
Inductive Assertion Style

Proofs via Operational

Semantics

J Strother Moore

Department of Computer Sciences
The University of Texas at Austin

September, 2006

1



2



Demo 1

3



4



Our Secret

Pick a traditional mathematical logic, put your

effort into building a powerful symbolic

manipulation engine for it, and get on with the task

of describing and analyzing computing systems.

5



So Much for History...

This talk is about how to do inductive assertion

style proofs with an operational semantic model.

No Floyd-Hoare semantics need be expressed.

No verification condition generator (VCG) need be

defined.

6



Operational Semantics

The semantics of the programming language may

be given by a function run which “interprets” a

program against some state and determines the

“final” state.

run (k, s) =

{

s if k = 0

run (k − 1, step (s)) otherwise

Here, step is the single step state transition

function.

7



Conventions

HALT

program 

pre−condition

loop invariant

post−conditionQ(s)

R(s)

P(s)

h(s)

t

g(s)

f(s)

 assertionspathslabels

α

β

γ

π

VC1. P (s) → R (f (s)),

VC2. R (s) ∧ t → R (g (s)), and

VC3. R (s) ∧ ¬t → Q (h(s)).

8



We assume the program in s, π, does not change

during execution.

Let s0 be the initial state of program π.

pc (s0) = α

Let sk denote run (k, s0).

9



Formally Stated Correctness Theorems

Total:

∃k : P (s0) → (Q(sk) ∧ pc(sk) = γ).

This is sometimes stated without the quantifier as

P (s0) → (Q(run (clock (s0), s0)) ∧ . . .).

Partial:

P (s0) ∧ pc(sk) = γ → Q(sk).

10



Advantages of Operational Semantics

They

• are entirely within a logical framework and so

permit logical analysis of programs by traditional

formal proofs, without introduction of

meta-logical transformers (VCGs),

• are generally executable,

• are easily related to implementations,

• allow derivation of language properties,

11



• may allow derivation of intensional properties

(e.g., how many steps a program takes to

terminate), and

• they allow verification of system hierarchies (e.g.,

the CLI stack).

12



A Disadvantage

Proofs of program properties can be complicated

(or at least appear so) because of the presence of

the interpreter, the program counter, the entire

machine state, and the clock.

The inductive assertion method produces such nice

proof obligations!

13



Conundrum

Can you prove

P (s0) ∧ pc(sk) = γ → Q(sk).

directly – where the only heavy-duty proof work is

proving the verification conditions?

Do you need a trusted VCG?

Can you make the automatic proof attempt

generate the standard verification conditions from

the operational semantics?

14



Caveat

The observations I make below are not deep, but I

think they have important practical implications:

15



Theorem: P (s0) ∧ pc (sk) = γ → Q (sk)

Proof: Define

Inv (s) ≡



















P (s) if pc (s) = α

R (s) if pc (s) = β

Q (s) if pc (s) = γ

Inv (step (s)) otherwise

(Actually, we assert “prog (s) = π” at α, β and γ,

but we omit that here by our convention that the

program is always π.)

16



Theorem: P (s0) ∧ pc (sk) = γ → Q (sk)

Proof: Define

Inv (s) ≡



















P (s) if pc (s) = α

R (s) if pc (s) = β

Q (s) if pc (s) = γ

Inv (step (s)) otherwise

Objection: Is this definition consistent? Yes: Every

tail-recursive definition is witnessed by a total

function. (Manolios and Moore, 2000)

17



Theorem: P (s0) ∧ pc (sk) = γ → Q (sk)

Proof: Define

Inv (s) ≡



















P (s) if pc (s) = α

R (s) if pc (s) = β

Q (s) if pc (s) = γ

Inv (step (s)) otherwise

Assume

Inv (s) → Inv (step (s)).

We’ll see the proof in a moment.

18



Theorem: P (s0) ∧ pc (sk) = γ → Q (sk)

Proof: Define

Inv (s) ≡



















P (s) if pc (s) = α

R (s) if pc (s) = β

Q (s) if pc (s) = γ

Inv (step (s)) otherwise

Thus Inv (s0) → Inv (sk).

But pc (s0) = α and pc (sk) = γ.

