
A Complex Java Code Generator
for ACL2 Based on a Shallow
Embedding of ACL2 in Java

Alessandro Coglio

Workshop 2022

Kestrel
Institute

How can we run ACL2 code in Java?

(defun f (x) ; example of ACL2 code
(declare (xargs :guard (integerp x)))
(+ x 3))

We need a Java representation
of integerp and other types,
and of + and other operations.

public final class Acl2Integer extends Acl2Rational {

// representation of integerp:
private final BigInteger numericValue;

// representation of +:
Acl2Integer addInteger(Acl2Integer other) ...
Acl2Rational addRational(Acl2Rational other) ...
Acl2Number addNumber(Acl2Number other) ...
Acl2Number addValue(Acl2Value other) ...

...
}

We need a Java representation
of integerp and other types,
and of + and other operations.

How can we run ACL2 code in Java?

(defun f (x) ; example of ACL2 code
(declare (xargs :guard (integerp x)))
(+ x 3))

(1) Via an interpreter of ACL2 written in Java,
which uses Acl2Integer, Acl2Rational, etc.

Given the Java representation of integerp, +, etc.,
we can run the ACL2 code in Java in two main ways.

Java languageACL2 language
deep embedding

The interpreter is a deep embedding of ACL2 in Java.

How can we run ACL2 code in Java?

(defun f (x) ; example of ACL2 code
(declare (xargs :guard (integerp x)))
(+ x 3))

(1) Via an interpreter of ACL2 written in Java,
which uses Acl2Integer, Acl2Rational, etc.

Given the Java representation of integerp, +, etc.,
we can run the ACL2 code in Java in two main ways.

(2) By translating the ACL2 constructs
to suitably equivalent Java constructs.

(2) By translating the ACL2 constructs
to suitably equivalent Java constructs.

public static Acl2Integer f(Acl2Integer x) {
return binary_plus(x, $N_3);

}

(defun f (x) ; example of ACL2 code
(declare (xargs :guard (integerp x)))
(+ x 3))

The translation is a shallow embedding of ACL2 in Java.

Java languageACL2 language deep embedding

shallow embedding

Java languageACL2 language
Java code generator (ATJ):
§ shallow embedding mode
§ deep embedding mode

The deep embedding mode is somewhat unconventional.
It is simple, but the generated code is not very efficient or idiomatic.

It was described in the ACL2-2018 paper and presentation.

The shallow embedding mode is more conventional.
It is complex, but the generated code is more efficient and idiomatic.

It is the main subject of this ACL2-2022 paper and presentation.

It could become more interesting by combining it with
partial evaluation (first Futamura projection; see paper).

ATJ

Java

ACL2

Java

ACL2

pre-translation

post-translation

translation

ACL2

Java

simplify ACL2 code and
move it towards Java

cross the
language chasm

simplify Java code
for efficiency and

idiomaticness

ATJ

Java

ACL2

pre-translation
(multiple steps)

post-translation
(multiple steps)

…

…

ATJ translation
(single step)

simplify ACL2 code and
move it towards Java

cross the
language chasm

simplify Java code
for efficiency and

idiomaticness

(defun f (n a)
(declare (xargs :guard (and (natp n) (natp a))))
(let ((__function__ 'f))
(if (mbt (natp n))

(if (equal n 0)
a

(let ((n1 (1– n)))
(let ((a (* n a)))
(f n1 a))))

0)))

Here is a somewhat artificial example of ACL2 code.

Let us see how ATJ turns it into Java, step by step.

ATJ has an option to assume guards or not.

Assuming guards is the normal thing to do.

If guards are assumed, an ATJ pre-translation step
turns mbes into their :exec parts, and mbts into t.

Not assuming guard is execution “in the logic”.

This function is no longer admissible in the ACL2 logic,
but it is correct according to the ACL2 evaluation semantics.

(defun f (n a)
(declare (xargs :guard (and (natp n) (natp a))))
(let ((__function__ 'f))
(if t

(if (equal n 0)
a

(let ((n1 (1– n)))
(let ((a (* n a)))
(f n1 a))))

0)))

(defun f (n a)
(declare (xargs :guard (and (natp n) (natp a))))
(let ((__function__ 'f))
(if (equal n 0)

a
(let ((n1 (1– n)))
(let ((a (* n a)))
(f n1 a))))))

An ATJ pre-translation step removes dead if branches
(which may arise from the previous transformation step).

An ATJ pre-translation step removes unused bound variables
(which may arise from macros like define).

(defun f (n a)
(declare (xargs :guard (and (natp n) (natp a))))
(if (equal n 0)

a
(let ((n1 (1– n)))
(let ((a (* n a)))
(f n1 a)))))

(defun f ([AI]n [AI]a)
(declare (xargs :guard (and (natp [AI]n) (natp [AI]a))))
([AI>AI]
(if ([AB>AB] (equal ([AI>AV] [AI]n)

([AI>AV] 0)))
([AI>AI] [AI]a)

([AI>AI]
(let (([AI]n1 ([AI>AI] (1– ([AI>AI] [AI]n)))))
([AI>AI]
(let (([AI]a ([AI>AI] (* ([AI>AI] [AI]n)

([AI>AI] [AI]a)))))
([AI>AI] (f ([AI>AI] [AI]n1)

([AI>AI] [AI]a))))))))))

An ATJ pre-translation step adds type annotations.

