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How do we know that a bytecode-verified Java program will run safely?

This dissertation addresses the question by building a precise model of the

JVM and its bytecode verifier. We also built a “small” machine and its byte-

code verifier to demonstrate an approach to solving this problem. We proved

that for any program on the small machine that has been vetted by the small

bytecode verifier, then that program will run safely on the small machine. We

created substantial libraries of ACL2 definitions and lemmas towards specify-

ing and proving that the JVM safely executes verified programs.
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The fundamental problem is to connect the the abstract execution of

the bytecode verifier with the concrete execution of the JVM. These diverge

in two ways: (1) the bytecode verifier executes on more abstract states and

(2) its execution of INVOKE-family and BRANCH-family instructions differs

from their execution by the JVM.

Our contribution was identification of a critical “on-track” property

that, despite these divergences between the bytecode verifier and the JVM,

enables one to use the success of bytecode verification to predict the safety of

concrete execution.

The second difficulty is that the official specification describes many

“procedural” aspects of the bytecode verification process. These aspects ob-

scure the checks conducted by the bytecode verifier.

We introduce an alternative bytecode verifier without such “procedural”

aspects. We use the new bytecode verifier as a stepping stone for proving that

the official bytecode verifier is effective.

Following this methodology allowed us to prove, on our ”small”

machine, that executions of bytecode-verified programs never overflow the

operand stack.

We note that significant effort is required in order to extend this result

from our “small” machine to the full JVM. We have formulated appropriate

stronger notions of “safe” execution for programs on the full JVM. We intro-

duced an alternative bytecode verifier. We proved the “reduction theorem”

that relates the official bytecode verifier with the alternative bytecode veri-

fier. We completed proofs of several thousand lemmas towards proving the

“safe” execution of bytecode-verified programs on the full JVM. Our results

are organized into supporting lemma libraries.
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Chapter 1

Introduction

We face the challenge of building good (correct, useful, reliable, secure) software

and hardware. Addressing the challenge, people design abstraction layers to

separate concerns of different kinds. People use computer-aided tools to help

them understand and build more complex artifacts within each abstraction

layer.

In this dissertation, we study the Java Virtual Machine (JVM) [45] as

an abstraction layer. We formalize the safety guarantee provided by this layer.

We study how the safety guarantee may be correctly and efficiently provided

by a specification compliant JVM implementation. We use a computer-aided

reasoning tool, ACL2 [28], to help us explore these two aspects. We develop

lemma libraries for reasoning about the JVM.

1



1.1 Background and Motivation

1.1.1 General Challenges

We face the challenge of building good (correct, useful, reliable, secure) software

and hardware.

Everyday, our lives depend more and more on various computing de-

vices. For example, not only are computers, cell phones, PDAs, and mp3

players computing devices, but cars, airplanes, and hospitals contain ever more

computing devices as well. That is, we depend on computing devices not just

for dispensable conveniences but for essentials. Sometimes our lives depend

on the correct functioning of such devices.

The two challenges to building good software and hardware are:

• Individual systems are becoming more complex.

For example, more transistors are being put on a chip; software is devel-

oped to do ever more tasks.

• With computing systems being connected to each other, a computing

system may need to function in a hostile environment — because it is

almost inevitable that the device is connected somehow to other devices

under an attacker’s control.

A major task of computer science and engineering is to manage the

growing complexity and ensure the correct functioning of computing systems.

There are two major avenues for managing the growing complexity in

hardware and software and assuring their correctness:

2



• Devising proper layers of abstractions to partition a problem and isolate

different kinds of considerations to different layers;

Development of virtual machines, high level programming languages, and

programming libraries are examples of such layers.

• Using computer-aided tools to extend our capacity to manage complexity

directly.

Software development environments, compilers, simulation tools, compu-

ter-aided reasoning tools (model checkers, theorem provers) are among

the tools that people use.

In this thesis, we study the Java Virtual Machine (JVM) as an abstrac-

tion layer. We formalize the safety guarantee of this layer. We study how the

safety guarantee may be provided by a specification compliant JVM imple-

mentation. We use a computer-aided reasoning tool, ACL2, to do that. We

develop lemma libraries for reasoning about the JVM. In particular, we study

the effectiveness of class loading and class verification in proving the JVM

safety guarantees.

1.1.2 Java and Java Virtual Machine as a Response

The Java programming language [16] and the Java Virtual Machine [45]

emerged as responses to the challenge of creating reliable and secure software.

They are designed for creating software that runs on a great number of

hardware platforms in an interconnected (and possibly hostile) environment.

Java is designed for writing portable software. It is designed originally

for creating portable software for embedded consumer electronic devices, such

3



as cellphones and TV set-top boxes. Java programs are first compiled into an

architecture independent class file format for executing on the Java Virtual

Machine. The JVM is designed to provide the abstraction layer that hides pe-

culiarities of different hardware platforms and operating system environments.

In addition to portability, more importantly, Java is the first widely

available programming language for writing reliable and secure software. The

Java language environment white paper [17] declares prominently:

“The Java programming language is designed for creating

highly reliable software .... Java technology is designed to operate

in distributed environments .... With security features designed

into the language and run-time system, Java technology lets you

construct applications that can’t be invaded from outside.”

Java is designed to support the conventional security model [13]. The

conventional computer security model generally talks about managing and en-

forcing security policies [3]. Security policies describe a set of actions that

specific entities can perform. Policies are enforced by a small and reliable

“reference monitor”. Java allows software users to specify elaborated access

control policies. An example policy may be that a Java program P from site S

can read A’s file on the local disk only when the entity that executes P has suc-

cessfully authenticated as B and possesses some suitable credential C. Besides

allowing users to specify the access control policy, the execution environment

of the Java programs guarantees that policies are always enforced. In addi-

tion to enforcing the users supplied policies, the Java language also guarantees

that Java programs respect a strong set of default guarantees. Such guaran-

tees are defined as an inherent part of the language. For example, objects are
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always used in a way consistent with their types and access permissions of

data members and methods are respected.

The JVM plays a critical role in fulfilling the security promises of the

Java programming language [46]. Java programs are compiled into the class

file format for execution on the JVM. Before a class file is interpreted for

execution on a JVM, it is examined by the bytecode verifier component of the

JVM [45]. The bytecode verifier rejects any programs that are either predicted

to be “unsafe” to execute or difficult to predict to be “safe”. Assuming that a

JVM only executes programs which the bytecode verifier predicts to be safe,

a correct JVM implementation is expected to be able to enforce the security

policy on program executions.

In summary, the Java language and the JVM have emerged as tools for

building portable security systems that can operate in a distributed environ-

ment. They are designed to provide a clearly defined high-level abstraction

layer that enables the application writers to focus on the actual problem do-

main — instead of spending their time on low level details such as memory

allocation, enforcing security policies, and other orthogonal aspects of pro-

gramming.

1.1.3 Why Study the JVM and the Bytecode Verifier?

The Java programming language and the JVM have been successful and pop-

ular. Java is publicized as “the first language to provide a comprehensive

solution to the challenges of programming for the Internet, providing porta-

bility, security, advanced networking and robustness without compromising

performance” [44]. Java and the JVM have largely lived up to their claims.
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Portability, security, and rich supporting libraries have attracted many peo-

ple to develop their programs in Java. SourceForge.net listed 17893 software

development projects that use Java, more projects than in any other program-

ming language (February 10, 2006). NASA/JPL uses Java in its Mars rover

project, where Java is used for writing a substantial part of data visualization,

collaboration, command and control software on the ground.

Java and the JVM also make strong security claims. As mentioned

in the previous section, they are designed to allow software users to spec-

ify security policies (access control policies, what entities can do what kinds

of operations to what resources). The JVM guarantees that the policies are

enforced. In addition, Java and the JVM are designed to guarantee that opera-

tions are always applied to data of suitable types, respecting access permission

declaration of their class, method, and data members. For example, if a class

method M of C is marked with “private”, only the objects of exactly type C

can invoke method M — the access permission to M is respected.

It is non-trivial for a JVM implementation to guarantee that user sup-

plied security policies will be enforced while still providing good execution

efficiency. The JVM specification describes a delicate static type checking

process as well as a set of dynamic checks that the JVM must do. The hope

is that if these mechanisms are implemented properly, the JVM implementa-

tion can enforce the security policies without relying on any special hardware

protection mechanism, while emulating the Platonic JVM efficiently.

Typically, to enforce a security policy on program executions, one needs

a reliable and trusted “reference monitor” to execute in parallel with the pro-

gram. The reference monitor examines the execution history, checks the next

execution step against the policy, and aborts execution if the next step will
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violate some security policy.

A conventional reference monitor either executes on physically separate

hardware, or the reference monitor relies on some hardware assisted mecha-

nism (for example, privileged mode or hardware supported virtual memory

mapping) to protect its own execution environment from being modified by

the processes that it monitors [3].

However, JVM architects have designed the JVM specification so that

it is possible to implement a JVM without relying on the availability of any

hardware protection mechanisms. One major design goal of Java is portabil-

ity. Programs written in Java should be “compiled once and run everywhere”.

Consequently, the JVM needs to be implementable on widest selection of hard-

ware platforms. Not all hardware platform (especially, the consumer electronic

devices for which Java was designed) have the necessary hardware-based pro-

tection mechanism.

The JVM bytecode verification mechanism is the central piece of the

JVM design for permitting a pure software-based reference monitor implemen-

tation. It is the cornerstone of the JVM security architecture [46]. The JVM

bytecode verifier is responsible for examining a program statically before a

JVM implementation executes it. The bytecode verifier rejects any program

whose runtime behavior is either predicted to be unsafe or difficult to predict.

The intuition is that by only accepting well behaved programs, the security

policy enforcing component can be implemented entirely in software and the

JVM implementation can efficiently emulate the ideal JVM.

The bytecode verification mechanism is complex. The original descrip-

tion of bytecode verification in the JVM specification [45] is vague and compli-

cated. This has led to a series of vulnerabilities in past JVM implementations
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[13, 29].

In fact, to address complexity and performance issues in the bytecode

verification algorithm as presented in the JVM specification [45], the JSR139

specification committee has produced a rigorous specification [11] for a sim-

plified bytecode verifier in April, 2003, for the JVM that fits the CLDC (Con-

nected Limited Device Configuration) profile [42]. The bytecode verification

process is simplified and the specification is expressed formally as a set of

derivation rules in Prolog.

It is both interesting and of great value to find out whether the new

bytecode verifier specification can provide the safety guarantees. It is a good

opportunity for applying a proof-based approach to reason about the sound-

ness of the new specification. The central quest of this research is to formalize

the safety guarantee of the JVM and to study how to prove that the new

bytecode verification mechanism provides the safety guarantee.

1.1.4 Why ACL2?

Computing systems can be described as formal systems. We humans are lim-

ited in our ability reason flawlessly about hugely complex formal systems. We

introduce abstract models to simplify the problems. We rely on computer-

aided reasoning tools to extend and amplify our abilities.

ACL2 is the tool that we use to model the JVM and its bytecode ver-

ifier and to reason about the models. ACL2 is a programming language with

precisely defined semantics [28]. Most importantly, it comes with an indus-

trial strength automated theorem prover [20]. People build formal models of

the computing systems [1, 15, 19] in ACL2. People also specify and prove
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properties of the models in the ACL2 system [14, 4, 33].

1.2 Contributions

The goal of the Java Virtual Machine (JVM) specification is to describe a stan-

dardized safe execution environment that application programmers (who write

programs to run in the environment) and system programmers (who write the

JVM implementations) can agree on. A correct JVM specification should en-

sure that a compliant implementation is safe.1 A useful JVM specification

should allow an implementation to achieve reasonable execution efficiency.

Among others, the current official JVM specification in English [45]

contains the following type of information:

• the behaviors of the JVM operations under “safe” conditions,

• mechanisms designed with the intention to ensure JVM operations are

always executed with their “safe” conditions met.

The safety guarantee of the JVM is declaratively asserted: (1) all reach-

able state meets a list of static and structural constraints and (2) all JVM

operations are executed with their “safe” conditions met.

Given a JVM implementation, it is difficult to check whether it provides

the safety guarantee as specified because we need to reason about all reach-

able state and consider all scenarios for executing each JVM operation. One

must also trust that when the mechanisms described in the JVM specification

1A correct JVM specification should ensure that a compliant implementation is safe for
both the programs executing on the JVM and the underlying system that runs the JVM
implementation.
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are implemented, the resulting JVM implementation will provide such safety

guarantees. We view this as “weaknesses” of the current JVM specification.

