
The 77-Editor

·- Bob Boyer

J Moore

Julian Davies

Department of Computational Logic Memo 62

School of Artificial Intelligence

Edinburgh

February 1973

:f\
~.::.;,¥ We suggest you insert this document in your USER'S MANUAL.

@) Program and document copyright by Boyer, Moore, and Davies. 1973

This document is published also as a

School of Artificial Intelligence,

Categor,y 2 publication. This is a

provisional description for software

material made available for general

information but is not an official

component of the School Console Manual

and is not maintained by the School

Systems Programm.era.

INTRODUCTION

This editor is actually a totally integrated part of the multi

aceess system. The primary features of the editor are:

(1) Text. is held in an expandable buffer which m~

be scanned and modified repeatedly in either

direction.

(2') When "in" the editor, one is actually in a very

special POPVAL which simulates the top-level of

the POP-2 operating system. The only differences

between these two states is that in the editor

errors do not cause SETPOP to occur, and certain

identifiers are interpreted as edit commands.

Arbitrary pieces of POP-2 text may be typed and

executed.

(3) The edit commands are POP-2 operations which take

string, word, numeric, or functional arguments.

Thus, it is possible to freely mix POP-2 and edit

commands (there is no distinction) to define new

commands or perform repetitive sequences of commands.

(4) Text may be compiled directly from the buffer. This

parmi ts testing and debugging of func ti om without

recompiling the whole file from disc. Syntax mistakes

are easier to find because the editor "points" to the

last character read by the compiler if it chokes.

(5) It is possible to "undo" the effects of the last n

edit commands which inserted or deleted text in the

buffer. Thus it is easy to recover from mistyped or

INTRODUCTION -2

misguided modifications. The integer n

is set by the user.

(6) Facilities are provided for easily finding

function definitions and for manipulating them

as units of text. This holds for other pieces

of POP-2 syntax that represent balanced structures:

LAMBDA, IF-THEN-ELSE, open brackets, etc.

EDIT ENVIRONMENT

In order to keep edit commands as short as possible and not conflict

with operators and functions defined by the user, all edit identifiers

are prefixed with the letters "ED" • To save the user the trouble of

typing ED in front of each command however, a special mode is provided

which appears to be the top-level of the operating system, but which

automatically prefixes any identifier which corresponds to an edit

command by ED. To enter this mode, type ED.

Once "in" the edit environment, life is just as it was outside

except that:

(1) Edit commands are available in their non-prefixed form.

(2) SETPOP is avoided to prevent unwanted exiting from the

edit interpreter. ERRORs cause both the user's and the

auxilary stack to be cleared, and all executing functions

except the editor are aborted.

To exit the edit environment, ~pe CTRL G, or SETPOP();, or

CL~OP();. (not recommended operating procedure) or type GOON

at the top·-level.

EDIT ENVIRONMENT-2

The editor may be entered and exited freely without changing

the buffer which contains the text. So that if in the middle of

an edit you wish to return to the real top-level (this is sometimes

desired, even though you can execute arbitra~ POP-2 text in edit

mode, e.g., you might wish to leave the edit mode to call a fUnction

which you have defined which has the same name as an unprefixed

edit command) you may type CTRL G to do so, and resume your editing

where you left off by typing ED later. Also, accidental CTRL G' s

don't hurt a~thing, just t,ype ED a~ain.

Unlike POPEDIT, when in the editor, one is not restricted to

typing edit commands. If you wish to output a file, change traCks,

compile a function (either as a command you are going to be using

repeatedly or to test a new component of your own program), experiment

with acceptable POP-2 syntax before typing it into your file,

inspect the contents of other files (or edit them) or run your program,

you are free to t.ype the appropriate text and have it executed.

However, if you type V; (which out~ide the editor might just be an

identifier with a numeric value, and would mean, "put the value of "V"

on the s. tack") the editor types out the current line; if you type

I'FOO'; the text 'FOO' is inserted into the buffer; and if you type

SEB FOO; the editor searches backwards for the end of the fUnction

definition of FOO (if FOO is a fUnction).

The prefixed versions of edit commands are available outside

edit mode. That is, once the editor is compiled, you can use the

operations EDV, EDI, and EDS'EB just as you would use V, I, and SEB

in edit mode.

THE BUFFER AND POSITION POINTER

When you wish to edit a file you type IT filename;, where

filename is the name of the file to be edited. This inserts the

characters into "the buffer", which is conceptually an elastic

character strip (but actually a structure composed of POP-2 records

which refer to disc sectors or user-typed character strips to be

inserted). You may then freely modi~ the contents of the buffer,

and when you are satisfied with it, write it back to your disc track.

There is a "pointer", printed aL "'t", which marks the current

position in the buffer. It is at this point that insertions or

deletions occur. However, you arefree to move the pointer at. will

throughout the buffer· Commands that move the pointer include

the search commands (which position the pointer in front or in back

of specified units of text in the buffer) and explicit move commands

(like, F 3; which means, go forward 3 characters, or 1(-~; which means

go 4 lines back). You are also able to discover how many characters

f'rom the top of' the buf'f'er you are, so as,to "r:.::be:" a posi(}~ F'A,;.('~- -

and return to it later. (.rust call H.) (V'~c-(;.t..V ~
You can print text from anywhere in the buffer (or even go to

other places in the buffer (or even other files) and pick up text

and move it~ Since you are free to move backwards as well as forwards

you can inspect previously edited portions of the buffer and re-edit

them. Nothing is written out until you give an output command.

