DefunT:
A Tool for Automating Termination Proofs
by Using the Community Books
(Extended Abstract)

Matt Kaufmann

UT Austin

November 6, 2018

1/14

SUMMARY

defunT:

» (defun with auto-Termination)
» A tool that can automate ACL2 proofs of measure
(termination) conjectures

GOALS for this talk:

» introduce this tool to potential users,
» explain some of its implementation, and

» advertise for research collaborators to improve the tool.
(Well, that’s what it says in the paper; actually I'd like
someone to take over the tool.)

Relevant files are in books/kestrel/auto-termination/
(archival version in books/workshops/2018/kaufmann/).

2/14

RUNNING EXAMPLE

I'll use a running example:

» Start with an edited log.

» Drill down to get a high-level sense of the implementation.

3/14

ACL2 !>(include-book "kestrel/auto-termination/defunt-top"
:dir :system)
[[.. output elided ..]]
ACL2 !> (defunt £3 (x vy)
(if (consp x)
(if (atom y)
(list (f3 (cddr x) y) (£3 (cadr x) vy))
(£3 (cdr x) vy))

(list x y)))

«Defunt notex: Using termination theorems for
SYMBOL-BTREE-TO-ALIST-AUX, EVENS and TRUE-LISTP.

*Defunt notex: Evaluating
(LOCAL (INCLUDE-BOOK "misc/symbol-btree" :DIR :SYSTEM))
to define function SYMBOL-BTREE-TO-ALIST-AUX.

*Defunt notex: Concluded local include-books.

F3
ACL2 !>

4/14

ACL2 !>:transl (defunt £3 (x vy)
(if (consp x)
(if (atom vy)
(list (£3 (cddr x) vy)
(f3 (cadr x) vy))
(£3 (cdr x) y))
(list x y)))
(WITH-OUTPUT :OFF :ALL :0N ERROR :GAG-MODE NIL :STACK :PUSH
(MAKE-EVENT
(CREATE-DEFUNT
"(F3 (X Y)
(IF (CONSP X)
(IF (ATOM Y)
(LIST (F3 (CDDR X) Y) (F3 (CADR X) Y))
(F3 (CDR X) Y))
(LIST X Y)))
T ’ (DEFUNT . F3) STATE)
:ON-BEHALF-OF :QUIET!))
ACL2 !>

5/14

ACL2 !> (CREATE-DEFUNT

"(F3 (X Y)
(IF (CONSP X)
(IF (ATOM Y)
(LIST (F3 (CDDR X) Y) (F3 (CADR X) Y))
(F3 (CDR X) Y))
(LIST X Y)))
T ’ (DEFUNT . F3) STATE)
(PROGN
(ENCAPSULATE
NIL

[[.. Events for printing and locally including a book ..]]
[[.. Local defthm events ..]]
(DEFUN F3 (X Y)
(DECLARE (XARGS :MEASURE (ACL2-COUNT X)
:HINTS (("Goal"
:BY (:FUNCTIONAL-INSTANCE
F3-TERMINATION-LEMMA-3
(TD-STUB-2 F3))))))
(IF (CONSP X) ...)))
(DEFUNT-NOTE "" T)
(VALUE-TRIPLE 'F3))
ACL2 !> 4

Events for printing and locally including a book

(DEFUNT-NOTE
(MSG
"Using termination theorem~#0~[~/s~] for ~&0."
" (SYMBOL-BTREE-TO-ALIST-AUX EVENS TRUE-LISTP)))
(DEFUNT-NOTE
(MSG "Evaluating ~x0~|to define function ~x1."
’ (LOCAL (INCLUDE-BOOK "misc/symbol-btree"
:DIR :SYSTEM))
" SYMBOL-BTREE-TO-ALIST-AUX))
(LOCAL (INCLUDE-BOOK "misc/symbol-btree"
:DIR :SYSTEM))
(DEFUNT-NOTE (MSG "Concluded local include-books."))

7/14

Local defthm events

(LOCAL

(DEFTHM F3-TERMINATION-LEMMA-1-SYMBOL-BTREE-TO-ALIST-AUX ...)
(LOCAL

(DEFTHM F3-TERMINATION-LEMMA-2-SYMBOL-BTREE-TO-ALIST-AUX ...)
(LOCAL (DEFTHM F3-TERMINATION-LEMMA-1-EVENS ...))
(LOCAL (DEFTHM F3-TERMINATION-LEMMA-2-EVENS ...))

(LOCAL (DEFTHM F3-TERMINATION-LEMMA-1-TRUE-LISTP ...))
(LOCAL (DEFTHM F3-TERMINATION-LEMMA-2-TRUE-LISTP ...))
(LOCAL
(DEFTHM F3-TERMINATION-LEMMA-3

[[.. termination theorem for F3 ..]]

