
Modeling Asymptotic Complexity Using ACL2
ACL2 Workshop 2022

William D. Young
Department of Computer Science

University of Texas at Austin

Last updated: May 25, 2022 at 11:30

1 ACL2 Workshop 2022

Asymptotic Complexity

Asymptotic complexity: a systematic approach to characterizing
the limiting behavior of a function as its argument tends toward
infinity.

A collection of notations, collectively called Bachmann-Landau
notations allow characterizing the behavior of one function in
terms of another:

O(g(n)) (Big-O): the set of functions asymptotically upper
bounded by g(n).
Ω(g(n)) (Big Omega): functions lower bounded by g(n).
Θ(g(n)) (Big Theta): functions upper and lower bounded by
g(n).

There are also corresponding “little” notations that provide strict
bounds.

2 ACL2 Workshop 2022

Big-O

Most common is the big-O notation for estimating an upper bound
on the time or space complexity of an algorithm.

Definition: Let f and g be functions f , g : N → R+. We
say that f (n) = O(g(n)) if there exist positive integers c
and n0 such that for every integer n ≥ n0,

f (n) ≤ c · g(n).

When f (n) = O(g(n)) we say that g(n) is an asymptotic upper
bound for f (n)).

3 ACL2 Workshop 2022

The Goal of this Research

The goal of this research: formalize and prove Big-O properties of
algorithms using ACL2.

How to characterize the algorithms;
How to express the higher-order notion of Big-O in ACL2;
How to count “steps” in the execution;
How to prove that the number of steps is O(g(n)), for some
g(n).

4 ACL2 Workshop 2022

The Language

We embed a simple imperative language in ACL2 via an
operational semantics.

Consists of:
expression sublanguage: literals, variables, arithmetic and
logical expressions;
statements: skip, assign, return, if-else, while, sequence.

5 ACL2 Workshop 2022

The Operational Semantics

The semantics is provided by an typical interpreter function:

(run stmt status vars steps count)

where:
stmt: the statement to execute;
status: the current state of the execution (only proceeds if
status is ’OK);
vars: a variable alist;
steps: a running count of the number of execution steps;
count: the clock argument to guarantee termination.

It returns a triple:

(status, vars, steps)

6 ACL2 Workshop 2022

Semantics

(defun run (stmt status vars steps count)
(if (not (okp status))

(mv status vars steps)
(if (zp count)

(mv ’timed-out vars steps)
(case

(operator stmt)
...

(while (mv-let (test-stat test-val test-steps)
(exeval (param1 stmt) t vars)
(if (not test-stat)

(run-error vars)
(if test-val

(mv-let (body-stat body-vars body-steps)
(run (param2 stmt) status vars

(+ 1 steps test-steps)
count)

(run stmt body-stat body-vars
body-steps
(1- count)))

(mv ’ok vars (+ 1 test-steps steps))))))
(otherwise (run-error vars))))))

7 ACL2 Workshop 2022

Binary Search: Python Version

def BinarySearch(key, lst):
low = 0
high = len(lst) - 1
while (high >= low):

mid = (low + high) // 2
if key == lst[mid]:

return mid
elif key < lst[mid]:

high = mid - 1
else:

low = mid + 1
return -1

8 ACL2 Workshop 2022

Binary Search: Our Version

Here’s a hand translation of the Python Binary Search routine into
our simple iterative language:

(defun binarysearch (key lst)
‘(seqn (assign (var low) (lit . 0))

(assign (var high) (- (len ,lst) (lit . 1)))
(while (<= (var low) (var high))

(seq (assign (var mid)
(// (+ (var low) (var high)) (lit . 2)))

(if-else (== ,key (ind (var mid) ,lst))
(return (var mid))
(if-else (< ,key (ind (var mid) ,lst))

(assign (var high)
(- (var mid) (lit . 1)))

(assign (var low)
(+ (var mid) (lit . 1)))))))

(return (lit . -1)))))

9 ACL2 Workshop 2022

Executing our Program

ACL2 !>(run (binarysearch ’(lit . 4)
’(lit . (0 1 2 3 4 5 6 7)))

’OK nil 0 10)
(RETURNED ((LOW . 4)

(HIGH . 4)
(MID . 4)
(RESULT . 4))

77)

ACL2 !>(run (binarysearch ’(var key) ’(var lst))
’OK ’((key . 4) (lst . (0 1 3 5 7 9 10))) 0 10)

(RETURNED ((KEY . 4)
(LST 0 1 3 5 7 9 10)
(LOW . 3)
(HIGH . 2)
(MID . 2)
(RESULT . -1))

91)

10 ACL2 Workshop 2022

Our Proof Approach

We prove two things simultaneously:
1 Functional correctness: the program actually computes the

correct result;
2 Asymptotic complexity: the program is a member of a

certain Big-O class.