Because the buffer actually refers to the sectors on the disc

from which the file came, it is important to avoid DTIDY while editing.

To facilitate ti~ing a track (for instance, to make enough room to

output the buffer to it) the command EDTIDY (just TIDY in edit mode)

is provided. It is described in detail later.

SYNTAX OF EDIT COMMANDS

Since edit commands are POP-2 operators, their syntax is

incredibly free-form. We wish to encourage you to adopt whatever

st,yle is most convenient for you.

Since they are operators it is not necessa~ to type parentheses

or dots to cause them to ba evaluated. However, you can always treat.

them as functions if you wish. (That is, typing V(}; or .v; is

exactly the same as typing V;.)

The following are all equivalent ways to exchange the next

occurence of the word "FOO" for the string 'BAR' :

"FOO" X 'BAR' ;

"FOO"X'BAR' ;

"FOO", 'BAR 'X;

X("FOO", 'BAR');

"FOO", 'BAR' ,X;

"FOO", 'BAR' ,X();

"FOO", 'BAR' .X;

APPLY("FOO", 'BAR' ,NONOP X) ;

etc.

Just be sure the arguments get on the stack before the command is

executed.

We have discovered that the simplest sane syntax is to type the

commands in the order they are to be evaluated, with no dots or parens,

with all arguments and commands separated by commas. Terminate the

sequence of commands with ";" or "=>" as usual in POP-2.

To move to the next line, you can thus type:

SYNTAX OF EDIT C OMM.ANDS-2

1!L;

L 1l;

1,L;

1 .L;

{to exhibit a. few of the combina tiona-)

If you realize you are typing the same sequence of commands

over and over again, define a function which executes them and use

it instead.

For example, assume that you wish to exchange some of the SUBSCR's

in a file to SUBSCRC's, but you don't want to writ,e the fully automatic

edit function for deciding which occurences. So you want a command

that when called will exchange the next 'SUBSCR' for 'SUBSCRC'

and then print the correc~ted line:

FUNCTION FOO;

X('SUBSCR', 'SUBSCRC');

V();

END;

If you type the above definition in edit mode, you wili''-..~hereafter be

able to type .FOO; to cause the exchange and verification'>··

Experiment freely with the syntax until you get c anfortable.

Use V to verify the changes until you trust the editor and your model

of it. Remember, all you have to do to undo the last (possibly disastrous)

modification (insert or delete) is ~pe UNDO;.

' _1 ~
i "p.--
1._, _. : ~ I -11) ') , • ,, ·}

- / :' <1./' :(,1 - 1
,~? ·• t: : ~ --~ (r 7 -''

(ARGUMENT T~S FOR EDIT COMMANDS

Edit commands take a variety of arguments. The type of

the argument sometimes affects the precise effect. of the canmand.

These relationships are described in detail for each command.

Our conventions in this document for specifying the type of an

argument are:

(1) character strings --item typed in using string

quotes or constructed with INITC.

(Z) text items -- items which are POP-2 words, integers,

or reals.

(3) integers -- POP-2 integers.

(4) file names -- POP-2 list structures.

(5) character repeaters or consumers -- a~ POP-2·

function which produces or gobbles one character

per call.

(6) function objects -- a~ POP-2 function or a pair

the front of which contains a word and the back

the word UNDEF, e.g., (FOO • UNDEF) •

The following general guidelines are offered to clari~ the distinctions

between certain ~pes.

When used as objects to be searched for or inserted, text items

are treated more sensitively than character strings. For example,

searching for the string 'X1 ' would succeed in finding the substring

'X1' in the string 'COORX1Y1 '. Searching for the word "X1" would

succeed only if the characters found were delimited in such a way to

dis:tin~ish the occurence as a separate POP-2 word, e.g., as in

V ARS Xt Y1 ; or SQRT{X1 +3) •

ARGUMENT TYPE FOR EDIT COMMANDS-2'

Similarly, searching for 123 would find only occurences of

that integer (even if you said search for 2: 1111,0111.} while searching

for '123' -could find X123 or 5123 .46.

When searching for function objects one finds units of text

which define functions, operations, or macros (depending on the

IDENTPROfS of the function's print name in FNPROPS) • S'earching

for the end of a function object finds the matching END of the

appropriate definition. Thus, if you have a function FOO and

want to find its definition, search for FOO (not 'FOO' or "FOO")

and you will find the text 'FUNCTION FOO • • • ' •

LOCATION SPECIFIERS

Several edit commands take a pair of arguments, LOC1 and

LOC2, called location specifiers. These arguments may be of

various types and delimit a window.'in the buffer.

The location of the start. of the window is:

(t) If LOC1 is an :integer)', then position LOC1 in the buffer.

(2) If LOC1 is a string or POP~2 ·wor~ then the beginning

of the next occurence of the string or word in the

buffer (unless the string or word cannot be found

in the forward direction, in which case, the beginning

of the last occurence of LOC1).

(J) If LOC1 is a function object, then the beginning of

the definition of LOC1.

The location of the end of the window is:

(1i) If LOC2 is m integ~, then position LOC2 in the buffer.

