
Verified Implementation of an Efficient Term-Rewriting
Algorithm for Multiplier Verification on ACL2

Mertcan Temel1,2

mert@utexas.edu

1University of Texas at Austin, Austin, TX, USA

2Intel Corporation, Austin, TX, USA

May 27, 2022 (ACL2 2022)

Mertcan Temel Multiplier Verification on ACL2 May 27, 2022 (ACL2 2022) 0 / 7

mert@utexas.edu


Introduction

o Integer multipliers have been around a long time but their verification is still
hard.

I An infamous, easy-to-state hardware verification problem
I Booth Encoding and Wallace tree design algorithms make them harder to verify
I SAT Solvers, BDDs etc. blow up for even small designs

o My PhD work proposed an efficient, rewrite-based method that is:
I widely applicable (tested for 250+ benchmarks),
I scalable (1024x1024-bit multipliers proved in 5 minutes),
I provably correct (multiplier verification procedure is verified using ACL2)

o Today, I will talk about the implementation details instead of the rewrite
algorithm itself.

I See our CAV20 and FMCAD21 papers for the high-level algorithm

Mertcan Temel Multiplier Verification on ACL2 May 27, 2022 (ACL2 2022) 1 / 7



Implementation Goals

o Easily pluggable to different simulators: the DE system, SVL, SVTV ...

o Verification algorithm should be easily modifiable/extensible

o Variations of multipliers (e.g., dot product) can be verified

I Implementing using a rewriter helped with these three.

o Needs to verify designs very quickly

o Program itself needs to be correct and verified

I Verifiability and proof-time performance were sometimes at odds with each other.

Mertcan Temel Multiplier Verification on ACL2 May 27, 2022 (ACL2 2022) 2 / 7



Example Conjecture to Prove

Our goal is to prove such conjectures:

(defthm multiplier_is_correct
(implies (and (integerp a)

(integerp b))
(equal (svl-run (list a b) <signed_64x64_mult>)

(loghead 128
(* (logext 64 a)

(logext 64 b))))))

Statement of this conjecture can be changed to, say:

o have a specification for multiply-accumulate, dot-product...

o use a different design simulator.

Mertcan Temel Multiplier Verification on ACL2 May 27, 2022 (ACL2 2022) 3 / 7



Verification Flow

Mertcan Temel Multiplier Verification on ACL2 May 27, 2022 (ACL2 2022) 4 / 7



Rewriter Flow

Mertcan Temel Multiplier Verification on ACL2 May 27, 2022 (ACL2 2022) 5 / 7



Challenges

Some of the challenges when developing this method:

o Multipliers are DAG, but rewriter works on terms as trees.
I Solution: make sure unique expressions are rewritten only once.

o Only unmodifiable linked-lists are allowed.
I Solution: Meta-functions to reduce rewriting steps

o The simplification algorithm rewrites two-valued functions to high-level arithmetic
functions: makes it difficult to detect some terms are still two-valued.

I Solution: Use RP-Rewriter’s side-conditions feature to attach and remember
properties.

o Comparison of large terms are expensive.
I Solution: Calculate and attach hash values to terms as an extra logically redundant

argument. E.g., (s args) → (s hash args)

Mertcan Temel Multiplier Verification on ACL2 May 27, 2022 (ACL2 2022) 6 / 7



Conclusions

o An efficient method to verify integer multipliers. Compared to the other state-
of-the-art tools:

I It can verify large multipliers in a much shorter amount of time;
I It has wider applicability;
I It is used in real-world designs, and;
I It is verified.

o A simple term-rewriting approach successfully working on a widely-known prob-
lem

o An example of how a theorem prover can be used to implement a program
competing with other tools

Mertcan Temel Multiplier Verification on ACL2 May 27, 2022 (ACL2 2022) 7 / 7