This dissertation makes the following contributions addressing the

above mentioned “weaknesses”.

• It formalizes the safe execution explicitly in ACL2 by modeling a defen-

sive JVM [5].

• It identifies and formalizes an alternative safety guarantee: (1) the JVM

execution preserves a consistent state property and (2) the JVM opera-

tions can be guard-verified with the guards that we attached to them. 2

The alternative safety guarantee is better that (1) it is stronger and (2)

it is more explicit and easier for JVM implementors to use, that is to

check whether their JVM implementations are safe, they do not need to

reason about all reachable states and consider all scenarios for executing

an operation.

• It provides a framework for verifying that the bytecode verification mech-

anism (as published in JSR139 [11]) is effective – when the bytecode

verification mechanism functions together with the JVM dynamic class

loading and runtime checks.

2Writing guard is a systematic way (i.e. supported by ACL2) to define safe conditions
for executing an operation. In order for a operation to be guard verified, one needs to prove
that when operation is invoked with inputs that meet its guard, all sub operations invoked
by it will be invoked with inputs that meet their specific guards. For details about ACL2
guards, see Chapter 3.

10



1.2.1 Detailed JVM Model

I completed an executable formal model, M6, of a realistic bytecode inter-

preter [15].

M6 is a formal, carefully-considered CLDC JVM implementation [42].3

M6 implements the class loading and class initialization processes. M6 also im-

plements field and method resolution. Details such as synchronization, object

initialization, and exception handling are also faithfully implemented.

I implemented 21 out of 41 native methods in the CLDC class library.

Java programs that do not use any of unimplemented native methods can be

executed on M6.

Moore and I have used M6 as the formal operational semantics for

studying properties of concrete Java programs [14]. Similar but simpler op-

erational models [31, 32] have been used in the assertion-based Hoare style

program verification approach [30] by Moore. A formal operational machine

model, coupled with ACL2’s support for symbolic simulation, permits induc-

tive assertion style code proofs without the need for customized verification

condition generator [30, 18]. The assertion-based approach has been applied

to a single-threaded restriction of M6 by Moore [private communication].

1.2.2 Useful JVM Safety Specification

The official JVM specification describes the JVM safety guarantee in the fol-

lowing fashion:

• Identify the properties that must hold on a JVM state; assert that all

3CLDC stands for “connected limited device configuration” CLDC specification describes
a profile of a cut-down version of the JVM for use in devices such as PDAs and cellular
phones.
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reachable states have these properties.

• Identify the preconditions for invoking JVM operations; assert that dur-

ing program execution, all JVM operations are invoked with their pre-

conditions met.

The JVM specification describes a list of properties of the JVM state

and the preconditions for executing selected JVM operations. The JVM spec-

ification also asserts that the JVM will preserve the properties on the JVM

state and that the preconditions will be met.

The list is useful to a programmer who writes programs for executing

on the JVM, because the list describes the guarantees that a Java programmer

can assume about executions on the JVM.

However, the specification is not useful in guiding people to write a safe

and efficient JVM implementation. 4 The list of constraints only describe what

is required, not how they may be provided efficiently.

• There is no guarantee that for any JVM state that has all asserted prop-

erties, the state produced by executing one more step will also satisfy

all the assertions. It is not obvious that the mechanisms (class loading

and class verification process) described in the JVM specification ensure

that the above property holds.

In order to show all reachable states have the specified property, a JVM

implementor is obliged to identify a stronger property, which (1) is pre-

4One way to create a safe implementation is to check all the stipulated assertions and
preconditions defensively before the JVM implementation executes any step. However the
efficiency penalty is not acceptable. In fact, the JVM is designed with the intention that
all such properties and preconditions can be proved to be true and thus the checks can be
skipped.
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served over a JVM execution step, (2) is satisfied by all valid initial JVM

states, and (3) entails the official JVM safety assertions.

• There is no guarantee that when the preconditions of some top level JVM

operation O are met, preconditions of the lower level JVM operation o

will be met, where o is invoked as a sub-operation for accomplishing O.

It is not obvious that the mechanisms described in the JVM specifica-

tion ensure that all of the preconditions for every sub-operation will be

satisfied.

A JVM implementor is obliged to identify stronger preconditions for

JVM operations, such that the desirable relation holds between the pre-

conditions of the top level JVM operation and the preconditions of the

lower level JVM operations.

This thesis presents a more useful specification of the JVM safety guar-

antee by identifying what is sufficient for a JVM implementation to provide

the safety guarantees described in the official JVM specification.

The new safety guarantee is formalized as

• JVM executions preserve a global consistency predicate on the JVM

states and

• JVM executions always meet the local safety assertions (guard) of low

level JVM operations.

The global consistency state predicate is phrased as a conjunction of

assertions on the JVM state. I expect that the consistency state predicate (1)

is preserved over every JVM execution step, (2) is satisfied by the initial JVM

states that one cares about, and (3) entails the official JVM safety assertions.
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The local safety assertions are expressed as preconditions on the inputs

of JVM operations. I expect that if preconditions on the JVM operation O

are met, preconditions on the JVM operation o are also met, where o is a sub

operation invoked directly as part of accomplishing O.

For a cut-down version of M6, M6’, I structured an ACL2-checked proof

that M6’ satisfies this stronger specification. The proof depends on a substan-

tial set of conjectures that we have not yet proved. We developed the lemma

library for verifying M6 is safe and its bytecode verifier is effective.

1.2.3 Detailed Bytecode Verifier Model

I wrote an executable CLDC [42] bytecode verifier in ACL2.

The official CLDC bytecode verifier specification is given as a set of

Prolog-style derivation rules [11]. Whether a bytecode program can be “ver-

ified” depends on whether a corresponding syntactic term can be derived or

not.

The following is one derivation rule from the official bytecode verifier

specification:

methodIsTypeSafe(Class, Method) :-

methodAccessFlags(Method, AccessFlags),

methodAttributes(Method, Attributes),

notMember(native, AccessFlags),

notMember(abstract, AccessFlags),

member(attribute(’Code’, _), Attributes),

methodWithCodeIsTypeSafe(Class, Method).
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The rule encodes one sufficient condition for a method Method be-

ing “verified” in Class — when one can find suitable substitutions of

AccessFlags, Attributes, , such that every term on the right hand side of

:- is derivable.

I built my executable bytecode verifier model by translating the Prolog-

style derivation rules from the official CLDC specification into ACL2 functions.

The translation is systematic and stylized. I solve the problem of mapping a

complex declarative specification into a procedural program.

Being executable, the bytecode verifier model is useful as an algorithmic

implementation of the declarative specification. I tested the bytecode verifier

on the CLDC class library and JDK1.3 class library, as well as hand-crafted

bytecode programs.

Written in ACL2, the bytecode model is amenable to mathematical rea-

soning. One simple property that I proved is that whether a method passes the

bytecode verification is independent of the bytecode instructions contained in

other methods. I also proved that the CLDC bytecode verifier can be reduced

to a simpler bytecode verifier. That is if the CLDC bytecode verifier succeeds

in verifying a bytecode program, the simple bytecode verifier will also verify

the bytecode program5. The proof is presented in the section 7.3 of this dis-

sertation. The third result that I proved is that a bytecode-verifier-like static

checker guarantees that verified programs never overflow their operand stacks

during program execution on a simpler machine. All proofs are mechanically

checked by the ACL2 theorem prover.

5This proof is one important step towards proving our final goal that verified program
executes safely on M6.
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1.2.4 A Framework for Proving a JVM is Safe

I created a framework for proving that the JVM is safe and for demonstrating

that a JVM can be efficiently implemented. Since M6 is my formal model of

the JVM, the framework is in fact used for proving that M6 is safe and supplies

some informal evidence that M6 can be efficiently implemented.

The framework is comprised of two parts: the overall approach and an

ACL2 lemma library for pursuing the approach. The overall approach explains

(1) how to formalize that M6 is safe and how to justify that M6 is efficient,

(2) what “leaf-level” properties one needs to prove for each individual JVM

instructions to show that M6 is safe and efficient. The lemma library configures

the ACL2 theorem prover to prove the leaf-level properties.

I formulate the JVM safety guarantees as follows: (1) JVM executions

preserve a global invariant, and (2) JVM executions meet the local safety asser-

tions (preconditions for executing the JVM operations safely). Thus one may

be misled to think that the approach for formalizing the M6 safety property

and identifying proof obligations is as straightforward as follows:

• Formalize the M6 safety guarantee as:

– M6 executions preserves a global invariant

– M6 executions meet the local safety assertions

• Identify the leaf-level proof obligations as:

– For each M6 instruction, when executed with its safety conditions

met in a consistent state, the resulting state is also a consistent

state. Here a consistent state is any state that satisfies the global

invariant.
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– For each M6 instruction, if executed as part of a verified method and

executed in a consistent state, the safety preconditions for executing

the M6 instruction are always met.

However, in reality, the approach for formulating that an M6 is safe is

more complicated. The global invariant, the one that I identified that a safe

JVM must preserve, requires that values in the state are of proper types. The

local preconditions for executing JVM operations also assert that the operands

are of the proper type. However an M6 state does not maintain enough type

information to express these requirements.

In order to state that M6 is safe, I first augment the structure of an M6

state with type information. I update the M6 operations to maintain the type

information. I call such an augmented M6 state a defensive JVM (DJVM)

state. I updated M6 operations as DJVM operations. Before executing a

bytecode instruction, the DJVM checks the preconditions for executing the

instruction. 6 I define the global invariant on the DJVM state and local safety

assertions on the DJVM operations. In order to prove M6 is safe for executing

verified programs, one needs to prove that

• When executing verified programs, M6 behaves like the DJVM with the

extra type information stripped.

• The DJVM’s execution is safe (in the sense that its execution preserves

the global invariant and never violates local assertions).

6The approach of using a defensive JVM to characterize explicitly the safety requirement
for executing an instruction is first explored by Cohen in his original work Defensive Java
Virtual Machine [5]. My defensive JVM model is more realistic. I also identify the invariant
that our DJVM will maintain. The preconditions that I identify for the DJVM operation
are also stronger.
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To argue that M6 is efficient (that is the JVM can be efficiently imple-

mented on today’s hardware platform), I would first urge the critic to examine

the definition of the consistent state predicate and the preconditions for ex-

ecuting M6 operations. I would expect the critic to reflect on how such a

JVM state can be correctly represented and how such JVM operations can be

emulated on that representation. The critic will find that M6 states contain

no extraneous data and its operations require no unexpected runtime checks.

In addition to describing how to formalize the concept of M6 being safe,

the overall approach also describes how to reduce the big proof obligation that

M6 is safe into proof obligations that correspond to leaf-level properties of the

JVM instructions.

We observe that the key differences between a bytecode verifier’s exe-

cution and DJVM’s execution can be summarized as the following two diver-

gences.

• Divergence 1 The bytecode verifier sees more general states than

DJVM, which sees assignment compatible ones, i.e. the type signature

of the runtime states is no more general than the abstract state seen by

the bytecode verifier.

• Divergence 2 The bytecode verifier does not handle INVOKE-family

instructions the way DJVM does. DJVM pushes a new frame and pro-

ceeds into the code for the invoked method; the bytecode verifier just

assumes the invocation returns and proceeds to the next instruction in

the caller’s frame.

To prove that bytecode verification is effective in ensuring the JVM

execution safety, we need to bridge these two divergences. We need to identify
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the close relation between reachable JVM states with the abstract state seen

during the bytecode verification. We need to relate the result of the bytecode

verifier’s checks to the safety of executing the JVM operations when such a

relation holds.

In our work towards proving that bytecode verifier is effective, the fol-

lowing two insights are worthy of special mention. They are the keys for

reducing the proof that the JVM is safe into proofs of leaf-level lemmas about

each JVM instruction.

• We need to identify an on-track property as one of the requirement for a

consistent state. The on-track property asserts that the executions of ver-

ified programs remains within the state space explored by the bytecode

verifier’s execution. In particular, the on-track property requires that

each call frame in a runtime state is approximated by the abstract state

observed by the bytecode verifier at the corresponding INVOKE-family

instruction.

