
– © 2019 Collins Aerospace, a United Technologies company. All rights reserved.© 2022 Collins Aerospace, a Raytheon Technologies company. All rights reserved.DISTRIBUTION STATEMENT ‘A’. Approved for public release.

HARDWARE/SOFTWARE CO-ASSURANCE
USING THE RUST PROGRAMMING LANGUAGE
AND ACL2

David S. Hardin

Applied Research and Technology
Collins Aerospace

RAR!

© 2022 Collins Aerospace, a Raytheon Technologies company. All rights reserved.DISTRIBUTION STATEMENT ‘A’. Approved for public release.

D ISCLAIMER

The views expressed are those of the authors and do not reflect the official
policy or position of the Defense Advanced Research Projects Agency (DARPA)
or the U.S. Government.

2

© 2022 Collins Aerospace, a Raytheon Technologies company. All rights reserved.DISTRIBUTION STATEMENT ‘A’. Approved for public release.

DARPA CASE

• The goal of the DARPA Cyber-Assured Systems Engineering (CASE) program is to “develop
the necessary design, analysis and verification tools to allow system engineers to design-in
cyber resiliency”

• Architecture models in the DARPA CASE program are expressed in the SAE standard
Architectural Analysis and Design Language (AADL)

• The CASE Cyber Requirements tools examine the AADL model for the system, identifying
potential cyber vulnerabilities

• The CASE user then identifies security-enhancing architectural transformations to be applied to
the model to address the vulnerabilities

• Let’s say the need for an input well-formedness filter was identified:
• The CASE user adds the filter to the model, and specifies the high-level filter behavior,

e.g. using a regular expression
• The CASE tools then automatically synthesize the filter and produce a proof of filter

correctness all the way down to the binary level
• This filter is hosted on a high-integrity operating system, e.g. seL4

3

© 2022 Collins Aerospace, a Raytheon Technologies company. All rights reserved.DISTRIBUTION STATEMENT ‘A’. Approved for public release.

DARPA CASE: S IMPLE UAV USE CASE

4

Inserted High-
Assurance Filter

© 2022 Collins Aerospace, a Raytheon Technologies company. All rights reserved.DISTRIBUTION STATEMENT ‘A’. Approved for public release.

HARDWARE/SOFTWARE CO-DESIGN AND CO-
ASSURANCE FOR DARPA CASE

• We desire to create CASE-style high-assurance architectural components
using hardware/software co-design/co-assurance techniques

• The CASE high-level Architectural Modeling approach supports both
hardware- and software-based realizations

• Being able to defer and/or change the allocation of functionality to
hardware or software is highly desirable

• Hardware provides greater tamper resistance, as well as higher
performance

• Thus, we have been investigating the use of High-Level Synthesis (HLS)
hardware/software co-design languages that also support formal
verification

5

© 2022 Collins Aerospace, a Raytheon Technologies company. All rights reserved.DISTRIBUTION STATEMENT ‘A’. Approved for public release.

HARDWARE/SOFTWARE CO-DESIGN/
CO-ASSURANCE TOOLCHAIN
(A S P I R AT I O N A L)

6

Data Format
Specification RTL

Application
Logic

Runtime
Libraries

Object Code

Hardware/
Software

Co-Design Tool

Modern, High-
Level

Language IDE

Protocol
Specification

Verified
Synthesis

Tools

Proofs

Verified
Transpilers

Lemma
Libraries

Theorem
Prover

© 2022 Collins Aerospace, a Raytheon Technologies company. All rights reserved.DISTRIBUTION STATEMENT ‘A’. Approved for public release.

HARDWARE/SOFTWARE CO-SYNTHESIS FROM
AADL MODELS (KANSAS STATE UNIVERSITY)

7

Demo: Synthesize Hardware for CASE-generated filter

…mapped to
Linux software process

…mapped to
Linux process with FPGA hardware driver

to access hardware-based filter implementation

…mapped to
Linux software process

AADL Model:

Note: The KSU team currently uses the Xilinx Vivado HLS tools to perform hardware synthesis

© 2022 Collins Aerospace, a Raytheon Technologies company. All rights reserved.DISTRIBUTION STATEMENT ‘A’. Approved for public release.

