

Using Equivalence Relations
to Capture Define/Use Behaviors

David Greve
 11/13/2023

Background

● Motivation
– Congruence-based rewriting is just so cool
– Equivalence Relations are restrictive
– Def/Use with ‘nary’ library
– Is it possible with equivalence relations?

● Impetus
– ACL2 help request by Mark Greenstreet

Define/Use

● Consider functions that operate over a “state record”

● Use Set
– The fields of a record (or inputs) used by a function

● Def Set
– The fields of a record modified by a function

● Information Flow Specifications
– Dependencies between record fields
– A <= {B,C}
– Live between type specifications and functional specifications

Why do we care?

● Non-interference/Frame Conditions
– Things that don’t change

● Simplification
– Eliminate the things we don’t care about
– Normalize the things we do care about
– BTW: This is why congruences are so great

A State Record

“A-equiv”

A <= {A}

A <= {B,C}

Dual Equivalences (def-equiv)

Extended inc-A contract

Extended A=B+C Contract

Normalization

Still Limitations ..

Conclusion

● Dual equivalence relations (def-equiv)
– Can capture “complex” information flow contracts

● Contracts could be added to function signatures
– (def::un foo (st) (declare (xargs :flows ((a . b c))) ..)

● “Optimal” Simplification
– Would require more powerful/expensive rules

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