LOCATION SPECIFIERS-2

(2) If LOC2 is a string or word, then the end of the

first occu~nce of the string or word after the

location determined by LOC1 •

(3) If LOC2 is a function object, then the end of the

definition.) ,f-"\
(4.) _If LOC2 is ME or EDME, then the location of the ,_.,.~rttell ! .~·.J)

matching end corresponding to 10c1c-- €:-c. r ~~- 7'/~:~--~'··-
r·' ,·) .,

The edit commands which take location specifiers are:

DC, C, GRAB, MKS, O, and VC.

For example, to compile the function FOO in the buffer,

type C(FOO,ME); (or C(FOO,FOO) ;) • To type out the definition

of FOO, type VC(FOO,ME);. To GRAB the definition (delete it

.from the buffer· in preparation for moving it somewhere), ~pe

GRAB(FOO,ME) ; (As explained in SYNTAX OF EDIT COMMANDS, the

examples above exhibit an arbitr~ choice of POP-2 syntax to

call the functions involved on the two arguments.)

DESCRIPTIONS OF EDIT COMMANDS

The edit commands are described in detail below. Commands are

grouped into classes, and Classes are ordered alphabetically.

The section SUMMARY OF EDIT COMMANDS, at the end of this document,

lists all commands and their classes.

Each command is described in three parts. The first line gives

the (unprefixed) identifier for the carumand followed by the essence

of the command. The next line exhibits the number and type of the

arguments permitted. When there are options, all are listed.

Following this is a detailed description of the command.

To give the arguments we exhibit a call of the command (using

parentheses and oommas for clarity only). We use the following

words to denote arguments of fixed types:

N, M -- integers

FILENAME -- an EASYFILE file name (POP-2 list structure)

CHARREP -- a character repeater

LOC1, LOC2

SEARCH-ARG

location specifiers

a character strip, word, integer, real number,

or function object

INSERT-ARG -- a character strip, word, integer, real number,

character repeater, or GRABbed object

Thus, we exhibit:

X(SEARCH-ARG, INSERT -ARG)

to mean that the command X takes two argumer-ts, the·:·first of which is of

one of the types listed under SEARCH-ARG, ann the seoond of the types

under INSERT-ARG. You may of course call X with any syntax you prefer,

e • g • , 'ABC ' X 1 2 • 3 ; •

N.B. We print zero as /J in this document.

.,

COMPILE-1

C Compile

C(¢) or C(FILENAME) or C(LOC1., LOC2)

C compiles POP-2· text from the buffer. c(p) compiles the function,
operation, or macro definition the pointer is in. If the pointer
is not in a definition, then the largest balanced piece of text
containing the pointer is compiled. C(FILENAME) saves the current
buffer, inserts file FILENAME, and co3;iles it. C(LOC1, LOC2)
compiles the characters in the windo~.

If compilation is successful, the pointer is not moved. If a file
was compiled successfully, the old buffer is restored along with
the old position in it.

If the compilation was not successful, the pointer i~ immediately
behind the last character read by the compiler. If a file was
being compiled the old buffer (and NAME) is lost; the current
buffer contains the file 'being compiled; NAME contains FILENAME.
The position of the pointer is extremely helpful. In particular,
when you are debugging a function definition for syntax errors,
you will generally find the pointer only a few characters past the
location of the bug that the compiler choked on.

C compiles outside the editor (although you do not leave edit mode).
That is, non-prefixed edit commands in the text are not interpreted
as edit commands during the compilation.

C makes debugging very fast. Typically one compiles a file the first
time with C. When the compilation chokes, use V, or -2 VL 2"; to see
where the syntax error is. You are still in the editor, so fixing
the error is easy. Then t,ype C(FOO,ZZ) where FOO is the function
containing the bug. Compilation wi 11 continue. When the whole file
compiles, you might SAVE it (to keep a reasonab~ good copy on disc),

b but ~eep it in the buffer fo~--~urther :diting. Then run th~ fun~tions
('\~~~to find bugs. When youl\a bug~,-~n funct1on FOO, enter the editor 1f
~ you left it, type S FOO; to get to the definition, and maybe FOO VC ME,

to type it out. After fixing it, type C /J; to recompile the edited
function. When you are satisfied with the file, type FILE; to write
it to your disc track. With the function definitions at your finger
tips and the ability to find and manipulate POP-2 text and words
(like all occunences of a misspelled ~-;ord, or function calls of a
certain function) you will find it easier;:to both find and correct
bugs. In addition, you will not ~ .. ~ a modifying a function definition
simply to help debug it because you need never write the redefinition
back to your disc to compile it.

COMPILE-2

EDITFROM compile EDIT commands FROM charrep

EDITFROM(CHARREP)

EDITFROM is a function, not an operator. It compiles the characters
delivered by the repeater in edit mode. Thus, non-prefixed edit
commands are prefixed by ED. To compile a file of your own standard
edit commands, execute EDITFROM(DIN(FILENAME)); When you type ED
to enter the editor, you really just execute EDITFROM{CHARIN);.
If you wish to include edit commands in a file to be compiled with
the standard DCOMP, or COMPILE, then you should prefix the commands
with ED yourself.

