
VWSIM: A Circuit
Simulator

Warren A. Hunt, Jr., Vivek Ramanathan, and
J Strother Moore

May 26, 2022

The University of Texas at Austin and ForrestHunt, Inc.
{hunt,vivek,moore}@forresthunt.com

ACL2 Workshop 2022

Faster, energy-efficient computing

● Can we build faster, more energy-efficient computers?

● Approach: Rapid Single Flux Quantum (RSFQ) circuits

D

Out

C

RSFQ properties

Low-energy

Reduces energy
consumption by

~10-20x

High-speed

Increases speed
by ~100x

Very Cold

Operates at
~4 Kelvin

Circuit development workflow

Simulation

Design
Layout & Fabrication

Why build a simulator in ACL2?

1. Understand the mathematics of RSFQ circuits (JJs)
2. Understand how existing circuit simulators work
3. Program simulator to perform collections of simulations
4. Pause, save, and restart simulations
5. Develop a formal semantics for RSFQ circuits
6. Develop an adequate model for the behavior of RSFQ circuits
7. Prove termination and guards to ensure absence of

memory-reference errors

What VWSIM produces

● VWSIM simulates a circuit over a time interval given a start
time, time-step size, and stop time

● The values that can be produced for each time step are:
1. Voltages of wires (with respect to a reference node)
2. Currents through devices
3. Phases of wires (with respect to a reference node)

(($TIME$ 0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80)
 (I-C1 0.00 0.91 0.74 0.61 0.50 0.41 0.33 0.27 0.22 0.18)
 (VC1 0.00 0.09 0.26 0.39 0.50 0.59 0.67 0.73 0.78 0.82))

How VWSIM works

How VWSIM works

’((rc-module
 nil
 ; Name type wires branch value
 ((v1 v (vs1 gnd) (i-v1) ((if
 ($time$< ’1/5) ’0 ’1)))
 (r1 r (vs1 vc1) (i-r1) (’1))
 (c1 c (vc1 gnd) (i-c1) (’1))))))

How VWSIM works

‘((V1 V (VS1 GND)
 (I-V1)
 ((IF ($TIME$< ‘1/5) ‘0 ‘1)))
 (R1 R (VS1 VC1) (I-R1) (‘1))
 (C1 C (VC1 GND) (I-C1) (‘1)))

How VWSIM works

‘(:A ((2 . ‘1))
 ((1 . (F0- (F/ HN (F* ‘2 ‘1))))
 (3 . ‘1))
 ((0 . ‘1) (2 . F-1/X ‘1)
 (3 . (F0- (F-1/X ‘1))))
 ((1 . ‘1) (2 . (F0- (F-1/X ‘1)))
 (3 . (F-1/X ‘1))))

‘(:B (IF ($TIME$< ‘1/5) ‘0 ‘1)
 (F+ (F- VC1 GND)
 (F* (F/ HN (F* ‘2 ‘1)) I-C1))
 ‘0
 ‘0)

How VWSIM works

‘(:A ((2 . ‘1))
 ((1 . (F0- (F/ HN (F* ‘2 ‘1))))
 (3 . ‘1))
 ((0 . ‘1) (2 . F-1/X ‘1)
 (3 . (F0- (F-1/X ‘1))))
 ((1 . ‘1) (2 . (F0- (F-1/X ‘1)))
 (3 . (F-1/X ‘1))))

‘(:B (IF ($TIME$< ‘1/5) ‘0 ‘1)
 (F+ (F- VC1 GND)
 (F* (F/ HN (F* ‘2 ‘1)) I-C1))
 ‘0
 ‘0)

Running VWSIM
(vwsim <input>

 :sim-type <sim-type>
 :equations <equations>
 :spice-print <spice-print>

 :global-nodes <global-nodes>
 :time-step <time-step>
 :time-stop <time-stop>
 :time-start <time-start>
 :output-file <output-file>
 :concat-char <concat-char>
 :save-sim <save-sim>
 :save-sim-shortp <save-sim-shortp>
 :load-sim <load-sim>
 :save-var <save-var>
 :return-records <return-records>

)

See the paper and README for more
details about each of these options

What have we proved?

(defthm vw-eval-same-for-vw-eval-fold
 (implies (and (vw-eval-termp term)
 (symbol-rational-list-alistp r)
 (symbol-rational-list-alistp r-subset)
 (record-subsetp r-subset r))
 (equal (vw-eval (vw-eval-fold term r-subset) r)
 (vw-eval term r))))

1. Termination
2. Hundreds of guard proofs

a. We are currently working on guard verification of the
Ax=b solver

3. Some correctness properties

VWSIM optimizations

● Our first simulator was very slow (barely able to simulate a
circuit with more than 10 circuit devices).
○ List-of-lists matrix representation and operations
○ Simulation results stored in list-of-lists format

● We have implemented the following optimizations:
○ Floating-point simulation
○ Sparse matrix representation
○ Array-based, sparse matrix solver
○ STOBJs for fast lookup and storage
○ Fast symbolic term evaluator

Floating-point
simulation

● ACL2 does not currently support floating-point arithmetic
● We employ a trick to ensure the simulator can be defined in

ACL2: (defun nump (x)
 (declare (xargs :guard t))
 (and (acl2-numberp x)
 (zerop (imagpart x))))

● nump is equivalent to rationalp in the logic, but
recognizes floating-point numbers in raw Lisp

● VWSIM exploits Common Lisp support for fast floating-point
operations.

Example circuit and
netlist

“D” latch circuit

(D_LATCH (D C OUT GND)
 ((LY L (NET@2 OUT)
 (LY)
 ('1/500000000000))
 (XJ2 DAMP_JJ (NET@2 GND))
 (XJ4 DAMP_JJ (C NET@2))
 (LL L (NET@1 NET@2)
 (LL)
 ('3/250000000000))
 (XBIAS1 BIAS (NET@1 GND))
 (XJ1 DAMP_JJ (NET@1 GND))
 (XJ3 DAMP_JJ (D NET@1))))

“D” latch VWSIM Netlist

Example circuit
simulation

“D” latch circuit

What next?

● Development has taken about 1½ person-years
○ Initial definition, proofs, optimizations

● Run and test the simulator on many, many more circuits
○ Perform analysis on these circuits

● Guard verify the Ax=b solver
● Improve VWSIM execution speed (currently 20% of

state-of-the-art)
● Produce proofs of correctness for our RSFQ circuit designs

Conclusion

The development of the VWSIM simulator
● improved our understanding of RSFQ circuits
● enabled us to programmably test and validate circuit designs
● invigorated work on floating-point use and reasoning in ACL2
● is free-to-use and will be made available

CREDITS: This presentation template was created by
Slidesgo, including icons by Flaticon, infographics &

images by Freepik and illustrations by Stories

Thanks!

http://bit.ly/2Tynxth
http://bit.ly/2TyoMsr
http://bit.ly/2TtBDfr
https://stories.freepik.com/?utm_source=slidesgo_template&utm_medium=referral-link&utm_campaign=slidesgo_contents_of_this_template&utm_term=stories_by_freepik&utm_content=stories