We need to show that the on-track property is satisfied by all the reach-

able states of the JVM while executing verified programs. We rely on

this on-track property is preserved, to bridge the Divergence 2 (page 18)

between the JVM execution and the bytecode verification — that is al-

though the abstract execution diverges from concrete execution, they are

still closely related by our on-track requirement.

• To express the on-track property, we need to introduce an alternative

bytecode verifier to separate the procedural aspects of the bytecode ver-

ifier specification from what is checked by a bytecode verifier. We need

to prove a reduction theorem that asserts that all programs verified by
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the original bytecode verifier can be verified by the alternative bytecode

verifier.

I have identified the following set of leaf level properties that one needs

to prove about each JVM instruction. Take AALOAD for example:

• (1) The DJVM operation execute-AALOAD is guard verified.

If the precondition for executing the AALOAD instruction — AALOAD-guard

— is met in a DJVM state s , no precondition of any JVM operation

will be violated as a result of invoking execute-AALOAD in state s

• (2) If the precondition for executing AALOAD is met, executing it will

preserve the consistent-state property.

• (3) In a consistent state, if the DJVM’s runtime check check-AALOAD

succeeds, the preconditions for executing AALOAD, AALOAD-guard, will

be met.

• (4) Extract the type information from the current state to form a type

signature state. If the bytecode verifier asserts that it is safe to execute

AALOAD in the current type signature state, the DJVM’s runtime checking

check-AALOAD will succeed.

• (5) If the bytecode verifier asserts it is safe to execute AALOAD in some

type signature state, the bytecode verifier will assert it is safe to execute

AALOAD in a more specific type signature state when both type signature

states are good with respect to some consistent type hierarchy.

• (6) If the current state satisfies the global invariant and the program

being executed is “verified”, there exists some type signature state that
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is more general than the type signature state of the current state. The

bytecode verifier is known to assert that it is safe to execute AALOAD in

that type signature state.

• (7) If the precondition for executing AALOAD is met, executing the instruc-

tion on M6 produces the same behavior of executing the instruction on

the DJVM, with type information stripped.

• (8) The type signature state of a consistent state is good and the type

hierarchy encoded in the consistent state is consistent.

This research so far has produced an incomplete lemma library for as-

sisting people to prove leaf-properties as listed above. I used the lemma library

to prove the leaf level properties for a small subset of the JVM operations.

1.3 Limitations

We formalized the JVM safety guarantees. We carefully modeled the JVM

mechanisms (runtime checking, bytecode verification, and dynamic class load-

ing). We designed an approach for proving that the JVM mechanisms provide

the safety guarantee. We created a lemma library for proving that the JVM

is safe.

However, the usefulness of this work is limited by its incompleteness.

The JVM safety guarantee formulation is not complete. We defined a

strong consistent-state predicate as the global invariant that a safe JVM

shall maintain. However the consistent-state predicate is not strong enough to

capture some desirable properties. For example, the consistent-state predicate

does not assert that there is at most one active thread in any critical section
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protected by locks. We only defined strong safety preconditions for executing

a small subset of the JVM instructions and preconditions on the related JVM

operations. Although we do not expect new challenges in identifying the strong

safety preconditions for executing the remaining JVM operations, it should be

noted that it takes effort to identify the safety preconditions — because these

preconditions need to be strong enough so that one can prove that they entail

the safety preconditions of the lower level operations.

The overall approach has not been put to the test with the complete

JVM model, M6. In experimenting with the overall approach, we defined a

separate machine model, Small. The small machine resembles a much simpler

JVM. Its state has a stack of call frames (instead of a thread table containing

stacks of call frames) and a list of method definitions (instead of an elaborate

class table). A call frame contains an operand stack and a local variable

array. We defined a JSR139-style bytecode verifier for the Small machine. The

desired (prototypical) safety guarantee is that verified code never overflows the

operand stack. We succeeded in proving that verified code executes safely on

the Small machine by following the approach described above. The complete

proof has been mechanically checked by ACL2.

The lemma library for proving that leaf-level properties is incomplete.

We have only used the lemma library to prove leaf-level properties for a limited

set of instructions, AALOAD, AASTORE, ANEWARRAY, ALOAD, ASTORE, GETFIELD,

and IFEQ. We have not used the lemma library to prove the leaf-level properties

of other kinds of instructions such as INVOKEVIRTUAL, ARETURN, ATHROW, and

NEW. Furthermore, the lemma library itself contains unproved lemmas. Such

lemmas are explicitly marked with “skip-proofs”.

We have not used the lemma library to prove leaf-level properties about
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the INVOKE-family instructions from the M6. We argue that we have suffi-

ciently explored the two essential aspects about an INVOKE instruction sepa-

rately. The first aspect is about the method resolution — how the bytecode

verifier’s static check ensures that dynamic method resolution will succeed at

runtime. We argue that our lemma library for reasoning about the field res-

olution for executing a GETFIELD is a sufficient template of a lemma library

for reasoning about the method resolution process. The second aspect of the

INVOKE instructions is that the M6’s execution diverges from the execution of

the bytecode verifier (See Divergence 2, page 18). To execute an INVOKE, M6

creates a new call frame to represent the callee’s execution state, while the

bytecode verifier finishes the INVOKE in one step. We have faced the same kind

challenge in bridging such difference between the INVOKE instruction on the

Small machine and its static checker. We have addressed the problem in the

Small machine by (1) introducing an alternative bytecode verifier (2) requir-

ing an on-track property to be part of the consistent state criteria. We think

that these two key elements of how we structure the main proof into leaf-level

proofs are equally effective in bridging the difference between how M6 and its

bytecode verifier executes operations of INVOKE-family.

The usefulness of this work is also limited by the complexity of the

lemma library. To prove that a cut-down version of M6, M6’ is safe while

executing a verified program, the 130,600 lines of proof input to ACL2 is

organized into 283 files. We have proved

The dependency graph (figure 1.1) between these files contains 1728

edges. On average, each file depends on 7.32 other files. Thus, our work

establishes that verification of the safety guarantees is possible, but it does

not make it routine or easy.

23



DJVM.pkg

DJVM/djvm.pkg.cert

JVM.pkg

BCV.pkg

common/primitives.certcommon/symbols.cert common/no-dup-set-facts.cert

M6-DJVM-shared/symbols.cert

M6-DJVM-shared/jvm.pkg.cert

BCV/bcv.pkg.cert

M6.pkg

M6/m6.pkg.cert

DJVM/INST/base-m6-getfield-consistent-value.cert

DJVM/consistent-state.cert

M6-DJVM-shared/jvm-object-type-hierachy.cert

DJVM/INST/base-consistent-object-m6-getfield.cert

DJVM/djvm-class-table.cert

BCV/bcv-functions-basic.cert

DJVM/djvm-state.cert

DJVM/djvm-env.certDJVM/djvm-thread.certDJVM/djvm-obj.cert DJVM/djvm-type-value.cert

DJVM/djvm-linker.certBCV/bcv-functions-basic-verify-guard.cert

M6-DJVM-shared/jvm-state.cert

M6-DJVM-shared/jvm-type-value.cert

M6-DJVM-shared/jvm-loader.cert

DJVM/consistent-state-properties.cert

DJVM/INST/base-consistent-state-lookupfield.cert

DJVM/INST/base-bind-free.cert

DJVM/INST/base-consistent-state-lookupfield-support.cert

DJVM/INST/base-consistent-state-class-names-are-string.cert

DJVM/INST/base-lookupfield-fieldname-normalize.cert

M6/m6-object-manipulation-primitives.cert

M6/m6-type-value.cert M6/m6-class-table.cert

M6/m6-state.certM6/m6-class-hierachy-aux.certM6/m6-obj.cert

M6/m6-thread.cert

M6/m6-frame-manipulation-primitives.cert

M6-DJVM-shared/jvm-object-manipulation-primitives.cert

M6-DJVM-shared/jvm-class-table.cert

M6-DJVM-shared/jvm-class-hierachy-aux.cert

M6-DJVM-shared/jvm-obj.cert

M6-DJVM-shared/jvm-thread.cert

M6-DJVM-shared/jvm-frame-manipulation-primitives.cert

DJVM/INST/base-load-class-normalize-when-found.cert

DJVM/INST/base-valid-type-s.cert

DJVM/INST/base-isAssignableTo-properties.cert

DJVM/INST/base-consistent-state-consistent-object.cert

DJVM/djvm-frame-manipulation-primitives.cert

DJVM/INST/base-isAssignableTo-properties-support.cert

M6-DJVM-shared/jvm-internal-primitives.cert

M6-DJVM-shared/jvm-env.cert

DJVM/INST/base-consistent-state.cert

DJVM/INST/base-consistent-state-consistent-object-support.cert

DJVM/INST/GETFIELD.cert

DJVM/INST/base.cert

DJVM/INST/base-extra.cert

DJVM/INST/base-consistent-state-load-class.cert

DJVM/INST/base-load-class-normalize.cert

DJVM/INST/base-judgement-after-load-class-no-change.cert

DJVM/INST/base-skip-proofs.cert

DJVM/INST/base-consistent-state-make-state-general.cert

DJVM/INST/base-consistent-state-pushCategory2.cert

DJVM/INST/base-frame-sig-expansion.certDJVM/INST/base-bcv.cert

DJVM/INST/base-bcv-djvm-getfield.cert

DJVM/INST/base-bcv-check-monotonic.cert

DJVM/INST/base-bcv-step-monotonic.cert

DJVM/INST/base-bcv-frame-sig-expansion.cert

DJVM/INST/base-next-state-more-specific.cert

M6/m6-bytecode.cert

DJVM/consistent-state-to-untag-state.cert

DJVM/INST/base-state-equiv.cert

DJVM/INST/base-method-ptr-no-change.certDJVM/INST/base-method-no-change.cert

DJVM/consistent-state-to-sig-state.cert

BCV/typechecker.cert

M6-DJVM-shared/jvm-bytecode.cert

M6-DJVM-shared/jvm-bytecode-guard-verification.cert

DJVM/djvm-exceptions.certBCV/bcv-functions.cert

DJVM/INST/base-array.cert

DJVM/INST/base-locals.cert

DJVM/consistent-state-strong.cert

DJVM/consistent-state-obj-init.cert

DJVM/INST/base-loader-preserve-consistent-state.cert

DJVM/consistent-state-obj-init-properties-export.cert

M6-DJVM-shared/jvm-linker.cert

DJVM/INST/base-load-class-normalize-support.cert

DJVM/INST/base-load-class-normalize-deref2.cert

DJVM/INST/base-load-class-normalize-class-by-name.cert

DJVM/INST/base-load-class-normalize-assignmentcompatible.cert

DJVM/INST/base-load-class-normalize-isAssignableTo.cert

DJVM/INST/base-consistent-state-pushCategory2-support.cert

DJVM/INST/base-consistent-state-more.cert

DJVM/INST/base-bcv-djvm-assignable.cert DJVM/INST/base-frame-sig-expansion-support.cert

DJVM/INST/base-array-facts.cert

DJVM/INST/base-frame-sig-after-class-loading.cert

DJVM/INST/base-object-field-always-initialized.cert

DJVM/INST/base-lookupfield-get-field-type.cert

DJVM/INST/base-branch-instrs.certDJVM/INST/base-bcv-support.cert

DJVM/INST/base-bcv-fact-isMatchingType-canPopCategory1.cert

DJVM/INST/base-bcv-fact-isMatchingType-value-initialized.cert DJVM/INST/base-bcv-fact-isMatchingType-suitable-value.cert DJVM/INST/base-bcv-fact-isMatchingType-isAssignableTo.cert

DJVM/INST/base-consistent-state-lookupfield-bcv.cert

DJVM/INST/base-type-size-normalize-fix-type.cert

DJVM/INST/base-bcv-fact-array-type-assignable.cert

DJVM/INST/base-valid-object-type-assignable-to-java-lang-Object.cert

DJVM/INST/base-bcv-fact-isMatchingType-consp-stk.cert

DJVM/INST/base-bcv-check-monotonic-support.cert

DJVM/INST/base-bcv-fact-nth-opstack.cert DJVM/INST/base-bcv-fact-isMatchingType-array.certBCV/bcv-isAssignable-transitive.cert

DJVM/INST/base-bcv-protected-check-monotonic.cert

DJVM/INST/base-bcv-modify-local-variable.certDJVM/INST/base-bcv-fact-nth-opstack-specific-env-sig.cert