EDSETPOP EDit SEI'POP

EDSETPOP()

EDSETPOP is a function, not an operator. It behaves just like SETPOP
does, except that the editor is not exited. It aborts all executing
functions, clears both stacks, and returns control to the top-level
(of the editor). You can use it to get into the editor from outside
if you want to. More commonly, it is used within user defined
edit functions to abort if the function failed and subsequent commarxls
are to be ignored.

DELETE-1

D Delete characters

D(N)

If Nis negative, the -N characters to the left of the pointer are
deleted. If N is positive, the N characters to the right of the
pointer are deleted. N = /J is a nonop. The pointer is left
unchanged. All delete commands reset NAME to UNDEF if the buffer
is cleared by the command.

DC Delete Characters in window

DC(LOC1, LOC2)

The characters in the window are deleted. The pointer is left
immediately after the deleted text .•

DL Delete Lines

DL(N)

If N is positive all the text from the current position up to and
including the Nth newline character in the forward direction is
deleted. If N is not positive all the text strictly between the
current position and· the . .(N-:-1.)th.Jlewline.:lcharacter in .the backWard direction
is deleted.

Delete through Search-arg

DS(SEARCH-ARG) or DS(SEARCH-ARG,N)

If not present, N is assumed to be 1. All of the text between the
current pointer and the end of the Nth occunence of SEARCH-ARG in the
forward direction is deleted. If successful, the painter is left
at the point where the deletion stopped. If SEARCH-ARG is not found
N times, "SFL" is printed and no deletion occurs; the pointer is Ieft
unchanged and EDSETPOP is called.

DSB Delete through Search-arg Backwards

same as for DS

Same as DS except that the text between the current pointer and the
beginning of the Nth occunence of SEARCH-ARG in the backward direction
is deleted.

DELETE-2

DAZ Delete from A to Z

DAZ()

The entire buffer is cleared. NAME .is reset to UNDEF (see IT and
FILE commands).

EXCHA.NGE-1

X eXchange

X (SEARCH-ARG, INSERT-ARG) or X (SE..'ffiCH -ARG, N, INSERT-ARG)

If N is not present it is assumed to be 1. The Nth occu~nce of
SEARCH-ARG in the forward direction is replaced by INSERT-ARG. If
the search is successful, the pointer is left immediately behind the
inserted text. If SEARCH-ARG is not fbund N times, "SFL" is printed,
EDSETPOP is called, and the pointer is not moved.

XT eXchange and Test

same as for X

Same as X except that TRUE is returned if the exchange is made and
FALSE if it is not (due to failure to find SEARCH-ARG).

XB eXchange Backwards

same as for X

Same as X except that the Nth occu%1ence of SEARCii-ARG in the
backward direction is replaced by INSERT-.ARG.

XBT eXchange Backwards and Test

same as for X

Same as XB except that a truth value is returned.

GRAB-1

GRAB GRAB and delete

GRAB(LOC1, LOC2)

The idea of GRAB is to delete a chunk of the buffer \vith the intention
of reinserting it elsewhere. The chunk deleted is that portion contained
in the window specified. An object representing that portion is then
left on the stack. This object can be inserted (with I) once (and only
once). The pointer is left immediately behind the deleted text.

GRAB does not cause a signific&nt amount of consing to be done
(it merely returns a pointer to the chain of records representing
the deleted text in the buffer). I~ is thus an efficient way to move
large blocks of text. The following commands GRAB the text defining
the function FOO in the buffer and move it to the top of the file:

GRAB(FOO,ME) ~ Xt, A, I X1;
GRAB can also be used to clear the buffer but save the structure,

thus allowing another file or grabbed object to be inserted and edited.
The orginal buffer can later be reinserted. Thus, GRAB can be used
to save several buffers at once and edit them in turn, possibly inserting
some into others. (Note: I is a nonop if its argument is a grabbed
object that has alrea~ been reinserted.)

GRABbed objects are cleaned up when TIDY is called, even though
they are not in the buffer. The list EDGRABLIST contains all objects
grabbed but not yet reinserted. You may set this list. to NIL to let
the garbage collector reclaim the space of unwanted grabbed objects.

MKS MaKe Strip

cc

MKS(LOC1, LOC2)

Constructs a character strip containing the characters in the window.
The constructed strip is left on the stack. The pointer is left.
unchanged and the text in the window is not deleted. MKS is used to
s:ave a piece of text to be searchedfararreinserted several times.

Current Character

cc()

Returns the integer representation of the character to the right of
the current pdsition. The pointer is left unchanged.

NI Next Item

NI()

Returns the item starting with the character to the right of the
current position. The pointer is left unchanged.

msERT-1

IT insert file to be ediTed and filed

!T(FILEN.AME)

If the buffer is not empty, the message 'BUFFER NOT EMPrY' is prirLted
and EDSETPOP is called. (You should either write the buffer out or
do a DAZ to kill it.) If the buffer is empty the file FILENAME is
inserted in the buffer and the painter is left at the top. The name
FILENAME is stored in NAME for future reference. This is the standard
way to begin an edit. When you are finished with the edit, you can
file it using the command FILE. Ualike POPEDIT, nothing is written to
your disc track until you execute the FILE command (or use either 0 or
SAVE, which are also output commands).

I Insert

I (INSERT-ARG)

The pointer is left immediately to the right of the insertion. The
text inserted depends on the value of INSERT-ARG and its datatype:

(1) If INSERT-ARG is a character string, the characters in the
string are inserted.