TESTING ON FPGA DEVELOPMENT BOARD

8

…
Consumer_proc_sw_consumer_App starting ...
Producer_proc_sw_producer_App starting ...
PFC_Sys_Impl_Instance_proc_sw_producer: Sending [00, 00, 00, 00, 00, 00, 00, 00, 00, 3A,
00, 00]
Filter_proc_sw_filter_App starting ...
PFC_Sys_Impl_Instance_proc_sw_filter: Payload approved - MissionData([00, 00, 00, 00, 00,
00, 00, 00, 00, 3A, 00, 00])
PFC_Sys_Impl_Instance_proc_sw_consumer: Received MissionData([00, 00, 00, 00, 00, 00, 00,
00, 00, 3A, 00, 00])
PFC_Sys_Impl_Instance_proc_sw_producer: Sending [00, 6F, 6F, 6F, 00, 00, 00, 00, 00, 3A,
00, 00]
PFC_Sys_Impl_Instance_proc_sw_filter: Payload rejected - MissionData([00, 6F, 6F, 6F, 00,
00, 00, 00, 00, 3A, 00, 00])

© 2022 Collins Aerospace, a Raytheon Technologies company. All rights reserved.DISTRIBUTION STATEMENT ‘A’. Approved for public release.

THE RAC APPROACH TO HARDWARE/
SOFTWARE VERIF ICATION

• The hardware/software verification approach we employ was
developed by David Russinoff and John O’Leary, while both
were at Intel

• The approach was initially based on SystemC, and was
called MASC

• Russinoff changed the source language from SystemC to
Algorithmic C after he moved to Arm, made several
enhancements, and renamed the system RAC (Restricted
Algorithmic C)

• RAC is extensively documented in Russinoff’s book, Formal
Verification of Floating-Point Hardware Design: A Mathematical
Approach, wherein RAC is applied to the verification of realistic
Arm floating-point designs

• RAC, and the verifications described in the book, are all
available in the standard ACL2 theorem prover distribution

9

© 2022 Collins Aerospace, a Raytheon Technologies company. All rights reserved.DISTRIBUTION STATEMENT ‘A’. Approved for public release.

ALGORITHMIC C

• The Algorithmic C datatypes “provide a basis for writing bit-accurate algorithms to
be synthesized into hardware”

• Example use:
• typedef ac_int<112,false> ui112;

 declares an unsigned 112-bit type used in floating-point hardware datapaths

• Supported by Mentor hardware synthesis tools, e.g. Catapult; for details, see
https://hlslibs.org

• Restricted Algorithmic C (RAC) further restricts Algorithmic C to facilitate proof;
see Chapter 15 of Russinoff’s book for details

• NB: We use cpp macros to support either Algorithmic C or Xilinx Vivado HLS in
hardware synthesis

10

© 2022 Collins Aerospace, a Raytheon Technologies company. All rights reserved.DISTRIBUTION STATEMENT ‘A’. Approved for public release.

REALIZING THE H/W-S/W CO-ASSURANCE VISION USING
RUST

• Recently, we have begun work to realize the hardware/software co-
design co-assurance toolchain vision by supporting a Rust language
subset called Restricted Algorithmic Rust, or RAR

• Rust has several assurance advantages over C/C++, including:
• Improved type safety
• Vastly improved memory safety

• A “single-owner” rule for memory references (similar to stobjs)
• No arbitrary pointer arithmetic
• …in short, the sources of 80% of C/C++ security flaws are
eliminated outright!

• Basic Rust syntax is familiar to C/C++ developers, easing the transition

• The Rust compiler produces efficient, and importantly, energy-efficient
code, which makes Rust a favorite for sustainable computing

11

© 2022 Collins Aerospace, a Raytheon Technologies company. All rights reserved.DISTRIBUTION STATEMENT ‘A’. Approved for public release.

RAR EXAMPLES DEVELOPED TO DATE

• A suite of array-backed algebraic data types, previously implemented
in RAC

• Stack, Singly-linked list, Doubly-linked list, Circular Queue,
Deque, etc.

• A significant subset of the Monocypher modern cryptography suite,
including XChacha20 and Poly1305 (RFC 8439) encryption/
decryption, Blake2b hashing, and X25519 public key cryptography

• A DFA-based JSON lexer, coupled with an LL(1) JSON parser
• The JSON parser has also been implemented using Greibach

Normal Form

12

© 2022 Collins Aerospace, a Raytheon Technologies company. All rights reserved.DISTRIBUTION STATEMENT ‘A’. Approved for public release.

RESTRICTED ALGORITHMIC C TOOLCHAIN

13

RAC Source
Code

ACL2
Theorem
Prover

RAC-to-ACL2
Translator

Algorithmic
C Header Lemmas

C++ Compiler
Proofs

(.cert files)

#include

Hardware
Design Tools

Simulation and
Test

“Verification
Side”

“Design
Side”

Synthesis,
Simulation, Test,

Equivalence
Checking

© 2022 Collins Aerospace, a Raytheon Technologies company. All rights reserved.DISTRIBUTION STATEMENT ‘A’. Approved for public release.

