rockwell
Collins

Sampling (Oops ..)

Upper Bound

y + x—250 5 490 < Z < -623|= -y + 7

Test Values

x =110
y = 630
z =77
42 | © 2018 Rockwell Collins. All rights reserved. Rockwe, "

42’0 1ns

|. o ® ©

< o™ o i

Rockeoilins

Integer Intervals

re e

30 [

If we choose a
value of x in this
region, there is
no integer value
2 0 o for y satisfying
our constraints

10

~
rd

&
<

1 2 3 4 5
We)V,V/1g Variable Upper
0 <= X <=5
OX — 4 <= y <= 74X + 4
44 | © 2018 Rockwell Collins. All rights reserved. Rockwre,

Collins

Future Work

= We have defined a technique for restricting trapezoids
— Restricted Trapezoids can be sampled
* Without Inconsistencies
« Without Backtracking

— Even for Integer Valued Variables

= Remaining Challenge:

— Prove that Restriction Works

45 | © 2018 Rockwell Collins. All rights reserved. Rockwe "
Collins

	Trapezoidal Generalization Over Linear Constraints
	Trapezoidal Generalization Talk Overview
	Model-Based Fuzzing
	Model-Based Fuzzing Pipeline
	Generalization in Model-Based Fuzzing
	Rectilinear Generalization
	Trapezoidal Generalization
	Trapezoidal Generalization
	Trapezoidal Generalization (vs. Intervals)
	Sampling
	Sampling
	Sampling
	Trapezoidal Intersection Example 1
	Trapezoidal Intersection Example 2
	Domain Restriction
	Domain Restriction
	Domain Restriction
	Trapezoidal Intersection Example 2
	Trapezoid Intersection
	Generalization Problem Statement
	Possible Generalizations
	Previous Work (2017 Rump Session)
	Generalization Correctness Statements
	Trapezoidal Generalization: ACL2 Formalism
	Trapezoidal Data Types
	Evaluator
	Generalizer
	Generalization Correctness
	Proof Pearls (Weird Things Dave Does in ACL2)
	Traditional backchaining (member/subset)
	Non-Traditional (one-way) “equivalences”
	Non-Traditional Congruences
	Non-Traditional “Driver” Rules
	Proof Using Non-Traditional Congruences
	Admitting Awkward Functions (def::ung)
	intersect type theorems
	intersect measure and (conditional) termination
	What are ACL2’s Linear Reasoning Capabilities?
	What are ACL2’s Linear Reasoning Capabilities?
	What are ACL2’s Linear Reasoning Capabilities?
	What are ACL2’s Linear Reasoning Capabilities?
	Sampling (Oops ..)
	Integer Equality
	Integer Intervals
	Future Work