(2) If INSERT-ARG is a quoted word, the characters representing
the word are inserted. Blanks are inserted at either end
when required to make the insertion parse as a word.

(3) If INSERT-ARG is a number, the characters in the decimal
representation of it are inserted. Blanks are inserted at

(4)
either end if required to make the insertion parse as a number.
If INSERT-ARG is a list~ it is assumed to be a filename. The
user~ disc tracks are searched and if a file of that name occurs,
the entire file is inserted. If such a file is not found,
"IFL" is printed and EDSETPOP is called.

(5) If INSERT-ARG is a function, it is assumed to be a character
repeater. The character repeater is consumed and the
resulting characters are inserted. (R is I(lCHARIN~) •

(6) If INSERT-ARG is a structure of the type returned by GRAB
which has not previously been inserted, it is linked into
the buffer. This has the effect of inserting the text
represented by that structure. INSERT-ARG is removed from
EDGRABLIST.

IC Insert Character·

IC(N)

The character represented by N is inserted into the text at the
current position. The pointer is left immediately behind it. Notice
that you can mung yourself with 19IC;. IC is efficient and can be
used as a character consumer to print output into the buffer
(i.e. NONOP IC -} CUCHAROUT causE:s output to be inserted) o

INSERT-2

R Read from the console

R()

The system accepts input from the teletype and inserts it into the
buffer at the current position. CONTROL T terminates the reading
and normal edit mode is restored. The pointer is left immediately
behind the inserted text. R is used for inserting large blocks of
text since only about 900 characters can be typed between string
quotes. Characters are inserted as they are read, hence CONTROL G
terminates but does not abort the R. UNDO will undo not one but
all of the characters inserted during the R.

MACROS-1

In order to make it easier to repeat a sequence of commands, the
following macros are provided in edit mode {only).

test and repeat.

Definition:
MACRO ((;
MACRBSULTS([. ;LAMBDA; LOOPIF J);
END;

count, test and repeat

Definition:
MACRO <*;
MACRESULTS((. ;LAMBDA EDN; EDN+11-)EDN; LOOPIF (EDN-1,->EDN; EDN;) THENJ);
END;

close repeat

Definition:
MACRO));
MACRESULTS(C ;CLOSE END.APPLY; J);
END;

Examples of use:

(("FOO" XT 'BAR' THEN V ~

will replace all occurrences of "FOO" by the string 'BAR': from the
current position forward. Ea.ch modified line is then printed. The
pointer is left after the last modification.

3,-.. DL;BO({FOO .J) >>
will print file [FOOJ to the lineprinter 3 times.

MOVE-1

A jump to the top

A()

The pointer is reset to the left of the first character in the buffer.

AT top Test

z

AT()

TRUE is returned if the current position is the top of the buffer, ,
FALSE otherwise.

jump to the bottom

Z()

The pointer is reset to the right of the last character in the buffer.

ZT bottom Test

ZT()

TRUE is returned if the current position is the bottom of the buffer,
FALSE otherwise. (If the buffer is emp~ the current position is
the top of the buffer and the bottom of the buffer.)

J Jump

J(N)

The pointer is positioned to the right of the Nth character in the
buffer. Thus- J(D) is the same as A(). To find out the number of
characters to the left of the pointer use H.

JL Jump Lines

JL(N)

The pointer is positioned at the b~inning of the Nth line in the buffer.

MOVE-2

F Forward

F(N)

The pointer is moved forward over N characters. (If N is negative, the
pointer is moved backwards; W. = /J is a nonop.)

B Backward

B(N)

The pointer is moved backward over N characters. (If N is negative,
the pointer is moved forwards; N = /J is a nonop.) This c anmand is
useful since una~ minus often parses unintuitive~ in POP-2.

L move Lines

L(N)

If N is positive, the pointer is moved forward over N newlines. If
1W is not positive~ the pointer is moved just to the right of the
(~-1) tn newline character in the backward direction. (Thus L(,O)
repositions the pointer to the beginning of the current line.)

Here

H()

Returns the number of characters to the left of the current pointer.
Thus: Hr,S'FOO' ~3D,J; stores the current pos_ition on :the stack, moves
forward to FOO, deletes it, and jumps back to the original position.
~{1-I-'S~'Fr-~a'.~3b.JJ r~-~ ~-/.;oyk.J

\._.

ve~ large integer

ZZ()

The value of ZZ is a very large integer (as might be returned by going
to the bottom of the buffer and t,yping H()). All edit commands which
take integers as character or line p~;.~ions have the property that a
position greater than the number of characters in the buffer is
equivalent to the position of the bottom. Thus J ZZ; is equivalent to
Z; ZZ is han~. Wait and see.

MOVE-3

Match

M()

If the item immediately to the right of the pointer is "FUNCTION",
"OPERATION", "MACRO"~ "LAMBDA", "VARS", "COMMENT", "IF", "LOOPIF",
"FORALL", "(", "(% ", "[", OR "L~' the pointer is moved to the
right of the matching closing item (unless it is immediately followed
by a ";", in which case the pointer is left immediately after the ";").
If the first item to the right of the pointer is not one of the above,
the pointer is moved to the end of the first item. M is tlm.s used
to find the end of a fUnction or lambda expression, the matching close
or exit for an if, etc. "MFL" is printed and EDSETPOP is called if
the matching closing item is not found. Functions that have location
arguments use M to determine the second location if LOC2 is ME.