Each variable is annotated with a type,
e.g. [AI] for ACL2 integers and [AB] for ACL2 boolean.

Each term is annotated with a type conversion [from>to]
(mostly identities in this example; see paper for other examples).

An ATJ pre-translation step adds type annotations.

Each variable is annotated with a type,
e.g. [AI] for ACL2 integers and [AB] for ACL2 boolean.

For illustrative purposes, we elide the type conversions [from>to]
in this example, where they do not play a big role anyhow.

(defun f ([AI]n [AI]a)
(declare (xargs :guard (and (natp [AI]n) (natp [AI]a))))
(if (equal [AI]n 0)

[AI]a
(let (([AI]n1 (1– [AI]n)))
(let (([AI]a (* [AI]n [AI]a)))
(f [AI]n1 [AI]a)))))

(defun f ([AI]n [AI]a)
(declare (xargs :guard (and (natp [AI]n) (natp [AI]a))))
(if (equal [AI]n 0)

[AI]a
(let (([N][AI]n1 (1– [AI]n)))
(let (([O][AI]a (* [AI]n [AI]a)))
(f [N][AI]n1 [O][AI]a)))))

An ATJ pre-translation step marks variables for reuse or not.

A variable marked with [N] is new, i.e. not reused in Java.

A variable marked with [O] is old, i.e. reused in Java.

This is quite complicated in general,
because ACL2 and Java have different scoping rules.

Java

ACL2

pre-translation

post-translation

translation

ACL2

Java

This is the final result of pre-translation.

ATJ has other pre-translation steps,
but they do not apply to this example.

ATJ translates this ACL2 function to a Java method.

The input and output types are derived from the type annotations.

The ACL2 if is turned into the Java if.

let bindings of [N]ew variables are turned into declarations.

let bindings of [O]ld variables are turned into assignments.

Temporaries are introduce to hold results of statements,
leading to a compositional translation of ACL2 terms
to Java expressions “prepared” by Java statements.

static Acl2Integer f(Acl2Integer n, Acl2Integer a) {
Acl2Integer $tmp1;

(if (equal(n, $N_0)) {
[$tmp1 = a;

} else {
(l Acl2Integer n1 = binary_plus($N_minus1, n);

a = binary_star(n, a);
$tmp1 = f(n1, a);

}
return $tmp1;

}

Java

ACL2

pre-translation

post-translation

translation

ACL2

JavaThis is the final result of the translation step.

ATJ’s translation step also handles
other ACL2 constructs (e.g. mv–let)

but they are not in this example.

static Acl2Integer f(Acl2Integer n, Acl2Integer a) {
if (equal(n, $N_0)) {

return a;
} else {

Acl2Integer n1 = binary_plus($N_minus1, n);
a = binary_star(n, a);
return f(n1, a);

}
}

An ATJ post-translation step eliminates temporaries
(in this example and in other cases, but not in all cases),
by folding the returns into the preceding statements.

static Acl2Integer f(Acl2Integer n, Acl2Integer a) {
while (true) {

if (equal(n, $N_0)) {
return a;

} else {
Acl2Integer n1 = binary_plus($N_minus1, n);
a = binary_star(n, a);
n = n1;
continue;

}
}

}

A parallel assignment is generated
via topological sort when possible,

otherwise via temporaries.

Since this method is tail-recursive, ATJ does tail recursion elimination.

An ATJ post-translation step surrounds the body with a loop
and replaces the return(ed) recursive calls

with continue(s) preceded by parallel assignments.

static Acl2Integer f(Acl2Integer n, Acl2Integer a) {
while (!equal(n, $N_0)) {

Acl2Integer n1 = binary_plus($N_minus1, n);
a = binary_star(n, a);
n = n1;
continue;

}
return a;

}

An ATJ post-translation step lifts termination tests
from ifs to whiles, when possible.

An ATJ post-translation removes any unnecessary continues.

static Acl2Integer f(Acl2Integer n, Acl2Integer a) {
while (!equal(n, $N_0)) {

Acl2Integer n1 = binary_plus($N_minus1, n);
a = binary_star(n, a);
n = n1;

}
return a;

}

Java

ACL2

pre-translation

post-translation

translation

ACL2

Java

This is the final result of post-translation.

ATJ has other post-translation steps,
but they do not apply to this example.

(defun f (n a)
(declare (xargs :guard (and (natp n) (natp a))))
(let ((__function__ 'f))
(if (mbt (natp n))

(if (equal n 0)
a

(let ((n1 (1– n)))
(let ((a (* n a)))
(f n1 a))))

0)))

static Acl2Integer f(Acl2Integer n, Acl2Integer a) {
while (!equal(n, $N_0)) {

Acl2Integer n1 = binary_plus($N_minus1, n);
a = binary_star(n, a);
n = n1;

}
return a;

}

ATJ

The performance of ATJ’s generated Java code
(in the shallow embedding mode assuming guards)

is somewhat competitive with the ACL2 code:
about 3–4x slower, on the ABNF grammar parser.

In the deep embedding mode assuming guards,
the code is 60–80x slower than the code

in the shallow embedding mode assuming guards;
this is due to the interpretation overhead.

