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ACL2

• Many solutions in the ACL2 community books (some even ours)

• “Trend” towards Russinoff’s definition

• Define the function (least-divisor k n)

• (primep p) ≡ (= (least-divisor 2 p) p)



Prime Fields

• If n ≥ 2 is an integer, the group Z/nZ is an additive group with elements
{0, 1, . . . , n − 1} using arithmetic modulo n

• If p is a prime, Z/pZ is actually a field with elements {0, 1, . . . , p − 1} using
arithmetic modulo p

• The multiplicative subgroup of this field is called (Z/pZ)∗ and it has the
elements {1, . . . , p − 1} with operation multiplication modulo p



Fermat’s Little Theorem

Theorem (Fermat’s Little Theorem)

If p is a prime number, and a ∈ (Z/pZ)∗, then ap−1 ≡ 1 (mod p).



Fermat’s Little Theorem

Theorem (Fermat’s Little Theorem)

If p is a prime number, and a ∈ (Z/pZ)∗, then ap−1 ≡ 1 (mod p).

Example: 47−1 ≡ 46 ≡ 4096 ≡ 1 (mod 7) because 4095 = 7 × 585.



Order of an Element

Definition
If p is a prime number, and a ∈ (Z/pZ)∗, then the order of a, written ord(a), is the
least positive integer k such that ak ≡ 1 (mod p).



Order of an Element

Definition
If p is a prime number, and a ∈ (Z/pZ)∗, then the order of a, written ord(a), is the
least positive integer k such that ak ≡ 1 (mod p).

In ACL2, build a function that computes the list [a1, a2, . . . , ak ] until either ak = 1 or
k = p − 1.

The order of a is the length of this list. This works because of Fermat’s Little
Theorem, which guarantees ord(a) ≤ p − 1.

Immediately, aord(a) ≡ 1 (mod p).
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• Remember we compute the list [a1, a2, . . . , ak ] where the only 1 is at the end
• Computing higher powers is equivalent to appending this list repeatedly
• The only 1s appear at multiples of k



Properties of Element Order

• Remember we compute the list [a1, a2, . . . , ak ] where the only 1 is at the end
• Computing higher powers is equivalent to appending this list repeatedly
• The only 1s appear at multiples of k

• If an ≡ 1, then ord(a) | n
• In particular, ord(a) | p − 1 (Lagrange & Fermat)



Another Property of Element Order

ord(a−1) = ord(a)
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Another Property of Element Order

ord(a−1) = ord(a)

This uses the fact that inverses are unique.

(defthmd order-inv
(implies (and (fep a p)

(not (equal 0 a))
(primep p))

(equal (order (inv a p) p)
(order a p)))

:hints ...)



The Defining Property of Element Order

(defthmd smallest-pow-eq-1-is-order
(implies (and (fep a p)

(not (equal 0 a))
(primep p)
(posp n)
(equal (pow a n p) 1)
(not (exists-smaller-power-eq-1 a p n)))

(equal (order a p) n))
:hints ...)



Primitive Roots

Definition
If p is a prime number, and g ∈ (Z/pZ)∗, then g is a primitive root of p if all
elements a ∈ (Z/pZ)∗ can be written as a = gn for some n.

This means that
{g1, g2 . . . , gp−1} = {1, 2, . . . , p − 1}

so all the powers of g are distinct, and ord(g) = p − 1.



Primitive Roots

Definition
If p is a prime number, and g ∈ (Z/pZ)∗, then g is a primitive root of p if all
elements a ∈ (Z/pZ)∗ can be written as a = gn for some n.

This means that
{g1, g2 . . . , gp−1} = {1, 2, . . . , p − 1}

so all the powers of g are distinct, and ord(g) = p − 1.

Definition
If p is a prime number, and g ∈ (Z/pZ)∗, then g is a primitive root of p if
ord(g) = p − 1.
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Detour Alert: Polynomials

Quick Detour: Consider polynomial congruences

a0 + a1x + · · ·+ an−1xn−1 + anxn ≡ 0 (mod p)

We are interested in the number of distinct roots of such polynomials.

But notice that x2 + 2 has no roots among the reals

But it does have a root mod 11.