N.B. When we say "forward" in reference to the motion of the
position pointer, we mean "to the right and dow!).", i.e. the
direction in which one reads English. When we say "in front of"
in reference to the location of the position pointer, we mean
"at the left end of".

OUTPUT-1

FILE write edited FILE- to disc under filename NAME

FILE()

This is the standard way to finish an edit. The contents of the
buffer is written to the current track under the filename NAME
(initialized by the command IT). If NAME is UNDEF a message to this
effect is printed and nothing is done. If there is not enough room
on the track, permission to do an EDTIDY is requested. See the command
0 below. After output the buffer is cleared and NAME is reset to
UNDEF.

SAVE SAVE partial edit

SAVE()

The contents of the buffer are written to the current track under the
filename in NAME. Then the new file is inserted and the pointer is set
to the position it was at before the SAVE command. This command is used
to write a partially edited file to disc to protect it from system
crashes and then continue editing.

0 Output

O(FILENAME) or O(FILENAME, LOC1, LOC2)

I£ the optional location arguments are not given they are assumed to be
/J and ZZ. The window in the buffer is written to the current track
under the filename given as the (first) argument.

I£ the argument is not a filename, "OFL" is printed, no output
occurs, and EDSETPOP is called. If the window (or buffer) is empt.y,
the message 'BUFFER EMPTY' is output, no output occurs, and EDSETPOP
is called. (To create an empty file, useD~.)

If there is not encugh room on the track for the window, the
mess.age 'TIDY Y/N:' is output to .the console~ · .. If;~you type Y followed
by carriage return, an EDTIDY is executed. If you t.ype anything else
followed by a carriage return, nothing is output and EDSETPOP is called.
If the EDTIDY yields enough room on the track, the window is output.
Otherwise, the message 'TIDY Y/N:' is output, etc.

If you wish to output part of the buffer through an arbitrary
character consumer, then use the command VC. VC outputs characters
through CUCHAROUT~

I
\.

""·~..._ __ vc_. ~--f

SEARCH-1

S Search

S(SEARCH-ARG) or S(SEARCH-ARG,N)

If not present, N is assumed to be 1 • If SEARCH-ARG is an integer
the second argument must be supplied. S searches in the forward
direction for the beginning of the text denoted by S~CH-ARGo The
relationship between the argument type and the text found is as
follows:

(1) If S~CH-ARG is a character string, the Nth occunence
of the string is found.

(2) If SEARCH-ARG iS a text item, the Nth occurrence of the item
is found (i.e. occurences as substrings of other items are
not counted).

(3) If SEARCH-ARG is a function object, the Nth occu~nce of
the item "FUNCTION" immediately followed by the name of the
function object is found. (i.e. if FOO is a function which
was defined using "FUNCTION" or has not yet been given a
value (and is thus [;Foo. UNDEF]), the text 'FUNCTIONFOO'
is found. This works even if FOO' has been SPEC'D but does
not work if FOO ~s been defined using assignment. If
SEARCH-ARG is an operator or macro, the appropriate text is
found.)

If successful~ the pointer is left at the beginning of the matched text.
If not, the pointer is left unchanged and "SFL" is printed, and subsequent
edit commands on the same line are ignored§ EDSETPOP is called.

S~ Search and Test

SB

same as. for S

Same as S. except that TRUE is left on the stack if the search
succeeds and FALSE is left on the stack otherwise. "SFL" is not
printed; EDSRTPOP is not called.

Search Backwards

same as for S

Same as S except that the search proceeds in the backward direction
from the current positio~.

SBT Search Backwards and Test

same as for S

Same as for SB except that TRUE is left on the stack if the search
succeeds and FALSE is left otherwise. (a:s·. for ST).

SEARCH-2

SE Search for End

same as for S

Same as for S except that the pointer is left immediately after the
matched text if the search succeeds. If SEARCH-ARG is a function
object, the pointer is left immediately after the matching "END".

SET Search for End and Test

same as for S

Same as for SE except truth values are returned.

SIB Search for End Backwards

same as for S

Same as for SE except that the search proceeds in the backward directiono

SBBT Search for End Backwards and Tes~

same as for S

Same as for SEB except that truth values are left on the stack.

SS Search Search-arg

ss(.}

The value of this operator is the last object searched for. Thus
SE'FOO',SEB SS; will first search for 1FOO' forwards and then
backwards. The use of SS is to save having to ~pe the object
of a search again when the wrong occu~nce of it was found.

N.B. The way we search for a number is to "print" the number into
a character strip, to search through the buffer for a string of
characters matching the strip, and having found a candidate
to check that the candidate really parses as the number searched
for. Consequently, searching for the number 9 will not find
2:1001 or 8:-11.

TIDY edit dTIDY

TIDY(~,:.' ..

TIDY-1

TIDY is the edit version of EASYFILE' s DTIDY. When using the editor

it must be used instead of DTIDY to insure the integri~ of the buffer.