Thus Inv (s0) = P (s0) and Inv (sk) = Q (sk). 2

19



Lemma: Inv (s) → Inv (step (s))

Proof: Consider cases on pc (s) as suggested by def

Inv . 2

Inv (s) ≡



















P (s) if pc (s) = α

R (s) if pc (s) = β

Q (s) if pc (s) = γ

Inv (step (s)) otherwise

20



Inv (s) → Inv (step (s))

HALT

program 

pre−condition

loop invariant

post−conditionQ(s)

R(s)

P(s)

h(s)

t

g(s)

f(s)

 assertionspathslabels

α

β

γ

π

Inv (s) ≡



















P (s) if pc (s) = α

R (s) if pc (s) = β

Q (s) if pc (s) = γ

Inv (step (s)) otherwise

21



Inv (s) → Inv (step (s))

case subgoal generated by expanding Inv

pc (s) = α: P (s) → R (f (s))

pc (s) = β: R (s) ∧ t → R (g (s)), and

R (s) ∧ ¬t → Q (h(s))

pc (s) = γ: step (s) = s

otherwise: Inv (s) = Inv (step (s))

22



Recap: Given the definition of Inv , the “natural”

proof of

Inv (s) → Inv (step (s))

generates the standard verification conditions

VC1. P (s) → R (f (s)),

VC2. R (s) ∧ t → R (g (s)), and

VC3. R (s) ∧ ¬t → Q (h(s))

as subgoals from the operational semantics!

No VCG is necessary. The VCs are simplified as

they are generated.

23



A Demonstration

• Java and the JVM – a program π to compute n/2

• a pre-existing operational semantics for the JVM

• execution of the operational semantics

• an inductive invariant proof of partial correctness

24



Java and the JVM

.java

Theorems

.class

.lisp ACL2

‘‘pi(246)=123’’

‘‘pi(n)=n/2’’

jvm2acl2

javac

25



JVM Operational Semantics

Our “M6” model is based on an implementation of

the J2ME KVM. It executes most J2ME Java

programs (except those with significant I/O or

floating-point).

M6 supports all CLDC data types, multi-threading,

dynamic class loading, class initialization and

synchronization via monitors.

26



We have translated the entire Sun CLDC API

library implementation into our representation with

672 methods in 87 classes. We provide

implementations for 21 out of 41 native APIs that

appear in Sun’s CLDC API library.

We prove theorems about bytecoded methods with

the ACL2 theorem prover.

This work was supported by a gift from Sun

Microsystems.

27



Disclaimers about Our JVM Model

Our thread model assumes

• sequential consistency and

• atomicity at the bytecode level.

This inductive assertion work does not exercise the

thread model.

28



Demo 2

29



Discussion

We did not write a VCG for the JVM.

The VCs were generated directly from the

operational semantics by the theorem prover.

Since VCs are generated by proof, the paths

explored and the VCs generated are sensitive to the

pre-condition specified.

The VCs are simplified (and possibly proved) by the

same process.

We did not count instructions or define a “clock

30



function.”

We did not constrain the inputs so that the

program terminated.

We have also handled total correctness via the VCG

approach; a decreasing ordinal measure is provided

at each cut point. “Clock functions” can be

automatically generated and admitted from such

proofs.

31



Primary Citation

J S. Moore, “Inductive Assertions and Operational

Semantics,” CHARME 2003, D. Geist (Ed.),

Springer Verlag LNCS 2860, pp. 289–303, 2003.

32



Other Examples

Nested loops are handled exactly as by standard

VCG methods.

public static int tfact(int n){ /* Factorial by repeated addition. */

int i = 1; /* Verified using inductive assertions */

int b = 1; /* by Alan Turing, 1949. */

while (i<=n){

int j = 1;

int a = b;

while (j < i) {

b = a+b;

j++;

};

i++;

};

return b;

}

33



Recursive methods can be handled.

public static int fact(int n){

if (n>0)

{return n*fact(n-1);}

else return 1;

}

To handle recursive methods we

• modify run to terminate upon top-level return,

and

• add a standard invariant about the shape of the

JVM call stack.

34



Conclusion

If you have

• a theorem prover and

• a formal operational semantics,

you can prove formally stated partial program

correctness theorems using inductive assertions

without building or verifying a VCG.

35



Related Work

P. Y. Gloess, “Imperative Program Verification in

PVS,” École Nationale Supérieure Électronique,

Informatique et Radiocommunications de Bordeaux,

1999.

P. Homeier and D. Martin, “A Mechanically

Verified Verification Condition Generator,” The

Computer Journal, 38(2), pp. 131–141, July 1995.

P. Manolios and J Moore, “Partial Functions in

ACL2,” JAR 2003.

36



J. Matthews, J S. Moore, S. Ray, and D. Vroon:

“Verification Condition Generation via Theorem

Proving,” to appear in M. Hermann and A.

Voronkov, editors, Proceedings of the 13th

International Conference on Logic for Programming,

Artifical Intelligence, and Reasoning (LPAR 2006),

Phnom Penh, Cambodia, November 2006,

Springer-Verlag.

37