RESTRICTED ALGORITHMIC RUST TOOLCHAIN

14

RAC Source
Code

ACL2
Theorem
Prover

RAC-to-ACL2
Translator

Algorithmic
C Header Lemmas

C++ Compiler
Proofs

(.cert files)

#include

Hardware
Design Tools

Simulation and
Test

“Verification
Side”

“Design
Side”

Synthesis,
Simulation, Test,

Equivalence
Checking

RAR Source
Code

Plexi
Transpiler

© 2022 Collins Aerospace, a Raytheon Technologies company. All rights reserved.DISTRIBUTION STATEMENT ‘A’. Approved for public release.

THE PLEXI RAR-TO-RAC TRANSPILER

• Based on the open source plex parser and lexer generator
tool, written in Rust

• Translates RAR code to RAC code one line at a time

• Rapid prototyping principles used to produce a tool that
works “well enough”

• Future work will investigate replacing this tool with a
fully-verified transpiler

15

© 2022 Collins Aerospace, a Raytheon Technologies company. All rights reserved.DISTRIBUTION STATEMENT ‘A’. Approved for public release.

EXAMPLE: ARRAY-BASED SET

16

 1 2

 5 0 3 4 5

22 33 X X X

used_head free_head

anext

avals

 1 0

 2 5 3 4 5

 X 33 X X X

used_head free_head

anext

avals

(a) Arrayset with contents {33, 22}, size = 5 (b) After delete of element 22

– © 2020 Collins Aerospace, a Raytheon Technologies company. All rights reserved.

RAR EXAMPLE: ARRAY-BASED SET

17

const ARR_SZ: uint = 256;

#[derive(Copy, Clone)]

struct Arrayset {
 anext: [usize; ARR_SZ],
 avals: [i64; ARR_SZ],
 free_head: usize,
 used_head: usize,
}

– © 2020 Collins Aerospace, a Raytheon Technologies company. All rights reserved.

RAR EXAMPLE: ARRAY-BASED SET (CONT’D.)

18

fn aset_add(val: i64, aset: mut Arrayset) -> Arrayset {
 let curr_index: usize = aset.free_head;
 if (curr_index >= ARR_SZ) {
 return aset; // Full
 } else {
 if ((aset.used_head < ARR_SZ) && aset_is_element(val, aset)) {
 return aset;
 } else {
 aset.free_head = aset.anext[aset.free_head];
 aset.avals[curr_index] = val;
 aset.anext[curr_index] = aset.used_head;
 aset.used_head = curr_index;
 return aset;
 }
 }
}

– © 2020 Collins Aerospace, a Raytheon Technologies company. All rights reserved.

TRANSLATION TO ACL2

19

(DEFUND ASET_ADD (VAL ASET)
 (LET ((CURR_INDEX (AG ’FREE_HEAD ASET)))
 (IF1 (LOG>= CURR_INDEX (ARR_SZ))
 ASET
 (IF1 (LOGAND1 (LOG< (AG ’USED_HEAD ASET) (ARR_SZ))
 (ASET_IS_ELEMENT VAL ASET))
 ASET
 (LET* ((ASET (AS ’FREE_HEAD
 (AG (AG ’FREE_HEAD ASET) (AG ’ANEXT ASET))
 ASET))
 (ASET (AS ’AVALS
 (AS CURR_INDEX VAL (AG ’AVALS ASET))
 ASET))
 (ASET (AS ’ANEXT
 (AS CURR_INDEX (AG ’USED_HEAD ASET)
 (AG ’ANEXT ASET))
 ASET)))
 (AS ’USED_HEAD CURR_INDEX ASET))))))

– © 2020 Collins Aerospace, a Raytheon Technologies company. All rights reserved.

EXAMPLE RAR CORRECTNESS THEOREMS

20

(defthm as-anext-preseves-arraysetp
 (implies
 (and (arraysetp aset)
 (array-of-u64p v)
 (arraysetp (as ’anext v aset))))

(defthm aset_add-works
 (implies
 (and (good-statep aset)
 (integerp val)
 (< (aset_len aset) (arr_sz)))
 (= (aset_is_element val (aset_add val aset)) 1)))

© 2022 Collins Aerospace, a Raytheon Technologies company. All rights reserved.DISTRIBUTION STATEMENT ‘A’. Approved for public release.

• We have detailed a method and toolchain for the creation of formally verified
critical system components developed for the DARPA CASE program

• We have demonstrated how this toolchain can be used to implement
security-enhancing transformations on system architectures specified in
AADL, with automatically synthesized and verified implementations

• We have also described methods and tools for enhancing the safety and
security of critical systems using a hardware/software co-design/co-assurance
approach using the Rust programming language

• Our efforts stand on the broad shoulders of the great Restricted
Algorithmic C work

• In future work, we will continue to enhance our verified synthesis tools for
Restricted Algorithmic Rust, focusing on:

• Enhanced proof automation via improved RAR/RAC ACL2 books
• Enhanced integration with KSU hardware synthesis effort
• Improvements to RAR-to-RAC transpiler

21

CONCLUSION AND FUTURE WORK

