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Asymptotic Complexity

Asymptotic complexity: a systematic approach to characterizing
the limiting behavior of a function as its argument tends toward
infinity.

A collection of notations, collectively called Bachmann-Landau
notations allow characterizing the behavior of one function in
terms of another:

O(g(n)) (Big-O): the set of functions asymptotically upper
bounded by g(n).
Ω(g(n)) (Big Omega): functions lower bounded by g(n).
Θ(g(n)) (Big Theta): functions upper and lower bounded by
g(n).

There are also corresponding “little” notations that provide strict
bounds.
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Big-O

Most common is the big-O notation for estimating an upper bound
on the time or space complexity of an algorithm.

Definition: Let f and g be functions f , g : N → R+. We
say that f (n) = O(g(n)) if there exist positive integers c
and n0 such that for every integer n ≥ n0,

f (n) ≤ c · g(n).

When f (n) = O(g(n)) we say that g(n) is an asymptotic upper
bound for f (n)).
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The Goal of this Research

The goal of this research: formalize and prove Big-O properties of
algorithms using ACL2.

How to characterize the algorithms;
How to express the higher-order notion of Big-O in ACL2;
How to count “steps” in the execution;
How to prove that the number of steps is O(g(n)), for some
g(n).
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The Language

We embed a simple imperative language in ACL2 via an
operational semantics.

Consists of:
expression sublanguage: literals, variables, arithmetic and
logical expressions;
statements: skip, assign, return, if-else, while, sequence.
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The Operational Semantics

The semantics is provided by an typical interpreter function:

(run stmt status vars steps count)

where:
stmt: the statement to execute;
status: the current state of the execution (only proceeds if
status is ’OK);
vars: a variable alist;
steps: a running count of the number of execution steps;
count: the clock argument to guarantee termination.

It returns a triple:

(status, vars, steps)
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Semantics

(defun run (stmt status vars steps count)
(if (not (okp status))

(mv status vars steps)
(if (zp count)

(mv ’timed-out vars steps)
(case

(operator stmt)
...

(while (mv-let (test-stat test-val test-steps)
(exeval (param1 stmt) t vars)
(if (not test-stat)

(run-error vars)
(if test-val

(mv-let (body-stat body-vars body-steps)
(run (param2 stmt) status vars

(+ 1 steps test-steps)
count)

(run stmt body-stat body-vars
body-steps
(1- count)))

(mv ’ok vars (+ 1 test-steps steps))))))
(otherwise (run-error vars))))))
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Binary Search: Python Version

def BinarySearch( key, lst ):
low = 0
high = len(lst) - 1
while (high >= low):

mid = (low + high) // 2
if key == lst[mid]:

return mid
elif key < lst[mid]:

high = mid - 1
else:

low = mid + 1
return -1
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Binary Search: Our Version

Here’s a hand translation of the Python Binary Search routine into
our simple iterative language:

(defun binarysearch (key lst)
‘(seqn (assign (var low) (lit . 0))

(assign (var high) (- (len ,lst) (lit . 1)))
(while (<= (var low) (var high))

(seq (assign (var mid)
(// (+ (var low) (var high)) (lit . 2)))

(if-else (== ,key (ind (var mid) ,lst))
(return (var mid))
(if-else (< ,key (ind (var mid) ,lst))

(assign (var high)
(- (var mid) (lit . 1)))

(assign (var low)
(+ (var mid) (lit . 1)))))))

(return (lit . -1)))))
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Executing our Program

ACL2 !>(run (binarysearch ’(lit . 4)
’(lit . (0 1 2 3 4 5 6 7)))

’OK nil 0 10)
(RETURNED ((LOW . 4)

(HIGH . 4)
(MID . 4)
(RESULT . 4))

77)

ACL2 !>(run (binarysearch ’(var key) ’(var lst))
’OK ’((key . 4) (lst . (0 1 3 5 7 9 10))) 0 10)

(RETURNED ((KEY . 4)
(LST 0 1 3 5 7 9 10)
(LOW . 3)
(HIGH . 2)
(MID . 2)
(RESULT . -1))

91)
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Our Proof Approach

We prove two things simultaneously:
1 Functional correctness: the program actually computes the

correct result;
2 Asymptotic complexity: the program is a member of a

certain Big-O class.
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Functional Correctness

(defun recursiveBS-helper (key lst low mid high calls)
;; This performs a recursive binary search for key in
;; lst[low..high]. It returns a 5-tuple (success low mid high calls).
;; We need all of those values to do the recursive proof.
(if (or (< high low) (not (natp low)) (not (integerp high)))

