
Syntheto:
A Surface Language
for APT and ACL2

Alessandro Coglio
Eric McCarthy

Stephen Westfold

Kestrel
Institute

WORKSHOP 2022

Daniel Balasubramanian
Abhishek Dubey

Gabor Karsai

!

"#

"$

. . . intermediate specifications
stepwise refinements

"% requirements specification

implementation
code generation

(optional in ACL2)

APT (Automated Program Transformations) is a toolkit, built on ACL2,
for formally verified program synthesis via transformational refinement.

APT transformations may be
used to generate "& from "&'#,
along with proofs of refinement.
APT transformation may require
proving applicability conditions.
APT transformations include:
• Refine types isomorphically.
• Make functions tail-recursive.
• Simplify via rewrite rules.
• Incrementalize computations.
• And many others.

program synthesis by refinement

Background

Users must have expertise in APT and ACL2.

Syntheto language & IDE

Bridge

ACL2Syntheto front end

VS Code

Xtext

Syntheto back end

APT

ACL2

Syntheto uses ACL2 and APT, “hiding” them behind
(1) a strongly statically typed functional language and
(2) a notebook-style IDE based on VS Code.

Architecture

The purpose is to provide more familiarity and automation,
making formal program synthesis more widely accessible.

Syntheto Usage

!

"#

"$

. . .

"%

!

"#

"$

. . .

"%

Syntheto
derivation

APT
derivation

APT & ACL2
back end

Syntheto
front end

The user carries out
derivations in Syntheto,
in the notebook IDE.

The derivations are
realized in APT/ACL2
behind the scenes.

There is a bidirectional
translation between
APT/ACL2 and Syntheto.

Syntheto Language Features
• Strongly Statically Typed
• Parameterized sequence, set, map and option types
• Product and Sum types
• Predicate Subtypes
• Mutual Recursion
• Primitive Types: integer, bool, char, string

• Functional but imperative-looking
• Functions: Executable and Non-executable (specifications)
• Theorems
• Transformations

Current Transformations
• simplify: Simplifies a function definition using enabled rewrite rules
• finite_difference: Adds a parameter to a function along with an

invariant that the parameter is equal to a function of the existing
parameters
• tail_recursion: Puts a function into tail-recursive form
• isomorphism: Replaces a parameter of one type by a parameter of

an isomorphic type
• rename_param: Renames a parameter
• drop_irrelevant_parameter: Removes a parameter that is not

needed
• wrap_output: Wraps a function call around the body of a function
• restrict: Adds a precondition on a function

We want to send definitions and commands to ACL2 and to receive responses. How
should we serialize the definitions?

Transfer Language

On the ACL2 side, the Syntheto abstract syntax is defined primarily with FTY
product types, sum types, list types, and some primitive types. The product types
and sum types have handy “make-” macros that make values. We use these S-
expressions as the transfer language to transfer definitions in both directions.

Syntheto AST in Java

Serialize
methods

on AST classes

(read ..)
and

(make-event ..)

Syntheto AST in ACL2

Results of APT transformations are sent back to the front end.

Transfer Language, return direction

To facilitate generating the transfer language from ACL2, for each AST node type
we set up a make-myself macro such that (make-myself x) returns an S-expression
that, when evaluated, makes x.

Syntheto AST in Java
Parse S-expression
and use reflection
to let each class
build its instance

(make-myself ..)
and

(fmt ..)

Syntheto AST in ACL2

We want to send definitions and commands to ACL2 over a network connection, and
to receive responses.

ACL2 Server

Bridge

ACL2

The ACL2 Bridge did a lot of the work for us.

Some lessons:
* The ACL2 Bridge only works on Clozure Common Lisp (CCL).
* Protocol is simple and easy.
* JSON interface for returned S-expressions loses information, so we
found it better to use S-expressions directly.
* When you send an S-expression, the ACL2 Bridge will read it in the
listener thread in the ACL2 package, not in the package your main
listener is in.

We found the ACL2 Bridge to be super-reliable code!

Once the definitions get across the bridge, what happens to them? There’s no human
looking at an ACL2 prompt.

Some of the issues:

Events must be serialized to the main thread, because memoization is not thread-safe.
Solution: The ACL Bridge has TRY-IN-MAIN-THREAD that shuttles forms from socket
listeners to the main listener.

No defined API for submitting events and receiving machine-readable responses.
Solution: Matt Kaufmann came up with NLD, ”Noninteractive LD”, which doesn’t expect
to be executing in a REPL and which returns certain output messages as structured
data rather than sending them to stdout.

ACL2 Server

Bridge

ACL2

Translation of Syntheto to ACL2

• Types → primitive and fty types
• Expressions → s-expressions
• Use functions created by fty macros
• Add typing and guard predicates

• Function definitions
• Regular → defun and typing defthms
• Quantified → defun-sk

• Specifications → defstub and defun-sk
• Theorems → defthm
• Transformations → one or more APT transformations

Example Translations
struct point
{ x: int,
y: int }

(fty::defprod point
((x int) (y int))
:tag :point)

function connected(e1:edge, e2:edge) returns (b:bool) {
return e1.p2 == e2.p1;

}

// Given a list of points, return the list of edges
// that connect the points in sequence
function path(vertices:seq<point>) returns (p:seq<edge>)
ensures path_p(p) {
if (is_empty(vertices) || is_empty(rest(vertices))) {
return empty;

}
else {
let e: edge = edge(p1=first(vertices), p2=first(rest(vertices)));
return add(e, path(rest(vertices)));