:HINTS

(("Goal"

:USE (F3-TERMINATION-LEMMA-2-SYMBOL-BTREE-TO-ALIST-AUX
F3-TERMINATION-LEMMA-2-EVENS
F3-TERMINATION-LEMMA-2-TRUE-LISTP)

:IN-THEORY (THEORY ’AUTO-TERMINATION-FNS)))))

8/14

(LOCAL
(DEFTHM F3-TERMINATION-LEMMA-1-EVENS
(IF (0O-P (ACL2-COUNT L))
(IF (NOT (CONSP L))
rT
(0O< (ACL2-COUNT (CDR (CDR L)))
(ACL2-COUNT 1)))
"NIL)
:HINTS (("Goal"
:USE ((:TERMINATION-THEOREM EVENS
((EVENS TD-STUB-1))))
: IN-THEORY (THEORY ’AUTO-TERMINATION-FNS)))))

(LOCAL
(DEFTHM F3-TERMINATION-LEMMA-2-EVENS
(IF (NOT (CONSP X))
'T
(IF (CONSP Y)
"'T
(O< (ACL2-COUNT (CDR (CDR X)))
(ACL2-COUNT X))))
:HINTS (("Goal" :BY F3-TERMINATION-LEMMA-1-EVENS))))

9/14

Putting it all together:

(LOCAL
(DEFTHM F3-TERMINATION-LEMMA-3
[[.. termination theorem for F3 ..]]
:HINTS
(("Goal"

:USE (F3-TERMINATION-LEMMA-2-SYMBOL-BTREE-TO-ALIST-AUX
F3-TERMINATION-LEMMA-2-EVENS
F3-TERMINATION-LEMMA-2-TRUE-LISTP)

: IN-THEORY (THEORY ’AUTO-TERMINATION-FNS)))))

10/14

(LOCAL
(DEFTHM F3-TERMINATION-LEMMA-3

(IF (O-P (ACL2-COUNT X))
(IF (IF (NOT (CONSP X))
'T
(IF (NOT (ATOM Y))
T
(0O< (ACL2-COUNT (CDR (CDR X)))
(ACL2-COUNT X))))
(IF (IF (NOT (CONSP X))
T
(IF (NOT (ATOM Y))
T
(0O< (ACL2-COUNT (CAR (CDR X)))
(ACL2-COUNT X))))
(IF (NOT (CONSP X))
'T
(IF (ATOM Y)
'T
(O< (ACL2-COUNT (CDR X))
(ACL2-COUNT X))))
"NIL)
"NIL)
'NIL)

:HINTS
(("Goal™"

:USE (F3-TERMINATION-LEMMA-2-SYMBOL-BTREE-TO-ALIST-AUX

F3-TERMINATION-LEMMA-2-EVENS
F3-TERMINATION-LEMMA-2-TRUE-LISTP)

:IN-THEORY (THEORY ’AUTO-TERMINATION-EFNS)))))

11/14

THE DATABASE

QUESTION
But where did the tool find the termination theorems to use?

ANSWER:
The termination database candidates file,
td-cands.lisp, which come from defun forms.

» Itis generated by invoking the script
write-td-cands.sh, which:

» includes the book books/doc/top.1lisp (to include
defun forms from all books that support bulding the
manual);

» includes the database-building book,
termination-database.lisp;then

» writes out td-cands. lisp and (for necessary packages)
td-cands.acl2.

12/14

SOME ENGINEERING CONSIDERATIONS

» Generated lemmas are carefully orchestrated.

» Store each termination scheme as a set of clauses
(disjunctions)

» in simplified form, e.g., replacing (endp x) by (not
(consp x)) and expanding lambda applications (beta
reduction);

» using subsumption to minimize database size;

» during the search, using subsumption tailored to
termination theorem clause sets; and

» filtering clauses with limits on both the number of function
symbols and the size.

» Make (up to) two passes, first restricting to functions
defined in the current world.

» Limit the number of injections allowed from a candidate’s
measured subset to the new formals.

13/14

CONCLUDING REMARKS AND FUTURE WORK

Much more about the algorithms is discussed in the README
file in the directory, books/kestrel/auto-termination/.

In spite of making two passes, ACL2 reports only 0.04 seconds
taken altogether for the example in this talk (and paper), using
a 2014 MacBook Pro.

But there is probably a lot more to do to make de funt widely
useful. The file to—do. txt in the directory above has 26 tasks
to consider.

I'd be thrilled for someone to take ownership of this tool!

14/14

