
Formalising Filesystems in the ACL2 Theorem
Prover

An Application To FAT32

Mihir Mehta

Department of Computer Science
University of Texas at Austin

mihir@cs.utexas.edu

05 November, 2018

1/25



2/25

Why filesystem verification matters

I Basis of current computing paradigm.

I Provide a means to address data by names, not numbers.

I Provide efficiency and redundancy.
I Thus, critically important to verify the properties of

filesystems in common use, making them more reliable.
I FAT32 - once widely used on Windows, and still used by a

large number of embedded systems - qualifies.



3/25

The plan

I Modelling FAT32 in ACL2

I Verification through refinement

I Binary compatibility and execution efficiency

I Co-simulation testing for accuracy



4/25

Outline

FAT32

The models

Proofs and co-simulation

Related and future work



5/25

Outline

FAT32

The models

Proofs and co-simulation

Related and future work



6/25

Our FAT32 model aims to have . . .

I . . . the same space constraints as a FAT32 volume of the same
size.

I . . . the same success and failure conditions for file operations,
and the same error codes for the latter.

I . . . a way to read a FAT32 disk image from a block device,
and a way to write it back.

I This is made easier by choosing to replicate the on-disk data
structures of FAT32 in the model.



7/25

File operations in our model

I File operations categorised into read operations, which do not
change the state of the filesystem, and write operations which
do.

I Generic signature for read operations:
(read fs-inst args) 7→ (mv ret-val status errno)

I Generic signature for write operations:
(write fs-inst args) 7→ (mv fs-inst ret-val status errno)

I Ret-val, status and errno derived from Linux syscall
conventions - in the absence of pointers and global variables,
they must all be returned



8/25

The FAT32 specification

In a FAT32 volume, the unit of data storage is a cluster (also
known as an extent). There are three on-disk data structures.

I reserved area, volume-level metadata such as the size of a
cluster and the number of clusters.

I file allocation table, collection of clusterchains (linked lists of
clusters), one for each regular file/directory file.

I data region, collection of clusters.



9/25

A FAT32 Directory Tree
/

vmlinuz initrd.img tmp/

ticket1.txt ticket2.txt

Directory entry in /

0 “vmlinuz”, 3

32 “initrd.img”, 5

64 “tmp”, 6
...

...

Directory entry in /tmp/

0 “ticket1.txt”, 7

32 “ticket2.txt”, 8
...

...

eoc: end of clusterchain
FAT index FAT entry

0 (reserved)

1 (reserved)

2 eoc

3 4

4 eoc

5 eoc

6 eoc

7 eoc

8 eoc

9 0
...

...



10/25

Outline

FAT32

The models

Proofs and co-simulation

Related and future work



11/25

Abstract models

I Bootstrap - begin with abstract filesystem models, in order to
explore the properties we require in a FAT32 model.

I Incrementally add the desired properties in a series of models

I Wherever possible, capture common features expected in
different filesystems.



12/25

Relationships between abstract models

L1 - tree

L2 - length

L3 - unbounded disk L4 - bounded disk with garbage collection

L6 - file allocation table L5 - permissions



13/25

Beginning to model FAT32

Next, in models M1 and M2, we model FAT32 more concretely,
providing the standard POSIX system calls in accordance with
Microsoft’s official specification.

I M1 - another tree model, with nodes storing FAT32’s file-level
metadata.

I M2 - a stobj model, with fields for all the metadata in the
reserved area and arrays for the file allocation table and data
region.

This way, we benefit from efficient stobj array operations in M2,
and we can simplify our reasoning in M1 by continuing to work with
directory trees.



14/25

Outline

FAT32

The models

Proofs and co-simulation

Related and future work



15/25

Properties proved

I Read-over-write properties show that write operations have
their effects made available immediately for reads at the same
location, and also that they do not affect reads at other
locations.

I We’ve proved these properties for the abstract models L1-L6,
and we’ve also proved them for our concrete models M1 and
M2, with the caveat that the transformations between M1 and
M2 are not yet verified.

I Also, for models L4-L6 it is proved that write operations
succeed if and only if there are sufficient free blocks to satisfy
the request - although this exact result does not carry over to
FAT32 (deleted file directory entries can take up space).



16/25

Refinement proofs

I For the abstract models, we started by proving the
read-over-write properties ab initio for L1.

I For each subsequent model in L2-L6, we have proved a
refinement relationship where possible, or an equivalence
where a strict refinement does not hold, with a previous model
and used it to prove read-over-write properties as a corollary.

I An illustration of such a proof follows.



17/25

Proof example: first read-over-write in L2

l1 l1

l2 l2

l2-to-l1-fs

write(text)

write(text)

l2-to-l1-fs

Figure: l2-wrchs-correctness-1 (write is overloaded for L2 and L1)

l1

l2 text

l2-to-l1-fs

read

read

Figure: l2-rdchs-correctness-1 (read is overloaded for L2 and L1)



18/25

Proof example: first read-over-write in L2

l1 l1

l2 l2 text

l2-to-l1-fs

write(text)

write(text)

l2-to-l1-fs

read

read

Figure: l2-read-over-write-1



19/25

Co-simulation

I Ensure that our implementation lines up with FAT32, the
target filesystem.

I Support POSIX system calls - lstat, open, pread, pwrite,
close, mkdir and mknod.

I Wherever errno is to be set, do what Linux does.

I Check that the output of our ACL2 programs (based on the
FAT32 model) matches the utilities (including cp and mkfs)
which they replicate.



20/25

Outline

FAT32

The models

Proofs and co-simulation

Related and future work



21/25

Related work - interactive theorem provers

I Synergy FS (1996) - executable model with processes and file
descriptors, but no read-over-write theorems (ACL2).

I COGENT (2016) - verifying compiler from a DSL to C code
for a filesystem (Isabelle/HOL).

I FSCQ (2016) - high-performance filesystem with verified crash
consistency properties (Coq).

Note: Our work, in contrast to the above, models an actual
filesystem.



22/25

Related work - non-interactive theorem provers

I Hyperkernel (2017) - microkernel with system calls simplified
until the point where useful properties can be proved through
SMT solving (Z3).

I Yggdrasil (2016) - filesystem verification through SMT solving
(Z3).



23/25

Future work

I Model the remaining POSIX system calls for FAT32 and use
them to reason about sequences of file operations (i.e. do
code proofs).

I Reuse FAT32 verification artifacts for a filesystem with crash
consistency, for instance, ext4.

I Model concurrent file operations in a multiprogramming
environment.



24/25

Recent progress

I Set of supported POSIX system calls expanded.

I Set of co-simulation tests, mostly based on coreutils and
mtools programs, expanded based on these.

I Functions for converting M2 instances to FAT32 disk images
and back proved to be inverses of each other.

I Equivalence relation developed to allow two FAT32 disk
images to be compared modulo rearrangement of data and
reordering of files within directories.

I This gives us a means to co-simulate programs which modify
filesystem state, such as rm.



25/25

Conclusion

I FAT32 formalised, demonstrating the applicability of the
refinement style to filesystem verification.

I Co-simulation infrastructure developed to validate filesystem
models against a canonical implementation, such as that of
Linux.

I Allocation and garbage collection algorithms certified.


	FAT32
	The models
	Proofs and co-simulation
	Related and future work