11 ACL2 Workshop 2022

Functional Correctness

(defun recursiveBS-helper (key lst low mid high calls)
;; This performs a recursive binary search for key in
;; lst[low..high]. It returns a 5-tuple (success low mid high calls).
;; We need all of those values to do the recursive proof.
(if (or (< high low) (not (natp low)) (not (integerp high)))

(mv nil low mid high calls)
(let ((newmid (floor (+ low high) 2)))

(if (equal key (nth newmid lst))
(mv t low newmid high calls)

(if (< key (nth newmid lst))
(recursiveBS-helper key lst low

newmid (1- newmid) (1+ calls))
(recursiveBS-helper key lst (1+ newmid)

newmid high (1+ calls)))))))

(defun recursiveBS (key lst)
(mv-let (success low mid high calls)

(recursiveBS-helper key lst 0 nil (1- (len lst)) 0)
(declare (ignore low high calls))
(if success mid -1)))

12 ACL2 Workshop 2022

Relating the Iterative and Recursive Versions

As an example, if (member-equal keyval lstval), where
keyval and lstval are values stored in the alist in appropriate
variables, then the following is true:

(equal (run (binarysearch key lst) ’ok vars 0 count)
(mv-let (success endlow endmid endhigh endcalls)

(recursiveBS-helper keyval lstval
0 nil (1- (len lstval)) 0)

(mv ’returned
(store ’result endmid

(store ’mid endmid
(store ’high endhigh

(store ’low endlow vars))))
(+ 25 (* 26 endcalls)))))

Notice this shows that the iterative and recursive versions are in
lock-step.

13 ACL2 Workshop 2022

A Simpler Recursive Version

We define a simpler recursive version of binary search, without the
local variables:

(defun recursiveBS2-helper (key lst low high)
(if (or (< high low)

(not (natp low))
(not (integerp high))
)

-1
(let ((newmid (floor (+ low high) 2)))

(if (equal key (nth newmid lst))
newmid

(if (< key (nth newmid lst))
(recursiveBS2-helper key lst low (1- newmid))

(recursiveBS2-helper key lst (1+ newmid) high))))))

(defun recursiveBS2 (key lst)
(recursiveBS2-helper key lst 0 (1- (len lst))))

14 ACL2 Workshop 2022

Two Values are Equivalent

We prove that the two recursive versions are equivalent:

(defthm recursiveBS-versions-equivalent
(implies (and (number-listp lst)

(acl2-numberp key))
(equal (recursiveBS key lst)

(recursiveBS2 key lst))))

And that the simpler version actually searches:

(defthm recursiveBS2-searches
(implies (and (acl2-numberp key)

(number-listp lst)
(sorted lst))

(let ((index (recursiveBS2 key lst)))
(and (implies (member-equal key lst)

(equal (nth index lst) key))
(implies (not (member-equal key lst))

(equal index -1))))))

15 ACL2 Workshop 2022

Reminder: Definition of Big-O

Recall our earlier definition of Big-O:

Definition: Let f and g be functions f , g : N → R+. We
say that f (n) = O(g(n)) if there exist positive integers c
and n0 such that for every integer n ≥ n0,

f (n) ≤ c · g(n).

But this is higher order!

16 ACL2 Workshop 2022

Logarithmic Complexity
So instead of defining function-Big-O, we defined
function-logarithmic:
(defun log2 (n)

(if (zp n)
0

(1+ (log2 (floor n 2)))))

(defun-sk function-logarithmic1 (program log-of c n0 vars count)
(forall (n)

(implies (and (equal n (len log-of))
(<= n0 n))

(mv-let (run-stat run-vars run-steps)
(run program ’ok vars 0 count)
(declare (ignore run-stat run-vars))
(and (<= 0 run-steps)

(<= run-steps (* c (log2 n))))))))

(defun-sk function-logarithmic2 (program log-of vars count)
(exists (c n0)

(and (posp c)
(posp n0)
(function-logarithmic1 program log-of c n0 vars count))))

17 ACL2 Workshop 2022

Proving It’s Logarithmic

This is the theorem that shows our iterative program is O(log2(n)):
(defthm binarysearch-logarithmic-lemma

(let ((keyval (lookup ’key vars))
(lstval (lookup ’lst vars)))

(implies
(and (acl2-numberp keyval)

(number-listp lstval)
(sorted lstval)
(integerp count)
(not (timed-outp

run-status (run (binarysearch ’(var key) ’(var lst))
’ok vars 0 count)))))

(function-logarithmic2 (binarysearch ’(var key) ’(var lst))
(lookup ’lst vars) vars count))))

I proved a similar theorem for linear search and some other simple
programs.

18 ACL2 Workshop 2022

Subtleties of the Approach

Counting steps may be useful for other purposes.
But, it’s very sensitive to the way the program is written.
Counting is at the source code level; maybe object code would
be better.
Object level programs could already be optimized.
The proofs are fragile and tedious.

It would be great to find a more robust and less labor intensive
methodology.

The hardest part was proving the equivalence of the iterative and
recursive versions of the program.

19 ACL2 Workshop 2022

