
A Proof-Generating
C Code Generator for ACL2

Based on a
Shallow Embedding of C in ACL2

Alessandro Coglio

Workshop 2022

Kestrel
Institute

proof-generating

code generator

shallow embedding

shallow embedding of C in ACL2 = representation of C code as ACL2 code

int f(int x, int y, int z) {
return (x + y) * (z – 3);

}

Some example C code…

… and its representation as ACL2 code.

(defun |f| (|x| |y| |z|)
(declare (xargs :guard (and (sintp |x|)

(sintp |y|)
(sintp |z|)
...)))

(mul-sint-sint (add-sint-sint |x| |y|)
(sub-sint-sint |z| (sint-dec-const 3))))

shallow embedding of C in ACL2 = representation of C code as ACL2 code

The identifiers f, x, y, z are represented
by the symbols |f|, |x|, |y|, |z|.
The symbol-name is the identifier.
Note that the symbols f, x, y, z

would represent the identifiers F, X, Y, Z.

shallow embedding of C in ACL2 = representation of C code as ACL2 code

The type (signed) int is represented
by the predicate sintp,

which recognizes ACL2 integers
in the range of the type int

tagged with a type indication,
e.g. (:sint 8) and (:sint -3).

shallow embedding of C in ACL2 = representation of C code as ACL2 code

The guard ensures that the result
is well-defined according to C18.

(define add-sint-sint-okp ((x sintp) (y sintp))
(sint-integerp (+ (sint->get x) (sint->get y))))

The operation + on ints is represented
by the function add-sint-sint.

(define add-sint-sint ((x sintp) (y sintp))
:guard (add-sint-sint-okp x y)
(sint (+ (sint->get x) (sint->get y))))

shallow embedding of C in ACL2 = representation of C code as ACL2 code

(defun |f| (|x| |y| |z|)
(declare (xargs :guard (and (sintp |x|)

(sintp |y|)
(sintp |z|)
(<= ... (sint->get |x|))
(<= (sint->get |x|) ...)
(<= ... (sint->get |y|))
(<= (sint->get |y|) ...)
(<= ... (sint->get |z|))
(<= (sint->get |z|) ...))))

(mul-sint-sint (add-sint-sint |x| |y|)
(sub-sint-sint |z| (sint-dec-const 3))))

int f(int x, int y, int z) {
return (x + y) * (z – 3);

}

the parameters must be
in ranges such that
all the operations
are well-defined

shallow embedding of C in ACL2 = representation of C code as ACL2 code

(defun |f| (|x| |y| |z|)
(declare (xargs :guard ...))
(mul-sint-sint (add-sint-sint |x| |y|)

(sub-sint-sint |z| (sint-dec-const 3))))

int f(int x, int y, int z) {
return (x + y) * (z – 3);

}

shallow embedding of C in ACL2 = representation of C code as ACL2 code

The constant 3 in base 10 of type int
is represented by (sint-dec-const 3).

shallow embedding of C in ACL2 = representation of C code as ACL2 code

The return type int is determined by
the fact that |f| returns mul-sint-sint.

shallow embedding of C in ACL2 = representation of C code as ACL2 code

int f(int x, int y, int z) {
return (x + y) * (z – 3);

}

(defun |f| (|x| |y| |z|)
(declare (xargs :guard ...))
(mul-sint-sint (add-sint-sint |x| |y|)

(sub-sint-sint |z| (sint-dec-const 3))))

shallow
embedding

shallow embedding of C in ACL2 = representation of C code as ACL2 code

CACL2
shallow embedding

This shallow embedding of C in ACL2
has more features than the example shows:

other integer types, arrays, structures,
local variables, conditionals, loops, etc.

proof-generating

code generator

shallow embedding

CACL2

shallow embedding

code generator

code generator = inverse of the shallow embedding

§ recognizes the image of the shallow embedding
§ translates the representation ”back” to C code
§ is implemented, unlike the shallow embedding

code generator = inverse of the shallow embedding

code
generator

(ATC)

shallow
embedding

(defun |f| (|x| |y| |z|)
(declare (xargs :guard ...))
(mul-sint-sint (add-sint-sint |x| |y|)

(sub-sint-sint |z| (sint-dec-const 3))))

int f(int x, int y, int z) {
return (x + y) * (z – 3);

}

code
generator

(ATC)

code generator = inverse of the shallow embedding

(defun |f| (|x| |y| |z|)
(declare (xargs :guard ...))
(mul-sint-sint (add-sint-sint |x| |y|)

(sub-sint-sint |z| (sint-dec-const 3))))

int f(int x, int y, int z) {
return (x + y) * (z – 3);

}

idiomatic C

non-idiomatic ACL2

(defun |f| (|x| |y| |z|) ; non-idiomatic ACL2
(declare (xargs :guard ...))
(mul-sint-sint (add-sint-sint |x| |y|)

(sub-sint-sint |z| (sint-dec-const 3))))

int f(int x, int y, int z) { // idiomatic C
return (x + y) * (z – 3);

}

ATC

ATC is designed for
program synthesis by
stepwise refinement.

