Verified Implementation of an Efficient Term-Rewriting
Algorithm for Multiplier Verification on ACL2

Mertcan Temel'?

mertQutexas.edu

1University of Texas at Austin, Austin, TX, USA

2Intel Corporation, Austin, TX, USA

May 27, 2022 (ACL2 2022)

Uiy Vs e A

May 27, 2022 (ACL2 2022)

0/7

mert@utexas.edu

Introduction

o Integer multipliers have been around a long time but their verification is still
hard.

» An infamous, easy-to-state hardware verification problem
» Booth Encoding and Wallace tree design algorithms make them harder to verify
> SAT Solvers, BDDs etc. blow up for even small designs

o My PhD work proposed an efficient, rewrite-based method that is:

» widely applicable (tested for 250+ benchmarks),
> scalable (1024x1024-bit multipliers proved in 5 minutes),
> provably correct (multiplier verification procedure is verified using ACL2)

o Today, | will talk about the implementation details instead of the rewrite

algorithm itself.
> See our CAV20 and FMCAD21 papers for the high-level algorithm

Multiplier Verification on ACL2 May 27, 2022 (ACL2 2022) 1/7

Implementation Goals

o

Easily pluggable to different simulators: the DE system, SVL, SVTV ...

o Verification algorithm should be easily modifiable/extensible
o Variations of multipliers (e.g., dot product) can be verified

> Implementing using a rewriter helped with these three.

o Needs to verify designs very quickly
o Program itself needs to be correct and verified

> Verifiability and proof-time performance were sometimes at odds with each other.

Multiplier Verification on ACL2 May 27, 2022 (ACL2 2022) 2/7

Example Conjecture to Prove

Our goal is to prove such conjectures:
(defthm multiplier_is_correct
(implies (and (integerp a)
(integerp b))
(equal (svl-run (list a b) <signed_64x64_mult>)
(loghead 128
(» (logext 64 a)
(logext 64 b))))))

Statement of this conjecture can be changed to, say:
o have a specification for multiply-accumulate, dot-product...

o use a different design simulator.

Multiplier Verification on ACL2 May 27, 2022 (ACL2 2022) 3/7

Verification Flow

Target Multiplier Design in Verilog

|

Verilog to SVL netilist

Verify Adder Conjecture

Rewrite Adder
: Specification
State Correctness :
Conjecture for Each [——: l
Adder Module '

Simplify Adder Syntactic
Module Comparison

Verify Multiplier Conjecture

— Rewrite Mult. |
: Simplify Specification |}
H Summation '
State Correctness ' Trees
Conjecture for the l H
Multiplier Module : :
Simplify Syntactic
: Partial Comparison |
Products H

Multiplier Verification on ACL2 May 27, 2022 (ACL2 2022) 4/7

Rewriter Flow

User states a conjecture
for a multiplier design

l

RP-Rewriter scans
existing rewrite and meta
rules in the system

l

RP-Rewriter rewrites new
Rewrite the adder module | (sub)terms that appearin [————

to their specification from] the current conjecture [~—— | Apply other applicable
the previous step rewrite or meta rules

Return the current term

Expand SVL functions to Call the meta functions

create ACL2 expressions to apply the multiplier

from the circuit definition simplification algorithm
Convert SVL derived

ACL2 expressions to
expressions recognized
by the multiplier
verification library

Multiplier Verification on ACL2 May 27, 2022 (ACL2 2022) 5/7

Challenges

Some of the challenges when developing this method:

o Multipliers are DAG, but rewriter works on terms as trees.
> Solution: make sure unique expressions are rewritten only once.

o Only unmodifiable linked-lists are allowed.
> Solution: Meta-functions to reduce rewriting steps

o The simplification algorithm rewrites two-valued functions to high-level arithmetic
functions: makes it difficult to detect some terms are still two-valued.

> Solution: Use RP-Rewriter's side-conditions feature to attach and remember
properties.

o Comparison of large terms are expensive.

> Solution: Calculate and attach hash values to terms as an extra logically redundant
argument. E.g., (s args) — (s hash args)

Multiplier Verification on ACL2 May 27, 2022 (ACL2 2022) 6/7

Conclusions

o An efficient method to verify integer multipliers. Compared to the other state-
of-the-art tools:

> It can verify large multipliers in a much shorter amount of time;
> It has wider applicability;

> It is used in real-world designs, and;

> It is verified.

o A simple term-rewriting approach successfully working on a widely-known prob-
lem

o An example of how a theorem prover can be used to implement a program
competing with other tools

Multiplier Verification on ACL2 May 27, 2022 (ACL2 2022) 7/7