DJVM/INST/base-bcv-fact-isMatchingType-isAssignable.cert

DJVM/INST/base-good-java-type-valid-type-s.certDJVM/INST/base-djvm-functions.cert

DJVM/INST/base-bcv-isAssignable-facts.cert

DJVM/INST/base-reference-type-s-good-java-type.cert

DJVM/INST/base-consistent-state-good-icl-etc.cert

M6/m6-linker.cert

M6/m6-static-initializer.certM6/m6-exceptions.cert

M6/m6-native.cert

M6/m6-loader.cert

DJVM/INST/base-state-set-local-at.cert

DJVM/djvm-heap.cert

DJVM/INST/base-bind-free.lisp

BCV/bcv-searchStackFrame-reduce-support-2.cert

BCV/typechecker-ext.certBCV/typechecker-simple.cert

BCV/bcv-base.cert

BCV/bcv-collected-frames-are-strictly-ordered.cert

BCV/bcv-good-env-encapsulate.cert

BCV/bcv-collect-sig-frame-vector-never-aftergoto.cert

main/djvm-consistent-state-facts.cert

main/djvm-simple.cert

DJVM/INST/inst.cert

M6-DJVM-shared/jvm-class-table-test-data.certM6-DJVM-shared/jvm-env-test-data.cert

common/gen-guards.cert

common/gen-guards.lisp

M6-DJVM-shared/jvm-linker-guard-verification.cert

M6-DJVM-shared/jvm-loader-guard-verification.cert

M6-DJVM-shared/jvm-loader-primitives.cert

M6-DJVM-shared/jvm-loader-constant-pool-primitives.cert

M6-DJVM-shared/jvm-loader-inv.cert

M6-DJVM-shared/jvm-dynamic-loading-property.cert

M6-DJVM-shared/jvm-loader-guard-verification-support-load-cp-guard.cert

DJVM/INST/base-bcv-fact-isMatchingType-isAssignableTo-support.cert

DJVM/INST/base-bcv-fact-isAssignable-prefixclass-not-category2.cert

common/symbols.acl2

DJVM/INST/base-canPop1-consistent-sig-stack-consistent-value.cert

main/bcv-is-effective.cert

main/m6-simple.cert

main/djvm-is-safe.cert

DJVM/consistent-state-bcv-on-track.cert

main/on-track-with-bcv-implies-next-inst-in-range.cert

main/step-preserve-state-equiv-if-on-track-with-bcv.cert

main/on-track-with-bcv-remain-on-track.cert

BCV/good-scl-strong-encapsulate.cert

DJVM/INST/base-load-class-normalize-deref2-support.cert

DJVM/INST/base-load-class-normalize-class-by-name-support.cert

DJVM/INST/base-update-array.cert

DJVM/INST/ACONST_NULL.cert

DJVM/INST/base-REFp-reference-type-s.cert

M6-DJVM-shared/jvm-frame-manipulation-primitives-guard-verification.cert

M6/m6-internal-primitives.cert

BCV/bcv-next-inst-is.cert

M6/m6-semantic-primitives-2.cert

M6-DJVM-shared/jvm-semantic-primitives-2.cert

M6/m6-object-type-hierachy.cert M6/m6-thread-primitives.cert

M6/m6-monitor-failure-as-fatalError.cert

M6-DJVM-shared/jvm-thread-primitives.cert

M6-DJVM-shared/jvm-monitor-failure-as-fatalError.cert

M6/m6-verifier.cert

M6-DJVM-shared/jvm-exceptions.cert

M6/m6-monitor-failure-as-java-Exception.certDJVM/INST/base-object-field-always-initialized-support.cert

DJVM/INST/base-consistent-state-step-definition.cert

BCV/bcv-is-suffix-facts.cert

DJVM/INST/base-value-sig-no-change-after-class-table-heap-extension.cert

M6-DJVM-shared/jvm-exceptions-guard-verification-1.cert

BCV/bcv-searchStackFrame-reduce.cert

BCV/bcv-searchStackFrame-reduce-support.cert

BCV/bcv-searchStackFrame-only-suffix-matters.cert BCV/bcv-collect-sig-frame-vector-misc.certBCV/bcv-next-stackframe-equal-suffix-suffix.certBCV/bcv-pc-wff-mergedcode1.cert

DJVM/INST/base-skip-proofs2.cert

DJVM/INST/ANEWARRAY.cert

DJVM/INST/base-consistent-state-update-trace.cert

DJVM/INST/base-consistent-state-state-set-heap.certDJVM/INST/base-build-an-array-instance-creates-consistent-object.cert

DJVM/INST/base-consistent-state-make-state.cert

DJVM/INST/base-update-trace-normalize.cert

DJVM/INST/base-consistent-state-load-class-support.cert

M6-DJVM-shared/jvm-verifier.cert

DJVM/INST/base-consistent-state-step-properties.cert

M6-DJVM-shared/jvm-monitor-primitives.cert

M6-DJVM-shared/jvm-monitor-failure-as-java-Exception.cert

common/no-dup-set-facts.acl2

DJVM/INST/base-fatal-errorflag-not-earsed.cert

DJVM/INST/base-load-class-normalize-isAssignableTo-support.cert

BCV/bcv-collected-frames-are-good-frames.cert

DJVM/INST/base-bcv-fact-isAssignable-len-pushOpstack.cert

M6-DJVM-shared/jvm-thread-primitives-guard-verification.cert

BCV/bcv-wff-code.cert

DJVM/INST/base-consistent-state-modifying-object-support.certBCV/bcv-sig-do-produce-compatible-next-state.cert DJVM/INST/base-bcv-valid-local-index-facts.cert

DJVM/INST/AASTORE.certDJVM/INST/IFEQ.cert DJVM/INST/ASTORE.certDJVM/INST/AALOAD.cert DJVM/INST/ALOAD.cert

M6-DJVM-shared/jvm-monitor-primitives-guard-verification.cert

M6-DJVM-shared/jvm-exceptions-guard-verification.cert

DJVM/INST/base-update-heap.cert

DJVM/INST/base-bcv-update-heap.cert

DJVM/INST/base-consistent-state-modifying-object.cert

M6-DJVM-shared/jvm-object-type-hierachy-guard-verification.cert

BCV/bcv-succeed-implies-bcv-simple-succeed.cert

BCV/bcv-instructionIsTypeSafe-if-verified.cert

BCV/bcv-mergedcodeIsTypesafe.cert

DJVM/consistent-state-obj-init-properties.cert

DJVM/consistent-state-properties2.cert

M6/m6-interpreter.cert

DJVM/INST/base-bcv-locals.cert

M6/m6-start-jvm.cert

Figure 1.1: Proving Bytecode Verification Is Effective
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We have finished the most academically-interesting aspects of the proof,

though, some properties have not been proved. What remains to be done

has more of an engineering flavor. The interesting aspects that we have done

include (1) a proof decomposing scheme — tested to be effective on the simpler

Small machine; (2) a lemma library for reasoning about the operations such

as field resolution, dynamic class loading, read and write to call frames and

heaps.

Should a researcher wish to apply the methodology to M6 in its en-

tirety, I recommend that they first build a set of ACL2 books corresponding

to commonly used abstract data types with operations that define and manip-

ulate values of these types, as well as lemmas for reasoning about them. Then

they should consider rebuilding M6 and the type checker more systematically

with the data structures and operations of these abstract data types. Before

they start, they need to understand and appreciate how to use ACL2 books

to organize their proofs — importing, summarizing and exporting relevant

lemmas. Our existing ACL2 books in DJVM/INST/ from [22] may be a good

case study to understand how to use books to organize proofs. Then they

can follow the our framework to prove the leaf-level lemmas for each instruc-

tion. In the process, they will improve on our existing supporting libraries for

proving these leaf-level lemmas. They should study our completed proof that

the Small machine is safe, and understand how to put together the leaf-level

lemmas to prove the top level goal that the bytecode verifier is effective and

the JVM is safe for executing verified programs. In the concluding chapter

(Chapter 8, page 302) of this dissertation, we also recommend a few suitable

simplifications to M6. A researcher may consider those recommendations to

simplify our JVM model before trying to prove that the bytecode verifier is
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effective.

1.4 Related Work

The work presented in this dissertation is related to several areas of research,

including: (1) formalizing JVM semantics, (2) program specification and ver-

ification, (3) designing sound type systems for the JVM bytecode language,

and (4) proving the correctness of the bytecode verifier.

Several people have formalized the JVM as a state machine [2, 5, 10, 35].

Semantics of the JVM instructions are given as state transition rules describing

how the state is updated and conditions under which it is updated.

My JVM model, M6, is the most accurate formal JVM model that we

know of. The model faithfully models class loading and class initialization,

as well as synchronization operations at the JVM level. It can execute any

bytecode program that does not rely on certain native methods from the CLDC

class library. M6 is specified in ACL2.

JBook [35] specifies an executable JVM model of comparable complex-

ity. Their model is presented as a set of state transition rules in ASM notation

[7]. The model is executable by an interpreter, ASMGofer [39].

Compared to the JVM model described in JBook, we have the advan-

tages of being able to specify the properties of M6 in ACL2. We can interact

with the ACL2 theorem prover to find proofs of these properties and have the

proofs mechanically checked by the ACL2 theorem prover.

Our effort towards identifying the consistent-state predicate is compa-

rable to projects that aim to design sound type systems for the JVM bytecode

language [41, 36, 34]. In a conventional type system, the typing rules will be
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rather complicated to capture the fact that the available class definitions can

be dynamically extended. Whether a specific term (a machine state) is well-

typed depends on delicate consistency requirements between subterms. One

such consistency requirement can be that the subterm representing a value

in the operand stack needs to be of a valid class according the runtime class

table — another subterm. The evaluation relation of the bytecode language

corresponds directly to our JVM model, M6.

By identifying the consistent state predicate, we are essentially defining

what a well-typed term is in this type system. We want to first show that

executing a verified (well-typed) program in some consistent (well-typed) state

will ensure that preconditions for executing a step are met. This corresponds

to the Progress requirement of a sound type system: well-typed programs will

not get stuck. We also want to show that a verified (well-typed) program

executing a step in a consistent (well-typed) state will yield a program and

state is also consistent (well-typed). This corresponds to the Preservation

requirement of a sound type system.

Unlike the efforts to define sound type systems for the JVM bytecode

language, we started by constructing a faithful model of the JVM directly.

The evaluation rules for the Java bytecode language are incorporated into the

definition of the executable JVM model. Our executable JVM model is easily

recognizable as a JVM. Our approach also exposes some low level details in

the JVM — allowing us to study the important properties of the class loader

inside the JVM.

We have aimed at proving a formal claim that roughly says “verified

programs execute safely on the JVM”. Stärk et.al. present a mathematical

proof that their bytecode verifier model in their JBook [35] is correct. Klein
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and Nipkow have completed a mechanically checked proof of this nature for

their model of the JVM and bytecode verifier [12, 21].

The uniqueness of our work is that we modeled the class loading pro-

cess in the JVM. The type hierarchy information is explicitly encoded in the

superclass field and superinterface field of loaded classes. We do not assume

that loaded classes form a lattice with respect to some assignment compati-

ble relation. Instead, we are obliged to prove explicitly that available classes

form a lattice with respect to the assignment-compatible relation. We are also

obliged to prove that dynamic class loading as specified in the JVM preserve

this fact.

Another difference worth noting is that our bytecode verifier is derived

directly from the official bytecode verifier specification [11]. We have strived to

make the connection between the official specification and the ACL2 model as

direct as possible. Our bytecode verifier is directly executable without needing

a separate refinement step to create an executable bytecode verifier.

1.5 Organization

In Chapter 2, we give a simple introduction to the Java Virtual Machine and

its bytecode verifier. We highlight the two styles of specification (operational

and declarative) that informally coexist in the official JVM specification. We

formulate our task of proving that the JVM is safe as to show that our oper-

ationally specified bytecode verifier ensures that all verified program execute

in a way that meet declaratively specified constraints.

In Chapter 3, we give an extended introduction to ACL2, its program-

ming language, mathematical logic, and mechanical theorem prover. We use
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a “Hanoi Tower” example throughout the chapter to explain the concepts and

usage patterns. We explain in detail: (1) how to model an interpreter in

ACL2, (2) how to write operational, functional, and safety specification for

such an interpreter, and (3) how to use the ACL2 theorem prover to prove

properties of functional correctness and safety. We introduce the ACL2 con-

cepts of skip-proofs and books that one uses to organize a top-down proof.