Roots of Products of Polynomials

Suppose x is a root of P(x)Q(x), i.e., a solution of

P(x)Q(x) ≡ 0 (mod p)

Then either x is a root of P(x) or x is a root of Q(x)



Roots of Products of Polynomials

Suppose x is a root of P(x)Q(x), i.e., a solution of

P(x)Q(x) ≡ 0 (mod p)

Then either x is a root of P(x) or x is a root of Q(x)

Moreover #PQ ≤ #P +#Q, where #P means number of distinct roots of P



Roots of Linear Polynomials

Suppose a is a root of a non-trivial linear polynomial P(x) = a0 + a1x , where
a1 ∕≡ 0 (mod p)

Then a = −a0a−1
1 mod p

So the number of roots of a non-trivial linear polynomial is exactly one
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Roots of Polynomials

Suppose a is a root of

P(x) = a0 + a1x + · · ·+ an−1xn−1 + anxn ≡ 0 (mod p)

Using polynomial division, we can write P(x) = (x − a)Q(x) where

Q(x) = b0 + b1x + · · ·+ bn−1xn−1

Observation: If x is a root of P(x) then either x = a or x is a root of Q(x)
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Roots of Polynomials

Suppose P(x) is a non-trivial polynomial of degree n ≥ 1.

Claim: The number of distinct roots of P(x) is at most n

If n = 1, then we already know P(x) has exactly one root

If n > 1 but P(x) has no roots, then the number of roots of P is at most n

If n > 1 and a is a root of P(x), then P(x) = (x − a)Q(x) and

#P(x) ≤ #(x − a) + #Q(x) ≤ 1 + n − 1 = n



Fermat’s Little Theorem (Again)

Consider the polynomial congruence

xp−1 − 1 ≡ 0 (mod p)

By Fermat’s Little Theorem, this polynomial has precisely p − 1 roots!
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The Punch Line

Now suppose d | p − 1 and consider

xd − 1 ≡ 0 (mod p)

We have that cd = p − 1 for some choice of c, and we can show that

xp−1 − 1 = xcd − 1 = (xd − 1)(1 + xd + x2d + · · ·+ x (c−1)d)

The polynomial on the left has precisely p − 1 roots

The polynomial product on the right has at most d + (c − 1)d distinct roots

d + (c − 1)d = d + cd − d = cd = p − 1



The Punch Line

Now suppose d | p − 1 and consider

xd − 1 ≡ 0 (mod p)

We have that cd = p − 1 for some choice of c, and we can show that

xp−1 − 1 = xcd − 1 = (xd − 1)(1 + xd + x2d + · · ·+ x (c−1)d)

The polynomial on the left has precisely p − 1 roots

The polynomial product on the right has at most d + (c − 1)d distinct roots

d + (c − 1)d = d + cd − d = cd = p − 1

So both polynomials in the product have to have their maximum number of roots

In particular, xd − 1 has exactly d roots



The Punch Line Translated to ACL2

(defthm num-roots-fermat-poly-divisor-implicit
(implies (and (posp d)

(primep p)
(divides d (1- p)))

(equal (pfield-polynomial-num-roots (fermat-poly d) p)
d))

:hints ...)
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The Strategy

We want to find an x such that ord(x) = p − 1

The strategy is to start with elements of smaller order, and combine them to create
an element of larger order

If we keep doing this, we’ll end up with the desired element of order p − 1 (the
highest possible)
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Products

Suppose ord(a) = m and ord(b) = n

What can we say about ord(ab)?

In some cases, the order is mn

But in others it’s 1, e.g., if b = a−1

It works right when gcd(m, n) = 1



Products when Orders Are Relatively Prime (1)
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Products when Orders Are Relatively Prime (1)

Suppose ord(a) = m, ord(b) = n, and gcd(m, n) = 1

The Easy Direction:

(ab)mn ≡ amnbmn ≡ 1 (mod p)

So ord(ab) | mn = ord(a) ord(b)
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Suppose (ab)k ≡ 1 (mod p)

Then akbk ≡ 1 (mod p), so ak = (b−1)k

And that means ank = (b−1)nk = 1
So ord(ak ) | n
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Products when Orders Are Relatively Prime (2)

Suppose ord(a) = m, ord(b) = n, and gcd(m, n) = 1

The Hard Direction:

Suppose (ab)k ≡ 1 (mod p)

Then akbk ≡ 1 (mod p), so ak = (b−1)k

And that means ank = (b−1)nk = 1
So ord(ak ) | n

And trivially ord(ak ) | m

Since gcd(m, n), this means ord(ak ) = 1, and that means ak = bk = 1
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Products when Orders Are Relatively Prime (3)

Suppose ord(a) = m, ord(b) = n, and gcd(m, n) = 1

From the assumption that (ab)k = 1, we now know that ak = bk = 1

Which means that m | k and n | k

Since gcd(m, n), this means mn | k

The only constraint on k was that (ab)k = 1, so letting k = ord(ab) we see that

ord(a) ord(b) = mn | k = ord(ab)

Combining the two parts

ord(ab) = ord(a) ord(b)