(mv nil low mid high calls)
(let ((newmid (floor (+ low high) 2)))

(if (equal key (nth newmid lst))
(mv t low newmid high calls)

(if (< key (nth newmid lst))
(recursiveBS-helper key lst low

newmid (1- newmid) (1+ calls))
(recursiveBS-helper key lst (1+ newmid)

newmid high (1+ calls)))))))

(defun recursiveBS (key lst)
(mv-let (success low mid high calls)

(recursiveBS-helper key lst 0 nil (1- (len lst)) 0)
(declare (ignore low high calls))
(if success mid -1)))
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Relating the Iterative and Recursive Versions

As an example, if (member-equal keyval lstval), where
keyval and lstval are values stored in the alist in appropriate
variables, then the following is true:

(equal (run (binarysearch key lst) ’ok vars 0 count)
(mv-let (success endlow endmid endhigh endcalls)

(recursiveBS-helper keyval lstval
0 nil (1- (len lstval)) 0)

(mv ’returned
(store ’result endmid

(store ’mid endmid
(store ’high endhigh

(store ’low endlow vars))))
(+ 25 (* 26 endcalls)))))

Notice this shows that the iterative and recursive versions are in
lock-step.
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A Simpler Recursive Version

We define a simpler recursive version of binary search, without the
local variables:

(defun recursiveBS2-helper (key lst low high)
(if (or (< high low)

(not (natp low))
(not (integerp high))
)

-1
(let ((newmid (floor (+ low high) 2)))

(if (equal key (nth newmid lst))
newmid

(if (< key (nth newmid lst))
(recursiveBS2-helper key lst low (1- newmid))

(recursiveBS2-helper key lst (1+ newmid) high))))))

(defun recursiveBS2 (key lst)
(recursiveBS2-helper key lst 0 (1- (len lst))))
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Two Values are Equivalent

We prove that the two recursive versions are equivalent:

(defthm recursiveBS-versions-equivalent
(implies (and (number-listp lst)

(acl2-numberp key))
(equal (recursiveBS key lst)

(recursiveBS2 key lst))))

And that the simpler version actually searches:

(defthm recursiveBS2-searches
(implies (and (acl2-numberp key)

(number-listp lst)
(sorted lst))

(let ((index (recursiveBS2 key lst)))
(and (implies (member-equal key lst)

(equal (nth index lst) key))
(implies (not (member-equal key lst))

(equal index -1))))))
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Reminder: Definition of Big-O

Recall our earlier definition of Big-O:

Definition: Let f and g be functions f , g : N → R+. We
say that f (n) = O(g(n)) if there exist positive integers c
and n0 such that for every integer n ≥ n0,

f (n) ≤ c · g(n).

But this is higher order!
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Logarithmic Complexity
So instead of defining function-Big-O, we defined
function-logarithmic:
(defun log2 (n)

(if (zp n)
0

(1+ (log2 (floor n 2)))))

(defun-sk function-logarithmic1 (program log-of c n0 vars count)
(forall (n)

(implies (and (equal n (len log-of))
(<= n0 n))

(mv-let (run-stat run-vars run-steps)
(run program ’ok vars 0 count)
(declare (ignore run-stat run-vars))
(and (<= 0 run-steps)

(<= run-steps (* c (log2 n))))))))

(defun-sk function-logarithmic2 (program log-of vars count)
(exists (c n0)

(and (posp c)
(posp n0)
(function-logarithmic1 program log-of c n0 vars count))))
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Proving It’s Logarithmic

This is the theorem that shows our iterative program is O(log2(n)):
(defthm binarysearch-logarithmic-lemma

(let ((keyval (lookup ’key vars))
(lstval (lookup ’lst vars)))

(implies
(and (acl2-numberp keyval)

(number-listp lstval)
(sorted lstval)
(integerp count)
(not (timed-outp

run-status (run (binarysearch ’(var key) ’(var lst))
’ok vars 0 count)))))

(function-logarithmic2 (binarysearch ’(var key) ’(var lst))
(lookup ’lst vars) vars count))))

I proved a similar theorem for linear search and some other simple
programs.
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Subtleties of the Approach

Counting steps may be useful for other purposes.
But, it’s very sensitive to the way the program is written.
Counting is at the source code level; maybe object code would
be better.
Object level programs could already be optimized.
The proofs are fragile and tedious.

It would be great to find a more robust and less labor intensive
methodology.

The hardest part was proving the equivalence of the iterative and
recursive versions of the program.
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