We describe the concepts of guards and guard verification as a method for

specifying and verifying the interpreter safety.

We present our JVM model, M6, in Chapter 4. We describe its state

representation and state transition functions. We describe our class loader and

class initializer model in M6. We also touch on how the model can be used in

proving properties about the Java programs.

In Chapter 5, we present our bytecode verifier model written in ACL2.

It is constructed by systematically translating the Prolog-style rules from the

official CLDC bytecode verifier specification into ACL2 functions. The byte-

code verifier model is executable. We can also prove theorems about it. We

present a simple property that we proved about the bytecode verifier. The

property asserts that whether a method can pass the bytecode verification

does not depend on how other methods are implemented.

We present our alternative JVM safety specification in Chapter 6. Our

alternative JVM safety specification is originally motivated as a necessary in-

termediate step to prove that a JVM implemented by following the operational

specification will meet the declaratively specified safety constraints inductively.

We argue that our alternative JVM safety specification is a useful specification

in its own right. It helps in guiding JVM implementors to create safe JVM

implementations.
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Our framework for proving that the JVM is safe and the bytecode ver-

ifier is effective is presented in Chapter 7. We start by describing the overall

proof scheme. We describe the scheme using the Small machine. We show

that how we proved that verified programs will never overflow the operand

stack when executing on the Small machine. We then continue to present a

“reduction” theorem that we proved about the CLDC bytecode verifier and

an alternative version of the bytecode verifier. We also present our supporting

ACL2 library for proving the necessary leaf-level lemma for instructions of M6.

We then summarize and conclude with some remarks on the limitations

and additional work necessary for proving that M6 is safe for executing verified

programs.
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Chapter 2

Aspects of the Problem

We introduce the basic concepts of the Java Virtual Machine (JVM) and the

JVM implementation. We describe the bytecode verification process briefly.

We explain the scope of this dissertation — what we study and what challenges

are.

2.1 JVM and JVM Implementation

Niklaus Wirth nicely summarized “programs” as being no more than “algo-

rithms + data structures”. More generally, programs can be understood as

describing sequences of operations (algorithms) to be applied to objects (data

structures) from a certain universe. To execute a program on a machine is

to have the “machine” mechanically carry out the corresponding sequence of

operations on the input objects.

For x86 assembly programs, the universe of discourse contains machine

registers and the array of memory cells that record 0s and 1s. Machines for

executing the assembled x86 programs are physical x86 computers.
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In contrast, the universe of the Java bytecode programs includes entities

such as operand stacks, local variable arrays, Java objects, and references to

Java objects. These entities are generally much more complex than machine

registers and memory cells. The Java virtual machine (JVM) is the machine

that carries out the operations on these more complex entities.

In reality, such a Platonic virtual machine for executing Java bytecode

programs does not exist. Instead, to execute a Java bytecode program, one

resorts to representing the abstract entities as collections of 0s and 1s, and em-

ulating the JVM operations by manipulating these low level representations.

The methods for representing a JVM state and for emulating JVM operations

are often coded as in a low level machine language (such as for an x86 com-

puter). We refer to such a program as a JVM implementation on the low level

machine.

A JVM implementation thus bridges the semantic gap between the uni-

verse of the JVM and the 0s and 1s of the low level machine. It is desirable

for a good JVM implementation to have the following properties:

• Correctness (Accuracy)

A JVM implementation shall behave like the JVM on all bytecode pro-

grams;

• Safety

A JVM implementation shall always execute safely on the low level ma-

chine. No inputs (i.e. bytecode program and inputs to the bytecode

program) can induce an execution that violates the safety constraints of

the low level machine;
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• Efficiency

Additionally, a JVM implementation shall emulate the JVM with good

efficiency for all bytecode programs.

Whether a good JVM implementation is feasible depends on the defini-

tion of the JVM — how different a JVM is from a conventional x86 computer.

For example, emulating an x86 computer with a Turing machine will never be

efficient, because x86 machines have random access memory, while the Turing

machine only has a tape that can be accessed by moving its head one cell left

or right 1

It is the JVM designer’s goal that the JVM design shall allow for a good

(correct, safe, and efficient) implementation on the today’s general purpose

processors.

This dissertation is a formal study of the Platonic JVM – what are the

guarantees of the Platonic JVM and how such guarantees are provided. We

hope that this formal study of the JVM can provide useful insights for why a

correct, safe and efficient JVM implementation is possible and what properties

a JVM implementation needs to meet. This is not a study of efficient JVM

implementation techniques.

2.2 JVM Specification and its Objectives

A specification of the JVM serves two purposes. Application programmers,

who write Java programs to run on the JVM, rely on the specification to think

about their programs and predict the programs’ behavior. The system pro-

1Assuming that the Turning machine has a limited number of internal states, and the
set of input symbols is small. By efficient, we mean a slow down by a small constant factor.
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grammers, who write the JVM implementations, rely on the specification for

descriptions of what operations need to be implemented and what constraints

need to be met. For the specification to be useful, it should be feasible to

implement the specified operations and meet the listed constraints. A specifi-

cation will be particularly useful to JVM implementors if, when operationally

specified operations are implemented, the declarative specified constraints will

automatically be satisfied.

The official JVM specification (JVMSpec) [45] is written with consider-

ation for the needs of both application programmers and system programmers

in mind. JVMSpec specifies the behavior of the Platonic virtual machine both

operationally and declaratively.

Operationally, JVMSpec describes the JVM as an interpreter. The in-

terpreter recognizes a set of instructions and is able to execute the correspond-

ing operations. These operations manipulate entities in the environments. The

operations also cause the interpreter to update its own internal state, affecting

what instruction will be interpreted next — some operations may cause the

interpreter to locate the definition of a new program (dynamic loading) and

prepare the new program for execution (linking).

The effects of interpreter’s operations are described, however, only when

the operations are used to manipulate entities of suitable types. The inter-

preter’s behavior is not specified if the interpreter attempts to apply some

operation to operands of wrong type. For example, JVMSpec does not spec-

ify how the JVM will execute the IADD instruction when the top item on the

operand stack is not a JVM 32-bit integer. Nor does it specify how the machine

will execute IADD when the operand stack contains one item.

If JVMSpec had only had the above operational specification, the spec-
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ification would have been incomplete in describing the behavior of the ideal

JVM [5]. An incomplete JVM specification is not useful to people who write

programs for executing on the JVM. They cannot rely on the specification to

predict the behaviors of their programs because:

• there is no obvious way to predict whether some program will induce the

interpreter to apply an operation to operands of wrong type, and

• the result of executing that operation is unpredictable.

One way to make JVMSpec effectively complete, is to require that no

program will ever induce the interpreter to apply an operation to operands of

the wrong types. Section 4.8 of JVMSpec includes a list of constraints which

intends to assert just that.

The following are a few constraints from JVMSpec.

• Each instruction must only be executed with the correct number of ar-

guments with suitable types, regardless of the execution path that leads

to its invocation.

• At no point during execution can the operand stack grow to a depth

greater than the declared maximum size. At no point during execution

can more values be popped from an operand stack than it contains.

• No local variable can be accessed before it is ever assigned a value.

• There must never be a reference to some uninitialized object on the

operand stack or in a local variable array when any backward branch is

taken.
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• If GETFIELD or PUTFIELD is used to access a protected field of a superclass

of the current class, the type of the instance being accessed must be

the same as or a subclass of the current class. If INVOKEVIRTUAL or

INVOKESPECIAL is used to access a protected method of a superclass,

then the type of the class instance being accessed must be the same as

or a subclass of the current class.

• The target offsets of jump and branch instructions never fall in the middle

of an instruction.

The declarative aspects of the specification make a correct JVM difficult

to implement. In general, given an arbitrary set of declarative constraints, it

is not clear whether a correct implementation is possible at all – the set of

constraints may be inconsistent.

To guide the JVM implementation, JVMSpec describes a bytecode ver-

ification process. Before the interpreter starts interpreting a program, it in-

vokes the bytecode verification algorithm to examine the program statically.

The hope is that any verified program’s behavior is well-defined, that is, none

of the declarative constraints are violated during execution.

However, a JVM implementation is constructed by following its oper-

ational specification (semantics of instructions and the bytecode verification

process). The natural question is whether an implementation that complies

with the operational specification also satisfies the declarative specification.

This is one of the questions that we seek to answer in this work.
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2.3 Bytecode Verification and its Goal

JVMSpec specifies the bytecode verification process operationally.

Before a method is interpreted by the JVM, several passes of static

analysis of the code are carried out by the bytecode verifier [45, 11]. Some

passes focus on the syntactical correctness of the class file. The most complex

pass of the static analysis can be understood in the framework of abstract in-

terpretation [6]. Instead of executing the program on a concrete state, a byte-

code verifier executes on an abstract state. The underlying belief is that the

properties obtained about the abstract execution is correlated to some corre-

sponding properties of some concrete execution. In particular, if the abstract

execution succeeds in the bytecode verifier, no constraints stipulated in the

JVM specification will be violated during actual execution. In the language

of abstract interpretation, the abstract interpretation of bytecode programs

using the bytecode verifier is a safe simulation of the concrete interpretation

[40] with respect to the properties that we are interested in. The abstract

execution traces need to be a consistent abstract interpretation with respect

to the concrete executions.

The abstract execution of a method starts from an abstract state. The

initial abstract state is constructed from assumptions about the possible input

to the method being verified. The abstract state records the types of values

that would be present in the actual activation record (call frame). The abstract

state also records other information such as the name of the current method,

the method’s permissions for accessing other classes, and the type hierarchy

of the known classes.

Before the abstract interpreter makes a state transition, it checks the
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precondition for making the transition. If any errors are detected, the bytecode

method is rejected and the JVM will refuse to execute the program.

The checks done by the bytecode verifier are closely related to the con-

straints that the JVM specification stipulates — except that these checks are

performed on the abstract states. Comparing the following (incomplete) list

of checks done by the bytecode verifier with the list of constraints that a JVM

must met from the previous section, one can see a close match.

• Bytecode instructions are only applied to correct number of operands of

compatible types.

• There are no operand stack overflows or underflows. The size of the

operand stack depends on the offset of the instruction being executed,

and is independent of how the instruction is reached during execution.

• The local variable being read must contain a valid type.

Initially, the local variables are marked with a special signature that

indicates an invalid type.

• When a backward branch may be taken, there is no uninitialized refer-

ence type on the operand stack or in the local variables.

• Accesses to protected fields and method to a superclass of the current

class are properly limited.

• The targets of potential branches are valid, i.e. within the method, and

never fall in middle of an instruction.

It is a goal of this dissertation to show these two kinds of checks are in
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fact related — if the checks succeed on the abstract state, the corresponding

constraints on the runtime states are met.

The first challenge is to identify the conditions under which the two

kinds of checks are related:

• Given a runtime state, identify when it is approximated by some abstract

state — certain ill-formed runtime state will not have a corresponding

abstract state that approximates it.

• Given a constraint on a well-formed runtime state, examine what is

checked against its corresponding abstract state, and confirm that the

checks are sufficient for satisfying the constraints on the concrete state.

Suppose one views an abstract state as a type for the runtime states

that it approximate and that violating any constraint at runtime as is getting

stuck. 2 Then the first challenge roughly reduces to designing a type system

that has the progress property — well typed programs do not get stuck.

The second challenge is to show such a type system also has preservation

property, that is, executing a step of well typed program produces a well-

typed program. Given a runtime state known to have an abstract state that

approximates it, we need to show that there exists some abstract state that

approximates the state produced by executing one step from the given runtime

state.

A third challenge is of a different nature. The official CLDC bytecode

verification specification [11] describes the bytecode verification process with

over 100 Prolog-style derivation rules. Although the specification is declarative

2Imagine a small-step semantics for the Java bytecode language; a program configuration
is stuck if there is no valid transition from that configuration.
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in form (as derivation rules), the verification process described there is very

algorithmic. The essential reasons for the bytecode verifier being effective are

obscured with the procedural aspects of description.

