
Shilpi Goel

An ACL2 Model of a 264-byte Array

Bigmem



Introduction

2

• Bigmem is based on the following paper:

- Warren A. Hunt, Jr. and Matt Kaufmann. A Formal Model of a Large 

Memory that Supports Efficient Execution. FMCAD 2012.

248-byte memory 
(245 quadwords)

• Fair bit of arithmetic reasoning

• Not easy to tweak



Bigmem: Exported Theorems

3

(defthm read-mem-over-write-mem

  (equal (read-mem addr-1 (write-mem addr-2 val mem))

         (if (equal addr-1 addr-2)

             (loghead 8 (ifix val))

           (read-mem addr-1 mem))))


(defthm write-mem-shadow-writes

  (equal (write-mem addr val-2 (write-mem addr val-1 mem))

         (write-mem addr val-2 mem)))


(defthm write-mem-commutes-safely

  (implies (not (equal addr-2 addr-1))

           (equal (write-mem addr-2 val-2 (write-mem addr-1 val-1 mem))

                  (write-mem addr-1 val-1 (write-mem addr-2 val-2 mem)))))


(defthm write-the-read

  (equal (write-mem addr (read-mem addr mem) mem)

         mem))


(defthm read-mem-from-nil

  (equal (read-mem i nil) 0))



Implementation

4

• Bigmem is implemented as an abstract stobj:

- Concrete: a nest of resizable arrays; memory is allocated on demand

- Abstract: a typed record; each element is a byte


• We will focus only on the concrete implementation here.



Concrete Data Structures

5

(defstobj page

  (pg :type (array (unsigned-byte 8) (0))

      :initially 0 :resizable t)

  (pg_vld :type bit :initially 0)

  :non-executable t)


(defstobj l1

  (pages :type (array page (0)) :resizable t)

  (pages_vld :type bit :initially 0)

  :non-executable t)


(defstobj mem$c

  (level1 :type (array l1 (*2^22*))

          :resizable nil))

64-bit address

level1_offset pages_offset pg_offset

202222



6

(define good-pagep (page)

  (and (pagep page)

       (if (equal (pg_vld page) 0)

           (equal (pg-length page) 0)

         (equal (pg-length page) *2^20*))))

(define write-to-page ((offset   :type (unsigned-byte 20))

                       (val      :type (unsigned-byte 8))

                       (page      good-pagep))

  (b* (...                

       (page   (if (mbe 

                    ;; Computing a resizable array’s length could be

                    ;; a linear-time operation?

                    :logic (< offset (pg-length page))

                    ;; Reading pg_vld is always a constant-time operation.

                    :exec (equal (pg_vld page) 1))


                   page


                 (b* ((page (update-pg_vld 1 page))

                      (page (resize-pg *2^20* page)))

                   page)))


       (page (update-pgi offset val page)))


    page))

(defthm write-to-page-shadow-writes

  (equal (write-to-page offset val2 (write-to-page offset val1 page))

         (write-to-page offset val2 page)))



7

(define read-from-page ((offset :type (unsigned-byte 20))

                        (page   good-pagep))

   (if (mbe :logic (< offset (pg-length page))

            :exec (equal (pg_vld page) 1))

        (pgi offset page)

      ;; Default memory value

      0))


(defthm read-write-page

  (equal (read-from-page offset1 (write-to-page offset2 val page))

         (if (equal (loghead 20 offset1) (loghead 20 offset2))

             (loghead 8 val)

           (read-from-page offset1 page))))

For each data structure, define analogous read and write 
functions, and their corresponding theorems.



Space Usage

8

• Initially, mem$c has 222 (create-l1) elements.

• When a write occurs: 


- pages is resized to 222 (create-page) elements.

- 220 bytes are allocated only for the pg in the selected page.


• Works well in the common scenario of spatial locality.

(defstobj page

  (pg :type (array (unsigned-byte 8) (0))

      :initially 0 :resizable t)

  (pg_vld :type bit :initially 0)

  :non-executable t)


(defstobj l1

  (pages :type (array page (0)) :resizable t)

  (pages_vld :type bit :initially 0)

  :non-executable t)


(defstobj mem$c

  (level1 :type (array l1 (*2^22*))

          :resizable nil))



Conclusion

9

• Bigmem implementation is easily modifiable:

- Can add more levels (e.g., l2, l3, etc.) if a larger memory is needed.

- Can modify the maximum lengths of the arrays without tedious 

arithmetic reasoning.


• Execution overhead of using nested stobjs is almost negligible here.


• Bigmem is a general, reusable solution:

- No familiarity needed with the underlying implementation.

- E.g., can be used as a child stobj in the field of a parent stobj that models 

some machine’s state (e.g., x86isa state).



Thank You!



FMCAD’12 Paper: Worked Example

EXTRA SLIDE

1. Write to quadword address                                
(7 * 218) + 345


2. If mem-table[7] is valid, then                   
page base address =                
(mem-table[7] * 218)


3. If mem-table[7] is invalid:

a. page base address =                              

(mem-array-next-addr * 218)

b. mem-array-next-addr =              

(mem-array-next-addr + 218)


4. Final memory address =                                 
page base address + 345

45-bit quadword address

index into mem-table offset into a page

1827