Since the buffer refers to sectors on a disc track when a file is

inserted, it is essential that information in the buffer be updated

if the sectors are shifted down to tidy the track. TIDY does this,

both to the buffer itself, and all of the GRABbed objects on the

EDGRABLIST list. If TIDY is inter.nip~~~xl (for example, by CTRL G)

your disc track is okay, but the buffer may be ruined. Using _ETIDY

is the most effective way to randomly rearrange your file. Typically

you executed TIDY just prior to outputing the buffer when it is necess~

to make room on your track. The canmand 0 will request permission to

TIDY if necessary.

'

UNDO-f

EDUNDOINIT EDit UNDO ring buffer INITialization

EDUNDOINIT(N)

EDTJNDOINIT is a function, not an operator. It constructs a circular
list (ring buffer) with N elements in it, which is used to hold
sufficient information to undo the last N modifications. When the
editor is compiled, the ring is initialized to size 2. You may
reset it with this function. Note that large values of N mean that
the system will not garbage collect churiks of the buffer for a long
time, causing your store size to increase (since the last N insertions
or deletions must be kept in case you UNDO them).

UNDO UNDO the last modification

UNDO()

The last un-UNDOne insertion or deletion is undone. That is, the
text is restored to its configuration just prior to the last still
effective insertion or deletion (provided the modification was not
made by UNDO itself, in which c~se the previous modification is
UNDOne). The pointer is alw~s left to the right of the text inserted
or deleted. It is not restored to its position prior to the UNDOne
command. Note that EXCHANGE commands require two UNDO commands to
undo. The normal use of UNDO is to recover from mistakes soon after
they are made (rather than allow a backtracking search through all
possible modifications). For example, if you typed DL 4; when you
meant L 4;, then UNDO will restore the deleted lines.

•

VERIFY-1

V Veri~ current line

V()

Prints out the entire line containing the current pointer. The
pointer is printed as "1'" • The poitmter is not moved.

VL Veri~ Lines

VL(M,N)

Prints the N-M lines starting at the beginning of the line M from the
current line and ending at the beginning of the line N from the current
line. Thus, to print the two lines above the current position, the
current line, and the one below it, ~pe VL(-2,2). The pointer is
printed as "1'" if encountered. The pointer is not moved.

VC Verif'y Characters

VC(LOC1, LOC2)

Prints the characters in the window. The current position, if
encountered, is printed as "t" and is left unchanged. CUCHAROUT may
be redefined by the user to cause the window to be output to a~
character consumer. If CUCHAROUT is not CHAROUT 1 "1" is not printed
(isn't that neat).

VMl.C Verify with MACro expansion

VMAC(LOC1, LOC2)

This command is like VC except that as it prints the window it prints
the expansions of a~ macros. It does not modify the contents of the
buffer. VMAC uses the compile command C. Thus, the first time you
use VMAC, you also bring in C if it is not alrea<%1 in (see the section
on CORE REQUIREMENTS).

•

CORE REQUIREMENTS

When initially compiled, the editor requires about 9 blocks.

This includes buffer space for files inserted, but not for other

insertions made. The insertion of a character strip costs 6 words·

plus the size of the strip. The insertion of a file costs (in wards)

three times the number of sectors in the file.

There are same features of the editor described in this document

which are not compiled initially. Instead, they are trapped and compiled

the first time they are used. Thereafter they exist in core. These

features are those that deal with function objects, item~·'· text

matching, and compiling from the buffer with C. Thus, it is possible

to avoid these features and not pay for them. (That is, you can

search for strings, insert strings, move arbitrarily, and delete or

exchange strings with the initially compiled package. However, as

soon as you, s~, search for an item an additional function is compiled.)

When all the facilities described are compiled, the editor requires

abrut 13 blocks. (~ote: two functions are compiled each time they

are used and then thrown away;EDUNDOINIT, and TIDY.)

To cancel all identifiers associated with the editor, and regain

the space, DCOMP the file [CANCEL EDIT] on track 77.

'· ·- tJ

SUMMARY OF EDIT COMMANDS
COJB!.AND)\SS~~ CLASS

A jump to the top MOVE
AT top Test MOVE
B move Backward MOVE
c Compile COMPILE
cc Current Character GRAB
D Delete charac-ters DELETE
DC Delete characters in window DELETE
DL Delete Lines DELE'eE
DS Delete through Search-arg DELE'.rE
DSB Delete through Search-arg Back. DELETE
DAZ kill buffer D.ELETE
ED enter EDitor EDIT:.ENVIRON.
EDITFROM. compile EDIT commands FROM COMPILE
EDUNDOINIT EDit UNDO ring INIT UNDO
F move Forward.; MOVE

~
FILE output edited FILE OUTPUT
GRAB GRAB and delete GRAB
H Here MOVE
I Insert INSERT
IC Insert Character INSERT
IT begin new ediT INSERT
J Jump MOVE
JL Jump Lines MOVE
L move Lines MOVE
M Match MOVE
ME Matching End LOCATION SPEC.
MKS MaKe Strip GRAB
NAME NAME of file bei.ng edited INSERT
NI Next Item GRAB
0 Output OUTFUT
R Read characters from console INSERT
s Search SEARCH
ST Search Test SEARCH
SB Search Backward SEARCH
SBT Search Backward and Test SEARCH
SE Search for End SEARCH
SET Search for End and Test SEARCH
SEB Search for End Backward SEARCH
SEBT Search for End Backward and Test SEARCH
ss Search Search-arg SEARCH
SAVE SAVE partial edit OUTPUT
TIDY edit dTIDY TIDY
UNDO UNDO last modification UNDO
v Verify current line VERIFY
vc Veri~ characters in window VERIFY
VL Veri~ Lines VERIFY
X eXchange EXCHANGE
XB eXchange Backward EXCHANGE
XT eXchange and Test EXCHANGE
XBT eXchange Backward and Test EXCHANGE
z go to bottom MOVE
ZT bottom Test MOVE
zz 2097151 MOVE
<< test and repeat MACROS
<.* count, test and repeat MACROS
>> close repeat MACROS