We need to create a simpler bytecode verifier that is equivalent to the

algorithmic official CLDC bytecode verifier. The abstract execution of the

simpler bytecode verifier needs to be directly useful for predicting the concrete

JVM’s execution.
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Chapter 3

Using ACL2

The acronym “ACL2” stands for A Computational Logic for Applicative Com-

mon Lisp. The meaning of “ACL2” is overloaded. We use ACL2 to refer to

three different things: (1) the ACL2 programming language – a dialect of the

Lisp programming language; (2) the ACL2 logic — a first order logic with

induction and equality 1; (3) the ACL2 theorem prover — an interactive the-

orem prover for exploring the properties of ACL2 programs and proving these

properties as theorems in the ACL2 logic.

The ACL2 programming language is described in Chapter 3 of the ACL2

book Computer-aided Reasoning: An approach [28]. We write the Java virtual

machine models as ACL2 programs. The models are executable.

The ACL2 logic is what we use to formalize the properties of our JVM

model and to conduct proofs in. Being a mathematical logic, it describes a

set of axioms and derivation rules. Kaufmann and Moore’s A Precise Descrip-

1ACL2’s “logic” is technically both a first order logic and a first order theory, the latter
being the former with the addition of a set of axioms for certain symbols such as car and
cons. But in this dissertation we consistently refer to the mathematical formalism as a
“logic.”
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tion of the ACL2 Logic [25] paper and Structured Theory Development for a

Mechanized Logic paper [26] together is a definitive guide to the logic.

Our reason for specifying the JVM and bytecode verifier properties in

the ACL2 logic is that there is a close connection between the ACL2 logic

and the ACL2 programming language — it is possible to assign meaning to

ACL2 logical formulas in a such way that: (1) the meanings of axioms turn

out to be true facts in the universe of ACL2 programming language; and (2)

the derivation rules are truth preserving.

Relying on this connection between the ACL2 programming language

and the ACL2 logic, we study properties of our JVM model (an ACL2 pro-

gram) by proving corresponding syntactic forms as theorems in the ACL2 logic.

Given a property that we want to show about the JVM model, we first encode

the property as a syntactic form — a formula — in the logic. If the syntactic

form happens to be a theorem in the logic (i.e. it can be derived from axioms

with repeated application of derivation rules), we can conclude that the ACL2

program does has the corresponding property.

We use the interactive ACL2 theorem prover to help us prove such the-

orems. The interactive ACL2 theorem prover functions like a simple-minded

critic with great attention to details. The critic examines mathematical claims

of the form “formula P is a theorem”. It either verifies the claim or requests

the user to supply additional justifications. We typically supply additional

justifications of the form “formula Q is a theorem” where “Q” is simpler and

thus more plausible to the critic than “P”. The critic can “learn” from claims

accepted and move on to check more difficult claims. Other forms of “addi-

tional justification” may be supplied by the user, including hints to enable

or disable the automatic use of previously admitted definition or lemma (so-
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called “:in-theory” hints), hints to use some previously proved lemma via

some explicit instantiation (“:use” hints), or even explicit proof scripts for

certain subgoals (“:instructions”).

3.1 Modeling

3.1.1 The ACL2 Programming Language

To communicate any thought about a computing system, we need to be able

to first describe what the computing system is. Our language needs to be

understood by the people to whom we want to communicate.

We often resort to describing a computing system in some non-

ambiguous artificial language. We have the following requirements on the

artificial language: (1) people can agree on how to interpret the basic con-

structs in the language; (2) the description is non-ambiguous; (3) the artificial

language is rich enough to succinctly describe the system.

The ACL2 programming language is the simple, precise, expressive lan-

guage that we use to describe computing systems in this study. Its parenthesis-

laden syntax is very uniform. To add two constants, 1 and 2, we write (+ 1

2). To apply the operation op to the value of the variable o, we write (op

o). The first symbol after an open parenthesis can generally be viewed as de-

noting some operation, the rest of elements till the close parenthesis are terms

describing the operands.

The operation of ACL2 is side-effect free. Take any op and a term o,

executing (op o) will always produce the same output. ACL2 is a functional

subset of the Lisp programming language. That is, op is a function. It is
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possible to understand (op o) as denoting some pre-determined value of the

function op on its operand — without thinking in terms of the operation

actively constructing the answer from the operand.2

If we view ACL2 programs as mathematical functions, the domain of

every ACL2 function has at least five kinds of value objects: numbers, strings,

characters, symbols, and cons pairs.3

We have many built-in ACL2 primitive functions. Function application

(if test a b) is equal to a– if test is not equal to nil – otherwise, (if

test a b) is equal to b. Function application (cons a b) is equal to the

ordered pair (or “cons”) containing the values of a and b respectively. For

example, (cons 1 2) produces the pair that is written (1 . 2).

To define a new operation, we use the special defun form.

(defun push (v stk)

(cons v stk))

This syntactic form can be read as: define function push that takes two argu-

ments v and stk, (push v stk) denotes a cons cell whose first element is v

and the second element is stk. The intuitive picture is that the push operation

pushes the value v onto some stack stk, and then returns the extended stack.

The stack is represented as a cons pair.

We can also define functions recursively. The following defines the fac-

torial function.

2For example, the programmer might think of (expt 2 n) as computing 2n by multi-
plying 2 by itself n times or by using some other algorithm; but one can also think of expt
as a function that maps from pairs of operands to values, as might be done via an infinitely
large pre-determined table.

3The universe of ACL2 objects is open and so there may also be objects not of these five
kinds.
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(defun factorial (n)

(if (zp n) 1

(* n (factorial (- n 1)))))

One may view this recursive definition as explaining how to execute the func-

tion operationally — if (zp n) is not nil, executing (factorial n) returns

1, otherwise, it executes the operation again on a different input (- n 1).

When the execution of (factorial (- n 1)) finishes, it returns the result of

multiplying n times the result of executing (factorial (- n 1)).

One may also view this recursive definition as describing a constraint

that relates that the value of function factorial at different points in the

domain of the function. The constraint says that (1) function factorial’s

value at point n is 1 if (zp n) is true; (2) otherwise, function factorial’s

value at n is n times its value at (- n 1).

After defining functions, we can group function definitions (and other

information) into separate files, called ACL2 books. Each book defines a set of

operations. The operations of one book may be “included” in another book by

writing an appropriate include-book form in the latter book. For example,

the misc/records.lisp file is an ACL2 book that comes with the ACL2

distribution. The book defines get and aset operations: (g key dict) and (s

key val dict). Before we can use it to define other functions, we need to

use (include-book m̈isc/records:̈dir :system) to import their definitions.

We will show a concrete example of using this construct in the next section.

The ACL2 programming language diverges from the Lisp programming

language by demanding that all operations must terminate on arbitrary inputs.
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3.1.2 Modeling the Hanoi Tower Mover

We can write ACL2 programs to model interpreters. We take the “Towers of

Hanoi” problem as an example to show how one may model a simple Hanoi

Tower mover that can interpret a sequence of instructions and carry out the

moves.

In the “Tower of Hanoi” problem, we have three pegs — A, B, and C —

and n disks of different sizes. The state of the system is determined by the

arrangement of the disks on the pegs. The disks are all initially on peg A with

larger disks beneath smaller disks. The goal is to move all disks to peg C. We

need to comply with the following rules:

1. Only the topmost disk disk on a peg may be moved at a time.

2. A disk can only be placed as a topmost disk and it must be smaller than

the current topmost disk on the destination peg, if the destination is peg

is not empty.

In ACL2, we model a Hanoi tower operator that can follow a sequence of

instructions and carry out the corresponding operation as shown in figure 3.1.

The play function is our interpreter that takes a list of moves (instruc-

tions) and executes the moves one by one.

(defun play (moves st)

(if (endp moves)

st

(play (rest moves)

(do-move (first moves) st))))
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------------------------------------------------------------

File: hanoi-model.lisp

------------------------------------------------------------

; The semicolon starts a comment that extends to the end

; of the line.

(in-package "HANOI")

(include-book "stack")

; defines stack: new-stack, stackp, push, top, has-more

(include-book "state")

; defines the state: new-state, statep, set-peg, and get-peg

(include-book "move")

; defines move: new-move, movep, src, and dest

(defun do-move (m st)

(let* ((from (src m))

(to (dest m))

(from-stk (get-peg from st))

(to-stk (get-peg to st)))

(set-peg from

(pop from-stk)

(set-peg to

(push (top from-stk)

to-stk)

st))))

(defun play (moves st)

(if (endp moves)

st

(play (rest moves)

(do-move (first moves) st))))

Figure 3.1: Modeling a Hanoi tower operator
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moves is assumed to be a cons structure representing a list. To play a sequence

of moves, the interpreter first checks whether the list of moves satisfies endp.

If the list has ended — (endp moves) — the interpreter returns the state st

unmodified. Otherwise, the interpreter executes the first move with (do-move

(first moves) st) updating the state, then plays the rest of moves until the

end.

We represent the state st of the system as a record structure. Among

others, the state data structure defines set-peg and get-peg operations. The

move data structure defines src and dest operations. (src m) specifies the

name of the peg from which the top most disk is to be removed. (dest m)

specifies the name of peg to which the disk is to be placed.

The do-move operation defines how the interpreter executes one move.

(defun do-move (m st)

(let* ((from-peg (src m))

(to-peg (dest m))

(from-stk (get-peg from-peg st))

(to-stk (get-peg to-peg st)))

(set-peg from-peg

(pop from-stk)

(set-peg to-peg

(push (top from-stk)

to-stk)

st))))

Let from-peg be the source peg that we are instructed by the move m to take

the disk from. Let to-peg be the destination peg. We first set the destination
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peg in the state st to have one additional disk from the source peg with

(set-peg to-peg

(push (top from-stk)

to-stk)

st)

We then update the source peg with (set-peg from-peg (pop from-stk)

...) to indicate that the top disk has been removed from the stack. The

resulting state is returned.

This definition of play has the implicit assumption that the sequence

of moves supplied to it are legal moves — moves that do not attempt to put

a bigger disk onto a smaller disk; moves that do not attempt to remove a disk

from an already empty peg. Nor does play check whether the state is well

formed, that is, the pegs themselves exist. In the next section, we will continue

with this example, and show how we specify this type of implicit assumptions

about the interpreter. We also show what are the desired properties of the

interpreter and how we specify these properties in ACL2.

3.2 Formal Specification

3.2.1 The ACL2 Logic

It is not surprising that one can use a general-purpose programming language

to write executable models of various computing systems. Nor is it surprising

that one can write assertions that can be evaluated at runtime for checking

against unexpected scenarios.
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What makes the ACL2 programming language unique is its close con-

nection with the ACL2 logic. The ACL2 logic is designed in such a way that

the set of definitions in an ACL2 program corresponds a specific logical theory

of the ACL2 logic. Theorems in that theory correspond to true properties of

the ACL2 program. 4 Given a runtime assertion, it is possible to treat the as-

sertion as a logical formula in the ACL2 logic. If the formula can be shown to

be a theorem, one can conclude that the executions of the ACL2 program will

not violate the assertion. More accurately, executing the ACL2 program will

never violate the assertion if the syntactic form of the assertion is a theorem

of a specific theory — a theory obtained by extending the ground zero theory

with user-defined ACL2 functions from the program.

This connection between the semantics of the ACL2 programming lan-

guage and the ACL2 logic is rooted in the choice of (1) the basic ACL2 axioms

and axiom schemata and (2) the inference rules (including its induction prin-

ciple), and (3) the definitional principle for extending a theory.

The remaining of the section gives a short description of the ACL2 logic

and its connection with the ACL2 programming language.

The ACL2 logic builds on the traditional propositional calculus with

equality. The ACL2 logic describes the Propositional Axiom schema and four

inference rules often used to characterize the propositional calculus. Much of

the material below is taken (with permission) from Kaufmann and Moore’s A

Precise Description of the ACL2 Logic [25].

4Logicians often use “valid” to mean true in all models. In a sound system, theorems
(provable) correspond to valid properties of all models. In this dissertation, we use the
ACL2 logic to reason about ACL2 programs. We assume the standard model of the ACL2
logic. So we often use “true” instead of “valid”.
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Axiom Schema (the Propositional Axiom).

φ ∨ ¬φ

Rule of Inference.

• Expansion derive φ1 ∨ φ2 from φ2 ;

• Contraction derive φ from φ ∨ φ;

• Associativity derive ((φ1 ∨ φ2) ∨ φ3) from (φ1 ∨ (φ2 ∨ φ3)); and

• Cut derive (φ2 ∨ φ3) from (φ1 ∨ φ2) and ¬φ1 ∨ φ3.