code/specification written in idiomatic ACL2

…

APT transformations
§ simplify [ACL2-2017]
§ isodata [ACL2-2020]
§ many others
§ some tailored to ATC

proof-generating

code generator

shallow embedding

(defthm |f|-correct ...)

proof-generating code generator

(defun |f| (|x| |y| |z|)
(declare (xargs :guard ...))
(mul-sint-sint (add-sint-sint |x| |y|)

(sub-sint-sint |z| (sint-dec-const 3))))

int f(int x, int y, int z) {
return (x + y) * (z – 3);

}

ATC

(defthm |f|-correct
(implies (and (compustatep compst)

(equal fenv (init-fun-env *program*))
(integerp limit)
(>= limit ...)
(and (sintp |x|)

(sintp |y|)
(sintp |z|)
...))

(equal (exec-fun (ident "f")
(list |x| |y| |z|)
compst
fenv
limit)

(b* ((result (|f| |x| |y| |z|)))
(mv result compst)))))

proof-generating code generator

(defconst *program*
<abstract syntax tree of the C program>)

ATC generates a named constant
for the generated C program

(currently, a single translation unit).

This abstract syntax tree is
the one pretty-printed to file.

proof-generating code generator

The abstract syntax of (a subset of) C
is formalized via algebraic fixtypes, e.g.

(fty::deftagsum expr
(:ident ((get ident)))
(:const ((get const)))
(:call ((fun ident)

(args expr-list)))
(:unary ((op unop)

(arg expr)))
(:binary ((op binop)

(arg1 expr)
(arg2 expr)))

...)

proof-generating code generator

(defconst *program*
<abstract syntax tree of the C program>)

ATC generates a named constant
for the generated C program

(currently, a single translation unit).

This abstract syntax tree is
the one pretty-printed to file.

(defthm *program*-well-formed
(equal (check-transunit *program*)

:wellformed))

ATC also generates a theorem asserting
that the C program is well-formed

according to the C static semantics.

proof-generating code generator

check-transunit,
along with check-expr

and other check-... functions,
formalize a static semantics of C,
i.e. the constraints on the code

necessary for its execution/compilation,
documented in the C18 standard.

proof-generating code generator

function environment
for the program, i.e.

information (body etc.)
about the functions

(defthm |f|-correct
(implies (and (compustatep compst)

(equal fenv (init-fun-env *program*))
(integerp limit)
(>= limit ...)
(and (sintp |x|)

(sintp |y|)
(sintp |z|)
...))

(equal (exec-fun (ident "f")
(list |x| |y| |z|)
compst
fenv
limit)

(b* ((result (|f| |x| |y| |z|)))
(mv result compst)))))

proof-generating code generator

"g""f"

…

stack of frames

compustatep formalizes C computation states.

"a": (:sint -5)
"b": (:uchar 8)

…

stack of scopes

"x": ...
"y": ...
"z": ...

…

stack of scopes

heap
array

structure
scalar

…

proof-generating code generator

termination is expressed
via a sufficiently large

limit of the recursion of
the exec-... functions,

calculated by ATC

exec-fun and other
exec-... functions
formalize a big-step

interpretive operational
defensive dynamic

semantics of C

(defthm |f|-correct
(implies (and (compustatep compst)

(equal fenv (init-fun-env *program*))
(integerp limit)
(>= limit ...)
(and (sintp |x|)

(sintp |y|)
(sintp |z|)
...))

(equal (exec-fun (ident "f")
(list |x| |y| |z|)
compst
fenv
limit)

(b* ((result (|f| |x| |y| |z|)))
(mv result compst)))))

proof-generating code generator

execution of |f| in ACL2

execution of f in C

guard of |f|

(defthm |f|-correct
(implies (and (compustatep compst)

(equal fenv (init-fun-env *program*))
(integerp limit)
(>= limit ...)
(and (sintp |x|)

(sintp |y|)
(sintp |z|)
...))

(equal (exec-fun (ident "f")
(list |x| |y| |z|)
compst
fenv
limit)

(b* ((result (|f| |x| |y| |z|)))
(mv result compst)))))

proof-generating code generator

proof-generating code generator

The symbolic execution turns the exec-... calls
into the shallowly embedded C constructs

(e.g. add-sint-sint) used in |f|.

The symbolic execution is fairly elaborate.
See the ATC developer documentation for details.

The formulation of |f|-correct is more complicated
in the presence of loops and/or array/structure updates.

The generated proof of |f|-correct is
via symbolic execution, with induction for loops,

in a precisely defined theory :in-theory '(...).

proof-generating

code generator

shallow embedding

The generated proofs are based on
a formalization of (a subset of) C in ACL2,

exemplified earlier, consisting of
abstract syntax, static semantics,

and dynamic semantics.

This formalization is a deep embedding of C in ACL2.

ACL2 C

shallow embedding

code generator

deep embedding

ACL2 prog.
lang.

shallow embedding

code generator

deep embedding

shallow embedding

deep embedding

See section on language embedding and code generation in the paper.