Products when Orders Are Relatively Prime

(defthm construct-product-order
(implies (and (primep p)

(fep a p)
(not (equal 0 a))
(fep b p)
(not (equal 0 b))
(relatively-primep (order a p) (order b p)))

(equal (order (mul a b p) p)
(* (order a p)

(order b p))))
:hints ...)
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Element of Prime Power Order (1)

Now for any prime q, we find an element with order qk whenever qk | p − 1

(Note that if qk ∤ p − 1, then there cannot be any element of order qk )

Suppose that x is such that xqk ≡ 1 (mod p)

Then ord(x) | qk , which means that ord(x) is one of

1, q, q2, . . . , qk

We show that in ACL2 by explicitly finding the exponent, which is
(number-of-powers (order x p) q)
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If xqk ≡ 1 (mod p), then ord(x) is one of 1, q, q2, . . . , qk
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≡ xqi qj−i

≡
!

xqi
"qj−i

≡ 1qj−i

≡ 1 (mod p)



Element of Prime Power Order (2)

We are looking for an element with order qk , where qk | p − 1

If xqk ≡ 1 (mod p), then ord(x) is one of 1, q, q2, . . . , qk

Suppose ord(x) = qi , with i < k . Then for any j > i ,

xqj ≡ xqi+j−i

≡ xqi qj−i

≡
!

xqi
"qj−i

≡ 1qj−i

≡ 1 (mod p)

In particular, if ord(x) = qi , with i < k then xqk−1 ≡ 1 (mod p)
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We now that if we find an x such that
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Then in fact ord(x) = qk
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This is where we use The Punch Line!
Since there are qk roots of xqk − 1, there are qk possible xs that work for the first
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Element of Prime Power Order (3)

We are looking for an element with order qk , where qk | p − 1

We now that if we find an x such that

xqk ≡ 1 (mod p)

xqk−1 ∕≡ 1 (mod p)

Then in fact ord(x) = qk

This is where we use The Punch Line!
Since there are qk roots of xqk − 1, there are qk possible xs that work for the first
(Note that we are surreptitiously using the fact that qk | p − 1)

Similarly, there are qk−1 that falsify the second equality
So there are qk − qk−1 that work for both!



Element of Prime Power Order

(defthm order-is-prime-power
(implies (and (primep p)

(primep q)
(natp n)
(divides (expt q n) (1- p)))

(and (fep (witness-with-order-qˆn q n p) p)
(not (= 0 (witness-with-order-qˆn q n p)))
(equal (order (witness-with-order-qˆn q n p) p)

(expt q n))))
:hints ...)
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Existence of Primitive Roots (1)

Start with a prime p

Then consider p − 1 and factor that into prime powers

p − 1 = p1
k1 × p2

k2 × · · ·× pm
km

For each pi
ki there is a ci such that ord(ci) = pi

ki

Let c = c1 × c2 × · · ·× cm
Then ord(c) = p1

k1 × p2
k2 × · · ·× pm

km = p − 1

So c is a primitive root of p



Existence of Primitive Roots (2)

(defun primitive-root-aux (k p)
(if (or (zp k) (= 1 k))

1
(let* ((q (least-divisor 2 k))

(n (number-of-powers k q))
(k1 (/ k (expt q n))))

(mul (witness-with-order-qˆn q n p)
(primitive-root-aux k1 p)
p))))

Proving that this function terminates on all inputs is non-trivial



Existence of Primitive Roots (3)

(defthm primes-have-primitive-roots-aux
(implies (and (primep p)

(natp k)
(divides k (1- p)))

(equal (order (primitive-root-aux k p) p)
k))

:hints ...)

This uses an induction scheme suggested by primitive-root-aux



Existence of Primitive Roots (4)

Many technical lemmas are required, including

• the arithmetic functions return elements in the multiplicative group (Z/pZ)∗,
• in particular the result of those operations is never 0,
• the number kq−n divides p − 1 whenever k divides p − 1,
• and the gcd of qn and k/q−n is 1.



Existence of Primitive Roots (5)

(defund primitive-root (p)
(primitive-root-aux (1- p) p))

(defthm primes-have-primitive-roots
(implies (primep p)

(equal (order (primitive-root p) p)
(1- p)))

:hints ...)

This is just a simple corollary of the previous theorem, and is a good example of
the paradox of induction:

• It’s often easier to prove a more general theorem.



Conclusion (and a Cry for Help)

• ACL2 can be very effective reasoning about number theory and group theory
• The proof above used many basic facts of both
• It would have been much easier if those basic facts were already known to

ACL2
• It’s time to build some foundational libraries of these, making it easier to

reason about cryptography (say)