The ACL2 logic includes the following axiom schemata and inference

rule to capture the concept of equality.

Axiom Schema (Reflexivity)

x = x

Axiom Schema (Equality Axioms for Functions)

For every function symbol of arity n, we add:

((X1 = Y1) → . . . ((Xn = Yn) → f(X1 . . . , Xn) = f(Y1 . . . , Yn))) . . .)

Axiom (Equality Axiom for =)

((X1 = Y1) → ((X2 = Y2) → ((X1 = X2) → (Y1 = Y2)))).

Rule of Inference Instantiation

Derive φ/σ from φ, where σ is a substitution from variables to terms. 5

5A substitution pairs distinct variable symbols, called the keys, with terms and the

51



In addition to the above axioms and inference rules from propositional

calculus with equality, the ACL2 logic defines the other axioms and infer-

ence rules that are specific for formalizing the universe and operations of the

Common Lisp programs.

For example, the first such axiom from A Precise Description of the

ACL2 Logic [25] is T 6= NIL. This axiom dictates that any model for the ACL2

logic has at least two distinct objects. Other axioms dictate the existence of

other kinds of objects in the Common Lisp universe, such as strings — objects

that make (EQUAL (STRINGP obj) T) true — but are distinct from T or NIL),

numbers, and cons cells.

These additional ACL2 axioms and inference rules are chosen to specify

the value of every evaluable term in the ACL2 subset of the Common Lisp

language. The specified value — dictated by the axioms and inference rules

— is expected to be consistent with the result of evaluating the corresponding

term in Common Lisp. For example, axiom 47 (from [25]) states that for all X,

Y, (EQUAL (CAR (CONS X Y)) X). This axiom corresponds nicely to how the

Lisp primitive CAR operates on a cons cell. With these axioms and inference

rules, one can reason about the behavior of ACL2 programs that use built-in

operations.

To use the ACL2 logic for reasoning about more complicated ACL2

programs, the ACL2 logic also introduce a definitional principle that describe

how to extend a theory with axioms when a defun is accepted.

Adding a new defun form defines a new operation. In the ACL2 logic

world, the addition of the defun form extends the logical theory (that corre-

notation “φ/σ denotes the uniform replacement in φ of the key variable symbols of σ by their
corresponding terms. In the ACL2 logic, all variables are implicitly universally quantified.
Thus, the procedure for instantiation is particularly simple.
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sponds to the original program) by (1) adding a new function symbol with a

fixed arity and (2) introducing a new axiom into the theory. For example, the

previously discussed defun defining the factorial program

(defun factorial (n)

(if (zp n) 1

(* n (factorial (- n 1)))))

introduces a new axiom (factorial n) = (if (zp n) 1 (* n (factorial

(- n 1)))) into the current theory.

The expectation is that the extended theory with the new axiom can

be used to predict the behavior of the program. One should note that some

operational “definitions” can not be (and should not be) admitted. The fol-

lowing example shows an operation that should be not admitted into the logic.

Suppose, ACL2 admits the following form

(defun f (a)

(not (f a)))

the logical theory is extended by the corresponding axiom (f a) = (not (f

a)) will make the theory inconsistent — because we have reflexivity schema x

= x and the conventional rules of inference for propositional calculus. Thus all

well-formed formulas are theorems in this extended theory. The theorems in

the theory will no longer correspond to true properties of the ACL2 programs.

The definitional principle of the ACL2 logic is designed to only admit

defun forms that the extended theory can be used to predict the behavior of

the corresponding program. The definition principle demands that all admis-

sible ACL2 operations terminate on arbitrary inputs.
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3.2.2 Kinds of Specifications

There are different kinds of specifications that we can write with the ACL2

programming language and the ACL2 logic.

Operational specification

We write ACL2 programs to model computing systems. Such an ACL2 pro-

gram can be viewed as an operational specification for the computing system.

As an operational specification, the ACL2 program precisely describes how

the computing system shall behave. 6 An operational specification is useful to

guide the implementation of the actual computing system.

Functional specification

Another kind of specification that we can write is a functional specification.

A functional specification describes the desired effect of a computing system.

Take the specification for a sorting algorithm for example. An operational

specification may be the pseudo code for describing a sequence of steps involved

in implementing the algorithm, and a functional specification may assert that

the output of the algorithm is an ordered permutation of the input.

In ACL2, we can write precise functional specifications for ACL2 pro-

grams. We may even be able to prove that arbitrary executions of our ACL2

program will meet its functional specification — if we can prove that the syn-

tactic form of the functional specification is a theorem. 7

6Sometimes, people prefer to call such an operational model a reference implementation
instead of an operational specification — especially when the operational model is efficiently
executable.

7Note: some true properties of ACL2 programs may not be provable as evident from the
Gödel’s incompleteness result.
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Safety specification

A safety specification is the third kind of specification that we can write with

ACL2. If we view a computing system as a state transition system, states

are nodes, transitions are arcs that connect one node to others. A safety

specification may identify (1) a subset of possible states as “bad” states, and

(2) the “guard” conditions for taking a state transition — conditions that may

refer to the current state or even the history of transitions for reaching the

current node. A safety specification will assert that execution of the state

machine does not encounter any bad states and no state transition violates

the guards.

We can write an ACL2 program that can check whether a state is

“bad”. The ACL2 programming language also has built-in support for at-

taching “guards” to the ACL2 operations, which we explain in some detail in

the next section.

3.2.3 Guard and Guard Verification

Programmers write assertions in their programs. Assertions are evaluated at

runtime. A correct program should not fail any of its assertions.

Well-written assertions capture the design intention. People can inspect

them to understand the assumptions, guarantees, and invariants of a program

and its components. Well written assertions make it easier to maintain the

program.

The ACL2 programming language defines syntactic constructs for writ-

ing assertions. Programmers can attach guards (assertions) to the input of an

ACL2 function. Guards can be any valid snippet of an ACL2 program. The
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guards can be checked at runtime. The following is an example.

INT32-ADD is an operation that implements 32-bit fixed-width addition.

(defun INT32-ADD (x y)

(declare (xargs :guard (and (INT32p x)

(INT32p y))))

(int-fix (+ x y)))

We attach a guard asserting that operands x and y are actually 32 bit integers.

Assertions are useful to programmers in debugging their programs. In-

stead of detecting an error late in the execution, failed assertions at runtime

cause the program to ”fail hard” early. Failed assertions help programmers

pinpoint where their programs diverge from their intended behavior.

In conventional programming languages, the use of assertions is limited

to the above two areas: testing and documentation.

By making use of the ACL2 theorem proving environment for ACL2

programs, assertions in ACL2 can be made directly useful in specifying and

verifying the safety of the program execution.

As Dijkstra famously said, testing can only show the existence of bugs,

not their absence. The most rigorous assurance we can get concerning asser-

tions is to prove that assertions will never fail when the functions are used

consistently with their guards. However, it is difficult to prove that a set of

assertions never fails. Assertions are usually attached at different points in a

program. These assertions encode what needs to hold when a program exe-

cution reaches the point. These assertions usually are not strong enough —

satisfying an assertion, say the precondition for executing an top level opera-

tion, does not guarantee that the low level operations (for implementing top
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level operation) will have their their preconditions met.

To make it easier to prove that a set of assertions on a program never

fail, we need to identify the set of assertions more systematically. The ACL2

system has a built-in mechanism for helping to identify the set of assertions

and verify that the assertions never fail.

The ACL2 system can be configured to only accept programs if their

guards can be guard verified. For a program to achieve the “guard verified”

status, ACL2 demands that if the initial input satisfies the guard of the top

level operation, all sub level operations invoked as a result of invoking the top

level operation will have their guards met.

To verify the guard of INT32-ADD, one needs to show both the guard

for operation + (in (+ x y)) and the guard for int-fix (in (int-fix (+ x

y))) are satisfied when both x and y are INT32p.

ACL2 generates the following proof obligations:

• (INT32p x) ∧ (INT32p y)

⇒ (acl2-numberp x) ∧ (acl2-numberp y)

The guard of + demands both operand be acl2-numberp (i.e., to satisfy

the predicate acl2-numberp, which recognizes the ACL2 numbers)

• (INT32p x) ∧ (INT32p y) ⇒ (integerp (+ x y))

The guard of int-fix, which returns the lower 32 bits of an integer,

expects the sole operand to satisfy integerp

In order to accept INT32-ADD as a guard verified operation, one needs to

prove these two obligations. 8 In this example, the ACL2 theorem prover can

8In addition, one also needs to show functions such as int-fix, +, INT32p, and
acl2-numberp are guard verified.
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prove these two obligations automatically (without human guidance). In more

complicated cases, an ACL2 user often needs to interact with the theorem

prover — providing hints to help ACL2 to prove the guard conjectures.

If all operations described by an ACL2 program are guard verified, it is

easy to prove that an execution will never fail any guard. It then suffices to

prove that the initial state satisfies the guard of the top-most operation where

the execution starts.

In our study of the Java Virtual Machine and its bytecode verifier, we

specify guards for our JVM operations. We rely on ACL2 for generating proof

obligations for guard-verifying the JVM operations. We prove theorems to

relieve these proof obligations. The process of relieving proof obligations also

guides us in identifying programming bugs and defining more accurate guards.

We have guard-verified the class loading operation in our JVM model.

3.2.4 Specifying the Properties of Hanoi Tower Mover

In the section 3.1.2, we described how to use the ACL2 programming lan-

guage to implement the Tower of Hanoi example. We continue with this sim-

ple example to show how one may write operational, functional, and safety

specifications in ACL2.

Operational Specification

The following is a simple recursive algorithm for moving a tower of height n

from peg A to peg C, using peg B as a temporary peg

• If n is 0, there is nothing to do
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(defun play-hanoi (from to temp n st)

(if (zp n) st

(let* ((st1 (play-hanoi from temp to (- n 1) st))

(st2 (do-move (new-move from to) st1))

(st3 (play-hanoi temp to from (- n 1) st2)))

st3)))

Figure 3.2: Operational specification for Hanoi tower mover

• Otherwise, n is greater than 0, and we divide the task of moving tower

of n disks into three small sub tasks to be executed in sequence:

– First move the top most n - 1 disks from peg A to peg B, using peg

C as a temporary peg

– move the one remaining disk on peg A to peg C

– move the top most n - 1 disks from peg B to peg C, using peg A as

a temporary peg

To implement this algorithm, one may write the ACL2 program play-

-hanoi in figure 3.2, which may also be considered as an operational specifi-

cation of the informal algorithm.

Functional Specification

There is a different solution for moving n disks by reusing our Hanoi tower

operator play function. Instead of writing a recursive program that moves

the disks on the fly, we write a “planner” algorithm. Given a task for moving

Hanoi tower, the planner generates a sequence of moves for the interpreter

play to carry out separately.

(defun h (from to temp n)
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(if (zp n) nil

(app (h from temp to (- n 1))

(cons (new-move from to)

(h temp to from (- n 1))))))

(h from to temp n) generates a sequence of moves. It works as follows: if n

is not an integer or it is not positive, h returns the empty sequence, otherwise,

the returned sequence is the concatenation of three segments: (1) the sequence

returned by (h from temp to (- n 1)), (2) the sequence that contains one

move (new-move from to), and (3) the sequence returned by (h temp to

from (- n 1)).

The expectation for (h from to temp n) is that when one follows the

sequence of moves specified by it, a tower of n disks will be moved from peg

from to peg to.

With the additional definitions in figure 3.3. Our functional specifica-

tion for the composition of the “planner” algorithm and the operator is:

(defthm hanoi-correct

(equal (play (Hanoi n) (init-state n))

(final-state n)))

where (Hanoi n) uses (h ’A ’B ’C n) to create a sequence of moves; (init-

-state n) creates a state with a tower of n disks on peg A; and (final-state

n) creates a state with a tower of n disks on peg C.