}
}

theorem path_p_rest
forall(edges:seq<edge>)

!is_empty(edges) && path_p(edges)
==> path_p(rest(edges))

(define connected (e1 e2)
:returns (b booleanp)
(and (edge-p e1) (edge-p e2)

(equal (edge->p2 e1) (edge->p1 e2))))

(define path ((vertices sequence[point]-p))
:measure (len vertices)
:guard (sequence[point]-p vertices)
:prepwork ((local (include-book "kestrel/lists-light/len" :dir :system)))
:returns (p sequence[edge]-p :hyp :guard)
(if (or (not (mbt (and (sequence[point]-p vertices))))

(endp vertices) (endp (cdr vertices))
nil

(let ((e (MAKE-edge :p1 (car vertices)
:p2 (car (cdr vertices)))))

(cons e (path (cdr vertices)))))
///
(defret path-ENSURES :hyp :guard

(path_p p)
:hints (("Goal" :in-theory (enable path_p)))))

(defthm path_p_rest
(implies (path_p edges) ; remove-hyps removed 2 hyps

(path_p (cdr edges)))
:hints (("Goal" :in-theory (enable path_p))))

Back Translation of Transformed Functions

• Infer types of variables
• Directly from guards
• Simple inference on body

• Strip typing and guard predicates from function body
• Can result in significantly simplified expression

• Exploit invertible naming scheme
• Currently supported APT transformations do not introduce

functions that cannot be back-translated

Example Problem: Point in Polygon

Point 1

Point 2

Points
outside
polygon

A point is in a polygon if there are an odd number of edge crossings to a point outside the polygon.

3 crossings so point 1 is inside

4 crossings so point 2 is outside

Main Function
/* number of times edge0 crosses edges */
function crossings_count_aux

(edge0: edge, edges: seq<edge>)
assumes path_p(edges)
returns (n: int) ensures n >= 0 {
if (is_empty(edges)) {
return 0;

}
else {if (edges_intersect(edge0, first(edges))) {
return 1 + crossings_count_aux(edge0, rest(edges));

}
else {
return crossings_count_aux(edge0, rest(edges));

}}
}

Transformation Sequence
function crossings_count_aux_1 =
transform crossings_count_aux
by tail_recursion {new_parameter_name = count}

function crossings_count_aux_2 =
transform crossings_count_aux_1
by restrict {predicate = natp(count)}

function crossings_count_aux_3 =
transform crossings_count_aux_2
by isomorphism {parameter = edges,

new_parameter_name = vertices,
old_type = path_p,
new_type = points2_p,
old_to_new = path_vertices,
new_to_old = path,
simplify = true}

function crossings_count_aux_4 =
transform crossings_count_aux_3
by wrap_output {wrap_function = odd}

function crossings_count_aux_5 =
transform crossings_count_aux_4
by finite_difference {expression = odd(count),

new_parameter_name = count_odd,
simplify = true}

function crossings_count_aux_6 =
transform crossings_count_aux_5
by drop_irrelevant_param {parameter = count}

Main Function Transformation
/* number of times edge0 crosses edges */
function crossings_count_aux

(edge0: edge, edges: seq<edge>)
assumes path_p(edges)
returns (n: int) ensures n >= 0 {
if (is_empty(edges)) {
return 0;

}
else {if (edges_intersect(edge0, first(edges))) {
return 1 + crossings_count_aux(edge0, rest(edges));

}
else {
return crossings_count_aux(edge0, rest(edges));

}}
}

function crossings_count_aux_5
(edge0:edge,vertices:seq<point>,count_odd:bool)

assumes (points2_p(vertices) && path_p(path(vertices)))
returns (b:bool) {
if (is_empty(vertices) || is_empty(rest(vertices))) {
return count_odd;
}

else {
return crossings_count_aux_2

(edge0,rest(vertices),
(edge_points_intersect

(edge0.p1,edge0.p2,first(vertices),first(rest(vertices)))
? !count_odd : count_odd));

}
}

Final ACL2 Function
(defun crossings_count_aux_6 (edge0 vertices count_odd)

(declare (xargs :ruler-extenders :all
:guard (and (points2_p vertices)

(edge-P edge0))
:measure (len (path vertices))))

(and (mbt (points2_p vertices))
(if (or (not (mbt (edge-P edge0)))

(not (consp vertices))
(not (consp (cdr vertices))))

count_odd
(crossings_count_aux_6

edge0
(rest1 vertices)
(if (edge_points_intersect (edge->p1$INLINE edge0)

(edge->p2$INLINE edge0)
(car vertices)
(car (cdr vertices)))

(not count_odd)
count_odd)))))

function crossings_count_aux_5
(edge0:edge,vertices:seq<point>,count_odd:bool)

assumes (points2_p(vertices) && path_p(path(vertices)))
returns (b:bool) {
if (is_empty(vertices) || is_empty(rest(vertices))) {
return count_odd;
}

else {
return crossings_count_aux_2

(edge0,rest(vertices),
(edge_points_intersect

(edge0.p1,edge0.p2,first(vertices),first(rest(vertices)))
? !count_odd : count_odd));

}
}

Future Work

• Language Enhancement
• User type parameterization
• Imperative-looking constructs such as loops
• Support for more APT transformations

• Prover Interaction
• Hints for prover
• Feedback for failed proofs in Syntheto terms

• Improved IDE capabilities
• Syntheto Execution
• Ability to interactively run ACL2 code with results in Syntheto syntax
• Generation of Java with ATJ or C code with ATC