VMAC Veri~ with MACro expansion VERIFY

t_ •• •

COMMAND
A
AT
B
c
cc
D
DC
DL
DS
DSB
DAZ
ED
EDITFROM
EDUNDOINIT
F
FILE
GRAB
H
I
IC
IT
J
JL
L
M
ME
MKS
NAME
NI
0
R
s
~
SB
SBT
SE
SET
SEB
SEBT
ss
SAVE
TIDY
UNDO
v
vc
VL
X
XB
XT
XBT
z
ZT
zz
«
<*'
>>

VMAC

SUMMARY OF EDIT COMMANDS
FrSS~

jump to the top
top Test
move Backward
Compile
Current Character
Delete c·harac·ters
Delete characters in window
Delete Lines
Delete through Search-arg
Delete through Search-arg Back.
kill buffer
enter EDitor
compile EDIT commands FROM
EDit UNDO ring INIT
move Forward,;
output edited FILE
GRAB and delete
Here
Insert
Insert Character
begin new ediT
Jump
Jump Lines
move Lines
Match
Matching End
MaKe Strip
NAME of file being edited
Next Item
Output
Read characters from console
Search
Search Test
Search Backward
Search Backward and Test
Search for End
Search for End and Test
Search for End Backward
Search for End Backward and Test
·search Search-arg
SAVE partial edit
edit dTIDY
UNDO last modification
Verify current line
Verit,y characters in window
Verit,y Lines
eXchange
eXchange Backward
eXchange and Test
eXchange Backward and Test
go to bottom
bottom Test
2097151
test and repeat
count, test and repeat
close repeat
Verit,y with MACro expansion

CLASS
MOVE
MOVE
MOVE
COMPILE
GRAB
DELETE
DELETE
DELE'CE
DELE'rE
DELETE
DELETE
EDf'r ,, ENVIRON.
COMPILE
UNDO
MOVE
OUTPUT
GRAB
MOVE
INSERT
INSERT
INSERT
MOVE
MOVE
MOVE
MOVE
LOCATION SPEC.
GRAB.
INSERT
GRAB
OUTRTT
INSERT
SEARCH
SEARCH
SEARCH
SEARCH
SEARCH
SEARCH
SEARCH
SEARCH
SEARCH
OUTPUT
TIDY
UNDO
VERIFY
VERIFY
VERIFY
EXCHANGE
EXCHANGE
EXCHANGE
EXCHANGE
MOVE
MOVE
MOVE
MACROS
MACROS
MACROS
VERIFY

EDIT ERROR MESSAGES

BUFFER EMPTY
Attempt to output an empty buffer or window.

BUFFER NOT EMPTY
Attempt to start a new edit (with IT) before the buffer is cleared
of the previous file. Do a DAZ or write it out. Its name is still
in NAME if it was inserted with IT.

IFL
Attempt to insert a file not found on ~ track in DTRS.

MFL
Closing item (for M) not found in buffer.

NAME = UNDEF
Attempt to FILE or SAVE with NAME = UNDEF. You did not begin the
edit with IT. Use 0 to output and name the file.

OFL
Attempt to output file under an illegal EASYFILE file name.

SFL
Search failed. Either you looked in the wrong direction, you
searched for too rna~ occurences, or i~s not in the buffer. This
error often occurs when you are at the bottom and search forward.
It can also occur in DS commands, EXCHANGE commands, and commands
which take location specifiers as arguments. When a search fails
the pointer has not moved. If a DS prints SFL, it failed to find
the target and:i.deletes nothing. The last object searched for is in
SS. Thus, if you searched for a string i:h: the wrong direction
you can give the correct command and use the argument SS to save typing
the string again.

TIDY Y/N:
Permission to do a TIDY requested. If you type Y (yes), a TIDY is
done. It will mean you cannot UNDO any previous modifications. If
the message comes up again, it means there is just not enough room
on the track. If you type N (no) the output command is aborted,
no harm done.

t:
This means you are at the bottom of the buffer. The most common
mistake is failure to appreciate that after an insert (with I) ··
you are at the~·,q.hd of the inserted text or :file.

ACKNOWLEDGEMENTS

The authors would like to thank D. Bobrow and

A. Sloman for their suggestions and support. Without their help

the editor would not have been as natural and powerfUl a debugging

tool as it is.

TRACK AND FILE

The editor is on track 77. It may be canpiled by typing

DCOMP.([EDIT~J ; .. When compilation is complete, a list of changes

and additions {with dates) is output. You may ·kill this with

CTRL 0 or CTRL G. You are not in the editor until you type ED.

To get out of the editor, hit CTRL G. You need not recompile it

to enter it again; use ED again.

