
Shilpi Goel

An ACL2 Model of a 264-byte Array

Bigmem



Introduction

2

• Bigmem is based on the following paper: 
- Warren A. Hunt, Jr. and Matt Kaufmann. A Formal Model of a Large 

Memory that Supports Efficient Execution. FMCAD 2012.

248-byte memory 
(245 quadwords)

• Fair bit of arithmetic reasoning 
• Not easy to tweak



Bigmem: Exported Theorems

3

(defthm read-mem-over-write-mem 
  (equal (read-mem addr-1 (write-mem addr-2 val mem)) 
         (if (equal addr-1 addr-2) 
             (loghead 8 (ifix val)) 
           (read-mem addr-1 mem)))) 

(defthm write-mem-shadow-writes 
  (equal (write-mem addr val-2 (write-mem addr val-1 mem)) 
         (write-mem addr val-2 mem))) 

(defthm write-mem-commutes-safely 
  (implies (not (equal addr-2 addr-1)) 
           (equal (write-mem addr-2 val-2 (write-mem addr-1 val-1 mem)) 
                  (write-mem addr-1 val-1 (write-mem addr-2 val-2 mem))))) 

(defthm write-the-read 
  (equal (write-mem addr (read-mem addr mem) mem) 
         mem)) 

(defthm read-mem-from-nil 
  (equal (read-mem i nil) 0))



Implementation

4

• Bigmem is implemented as an abstract stobj: 
- Concrete: a nest of resizable arrays; memory is allocated on demand 
- Abstract: a typed record; each element is a byte 

• We will focus only on the concrete implementation here.



Concrete Data Structures

5

(defstobj page 
  (pg :type (array (unsigned-byte 8) (0)) 
      :initially 0 :resizable t) 
  (pg_vld :type bit :initially 0) 
  :non-executable t) 

(defstobj l1 
  (pages :type (array page (0)) :resizable t) 
  (pages_vld :type bit :initially 0) 
  :non-executable t) 

(defstobj mem$c 
  (level1 :type (array l1 (*2^22*)) 
          :resizable nil))

64-bit address

level1_offset pages_offset pg_offset

202222



6

(define good-pagep (page) 
  (and (pagep page) 
       (if (equal (pg_vld page) 0) 
           (equal (pg-length page) 0) 
         (equal (pg-length page) *2^20*))))

(define write-to-page ((offset   :type (unsigned-byte 20)) 
                       (val      :type (unsigned-byte 8)) 
                       (page      good-pagep)) 
  (b* (...                 
       (page   (if (mbe  
                    ;; Computing a resizable array’s length could be 
                    ;; a linear-time operation? 
                    :logic (< offset (pg-length page)) 
                    ;; Reading pg_vld is always a constant-time operation. 
                    :exec (equal (pg_vld page) 1)) 

                   page 

                 (b* ((page (update-pg_vld 1 page)) 
                      (page (resize-pg *2^20* page))) 
                   page))) 

       (page (update-pgi offset val page))) 

    page))

(defthm write-to-page-shadow-writes 
  (equal (write-to-page offset val2 (write-to-page offset val1 page)) 
         (write-to-page offset val2 page)))



7

(define read-from-page ((offset :type (unsigned-byte 20)) 
                        (page   good-pagep)) 
   (if (mbe :logic (< offset (pg-length page)) 
            :exec (equal (pg_vld page) 1)) 
        (pgi offset page) 
      ;; Default memory value 
      0)) 

(defthm read-write-page 
  (equal (read-from-page offset1 (write-to-page offset2 val page)) 
         (if (equal (loghead 20 offset1) (loghead 20 offset2)) 
             (loghead 8 val) 
           (read-from-page offset1 page))))

For each data structure, define analogous read and write 
functions, and their corresponding theorems.



Space Usage

8

• Initially, mem$c has 222 (create-l1) elements. 
• When a write occurs:  

- pages is resized to 222 (create-page) elements. 
- 220 bytes are allocated only for the pg in the selected page. 

• Works well in the common scenario of spatial locality.

(defstobj page 
  (pg :type (array (unsigned-byte 8) (0)) 
      :initially 0 :resizable t) 
  (pg_vld :type bit :initially 0) 
  :non-executable t) 

(defstobj l1 
  (pages :type (array page (0)) :resizable t) 
  (pages_vld :type bit :initially 0) 
  :non-executable t) 

(defstobj mem$c 
  (level1 :type (array l1 (*2^22*)) 
          :resizable nil))



Conclusion

9

• Bigmem implementation is easily modifiable: 
- Can add more levels (e.g., l2, l3, etc.) if a larger memory is needed. 
- Can modify the maximum lengths of the arrays without tedious 

arithmetic reasoning. 

• Execution overhead of using nested stobjs is almost negligible here. 

• Bigmem is a general, reusable solution: 
- No familiarity needed with the underlying implementation. 
- E.g., can be used as a child stobj in the field of a parent stobj that models 

some machine’s state (e.g., x86isa state).



Thank You!



FMCAD’12 Paper: Worked Example

EXTRA SLIDE

1. Write to quadword address                                
(7 * 218) + 345 

2. If mem-table[7] is valid, then                   
page base address =                
(mem-table[7] * 218) 

3. If mem-table[7] is invalid: 
a. page base address =                              

(mem-array-next-addr * 218) 
b. mem-array-next-addr =              

(mem-array-next-addr + 218) 

4. Final memory address =                                 
page base address + 345

45-bit quadword address

index into mem-table offset into a page

1827