Safety Specification

To specify the execution safety of the “Tower of Hanoi” operator, we need

to first separate the good states from the bad states. When a bigger disk is
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(include-book ‘‘hanoi-model’’)

(defun app (a b)

(if (endp a)

b

(cons (car a) (app (cdr a) b))))

(defun h (from to temp n)

(if (zp n) nil

(app (h from temp to (- n 1))

(cons (new-move from to)

(h temp to from (- n 1))))))

; ‘‘the planner’’

(defun Hanoi (n)

(h ’A ’B ’C n))

(defun tower (n)

(if (zp n)

nil

(app (tower (- n 1)) (list n))))

(defun init-state (n)

(s ’A (tower n)

(s ’B nil

(set-peg ’C nil nil))))

; Initial state has a tower of n disks on peg A

(defun final-state (n)

(s ’A nil

(s ’B (tower n)

(s ’C nil nil))))

(defthm hanoi-correct

(equal (play (Hanoi n) (init-state n))

(final-state n))

; Functional specification

Figure 3.3: Functional specification for Hanoi tower mover
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placed on top of a smaller disk in a state, the state configuration is obviously

a bad one. Additionally, the set of disks on the pegs shall be the same set of

disks — no disks are missing nor are new disks added.

We define the good state as follows

(defun safe-state (st n)

(and (disks-perm st (tower n)); no missing disks nor new ones

(disks-inorder st))) ; stacks of disks are in order

where (disk-perm st (tower n)) asserts that lists of disks from peg A, B, C,

together form a permutation of the original list of disks of (tower n).

(defun disks-perm (st l)

(perm (app (get-peg ’A st)

(app (get-peg ’B st)

(get-peg ’C st)))

l))

(disks-inorder st) asserts that disks on all three pegs are in order.

(defund disks-inorder (st)

(and (stack-inorder (g ’A st))

(stack-inorder (g ’B st))

(stack-inorder (g ’C st))))

For a sequence of moves to be safe, we expect that all intermediate states

satisfy safe-state. Before we can talk about properties of all intermediate

states, we need to define a “monitor” that can record the intermediate states.

(defun collect-states (moves st)
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(if (endp moves)

nil

(let ((nx (do-move (car moves) st)))

(cons nx (collect-states (cdr moves) nx)))))

Collect-states behaves like our original Hanoi tower operator play on

page 47. However, instead of returning the final state as play does,

collect-states collects all the intermediate states into a list.

We formalize the requirement that all intermediate states are safe with

the following ACL2 form.

(defthm safe-play

(all-safe-states (collect-states (Hanoi n) (init-state n)) n))

We assert that if we start from the initial state with n disks, executing ac-

cording to the plan (Hanoi n), and collect all the intermediate states into

the list (collect-states ....), then all such states are safe states, that is

(all-safe-states ...).

As shown above, we have formalized the safety requirement for the

Hanoi tower operator and the planner as a formula in the ACL2 logic. If we

can establish the formula is theorem, we have shown that our model of the

Hanoi tower operator and the move planner is safe.

Verifiable guards as safety specification

In this simple example, the above safety requirement (that all intermediate

states are good states) is, perhaps, assuring enough to most people. It captures

the very important property that we want.
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However, many desirable (though perhaps less essential) properties are

not directly addressed by the simple safe-play theorem. For example, how

do we know that during the execution of the moves, the POP operation is

never used for removing a non-existent disk from an empty peg? To prove this

new property, we could write a different “monitor” that operates like “collect-

states” but collects all the stacks that a POP operation is ever invoked upon.

One is then obliged to show that each such stack has at least one element in

it.

When we are specifying more complicated computing systems, using

one theorem or a few theorems becomes less assuring — a few theorems are

not likely to cover many of the desirable safety requirements. The approach for

expressing a safety requirement — by writing “monitors” that record the in-

puts to operations — also becomes rather tedious. We need a more systematic

way for writing down such requirements.

We write the ACL2 guards (assertions) to specify the safety requirement

for executing individual operations. We make use of ACL2’s guard verification

mechanism to ensure that the set of guards are comprehensive.

Recall the guard conjectures generated in the INT32-ADD example of

section 3.2.3. Similarly, in our Hanoi tower example, for every operation that

we introduce, we attach a guard assertion that identifies the safety conditions

for executing the operation. Take do-move for example:

(defun do-move (m st)

(declare (xargs :guard (and (statep st)

(legal-movep m st))))

(let* ((from (src m))

(to (dest m))
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(from-stk (get-peg from st))

(to-stk (get-peg to st)))

(set-peg from

(pop from-stk)

(set-peg to

(push (top from-stk)

to-stk)

st))))

In order to execute do-move, we expect that

• (statep st) — st represents a Hanoi tower state;

• (legal-movep m st) — m is a legal move in state st

Let us assume

• the guard for (src m) is that m satisfies movep.

• the guard for (get-peg peg st) asserts that st satisfies statep, and

peg satisfies pegp.

• the guard for (pop stk) asserts that (stackp stk) and (has-morep

stk)

• the guard for (set-peg peg stk st) asserts that (pegp peg), (stackp

stk), and (statep st).

• ...

To guard verify do-move, ACL2 generates and must prove formulas that as-

sume (statep st) and (legal-movep m st) and conclude with the following

claims:
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• (movep m)

— to meet the guard of the sub-operation (src m) and (dest n) used

for implementing do-move.

• (statep st) ∧ (pegp (src m)) ∧ (pegp (dest m))

— to meet the guard of (get-peg (src m) st) and (get-peg (dest

m) st)

• (has-morep (get-peg (src m)) st)

∧ (stackp (get-peg (src m)))

— to meet the guard of (pop (get-peg (src m) st)).

• (pegp (dest m)) ∧ (pegp (dest m))

∧ (stackp (push (top ...) (get-peg (dest m) st)))

∧ (statep st)

— to meet the guard of

(set-peg (dest m) (push (top ...) (get-peg (dest m) st))

st)

• ....

Identifying a verifiable guard for an operation is difficult. First we need

to identify a set of necessary safety conditions for executing the operation. We

then need to strengthen the conditions for the current operation so that we can

prove that all low level operations that the current operation invokes will have

their guard met, assuming the strengthened safety condition is met. We also

need to make sure that the strengthened guard condition is not unnecessarily

strong — because choosing an unnecessarily strong guard of an operation may
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make it is impossible to define verifiable guards for higher level operations that

use the current operation.

The verifiable guard for a recursive function that invokes itself is par-

ticularly difficult to write. For example, to define a verifiable guard for the

play function,

(defun play (moves s)

(declare (xargs :guard (play-guard moves s)))

(if (endp moves)

s

(play (cdr moves)

(do-move (car moves) s))))

we need to show:

(play-guard moves s) ∧ (consp moves) ⇒
(statep s) ∧ (legal-movep (car moves) s)

∧ (play-guard (cdr moves) (do-move (car moves)))

To define a suitable guard for an operation, we often start with a con-

jecture. We then attempt to guard verify the operation. The failed guard

verification attempts often point to conditions for strengthening the initial

conjecture. The process of identifying a suitable guard is an iterative process

which often involves a few rounds of interaction with the theorem prover.

In summary, the safety specification for the Hanoi tower mover can be

specified as two properties:

• All intermediate states are safe states:

(defun safe-state (st n)
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(and (disks-perm st (tower n)); same set of disks

(disks-inorder st))) ; stacks of disks are in order

(defthm safe-play

(all-safe-states

(collect-states (Hanoi n) (init-state n)) n))

• The following function guard-witness can be guard-verified.

(defun guard-witness (n)

(declare (xargs :guard (integerp n)))

(play (Hanoi n) (init-state n)))

A defensive play – a hint at things to come

Another way we could approach the safety assertion for play is to define a

“defensive” version of play that returns nil (instead of a normal state) if it

detects anything “unexpected” during the execution of the moves. It might

look like this:

(defun dplay (moves s)

(declare (xargs :guard (play-guard moves s)))

(if (endp moves)

s

(if (and (good-state s)

(legal-movep (car moves) s))

(play (cdr moves)

(do-move (car moves) s))
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nil)))

Let us say that dplay “raise a red flag” when it returns nil.

We might then define a move checker that inspects a list of moves to

insure certain very subtle properties are met. We might then prove that

• dplay is safe

– dplay preserves the invariant of good-state, and

– dplay is guard verified.

• static checker is effective

– when the move checker approves a list of moves, that dplay does

not “raise a red flag”, and

– when dplay does not “raise a red flag”, its result is the same as

play’s in all steps.

We argue that this is a good safety specification.

Firstly, one can inspect the definition of dplay to confirm that the dplay

will in fact “raise a red flag” in all unexpected scenarios.

Secondly, if a thorough inspection were not assuring enough in itself —

because the dplay definition had been too complicated, the safety specifica-

tion also demands that (1) dplay preserves a good-state property and (2)

dplay is guard verified. One can inspect the definition of good-state and the

definitions of guards (both of which will be simpler than dplay itself) to check

that the two theorems capture the expected safety requirement.

We argue that our move checker is effective specification is also good.

It shows that the runtime checks of dplay never fails while executing verified
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programs. It shows that play, an efficient version of dplay, produces the same

results as the inefficient dplay while executing verified programs — that is (1)

play also maintains the good-state property and (2) play does not violate

the runtime guard of any of the operations that it invokes.

This introduction of dplay to express safety is quite analogous to what

we will do with the JVM. In this analogy, the move checker is the bytecode

verifier, dplay is the defensive JVM, and play is the efficient model of the

JVM. The reason we did not approach safety this way in the Hanoi example

is that it is not easy to define a static checker for a list of moves that does not

make quite strong assumptions about the initial state.

Now we return to the main flow of the discussion of Using ACL2, we

continue on to explain how to use the ACL2 theorem prover to prove properties

of ACL2 programs.

3.3 Formal Verification

3.3.1 The ACL2 Theorem Prover

We use the ACL2 theorem prover to check whether a formula is a theorem. As

we explained briefly before, the ACL2 theorem prover functions like a simple-

minded critic who pays great attention to details, “learns” from previously

proved theorems, and can take certain kinds of hints and advice.

One essential component of the ACL2 theorem prover is a symbolic

rewriting engine. The rewriting engine rewrites one term into another by

applying rewrite rules of the form LHS = RHS. To rewrite a target term, xLHS,

the rewrite engine matches xLHS with the pattern, LHS, if possible, finding a
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substitution σ for the variables in LHS. Provided such a σ can be found, the

occurrence of xLHS is replaced by RHS/σ. Often the rewrite rules also contain

hypotheses that need to be relieved before a term of the shape LHS can be

replaced with another term of shape RHS. Rules with hypotheses are called

conditional rewrite rules. The ACL2 rewriter attempts to relieve hypotheses

by rewriting them (under the given σ); if a hypothesis rewrites to T, it is

relieved, and if all the hypotheses are relieved, the replacement of xLHS by

RHS/σ is done.

The ACL2 theorem prover maintains a database of available rewrite

rules to use with the rewriting engine. The theorem prover’s ability to prove

a difficult theorem depends on the set of rewrite rules that it has.

When we are using the ACL2 theorem prover to reason about a specific

model, we also need to extend the database by adding rewrite rules specific

to the model. The theorem prover maintains the property that if it rewrites

a formula using rules from the database, then the rewritten formula will be

logically equivalent with the original formula.

Instead of allowing a user to introduce arbitrary rewrite rules directly

into its rule database, the ACL2 theorem prover demands the proposed rewrite

rule are phrased in terms of a claim. Only after the theorem prover can accept

the claim is a theorem (possibly via rewriting using existing rules), the ACL2

theorem prover will then derive a corresponding rewrite rule from the claim

and add it to the rule database.

This description of the ACL2 theorem prover is an over-simplification.

ACL2 also uses other techniques to prove theorems. Such techniques include

type-based reasoning, decision procedures for proving linear arithmetic lem-

mas, as well as the use of induction to prove theorems.
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3.3.2 Proofs, Skip Proofs and Books

Proofs in ACL2

To prove that a formula P is a theorem, we interact with the theorem prover

to find a sequence of lemmas that guide the theorem prover to eventually

accept that P is a theorem. We often refer to this sequence of lemmas as an

ACL2 proof of the theorem. One should note that an ACL2 proof is not a

formal proof. 9 However, for any theorem that ACL2 verifies, we believe that

a corresponding formal proof exists.

Skip proofs

The process for proving a theorem with the ACL2 theorem prover often nat-

urally calls for a top down approach. To prove a top level theorem, we often

need to “convince” the prover that it is valid to use certain specific rules by

proving additional theorems; to prove these secondary theorems, we may need

to repeat the process to identify necessary rules for proving these secondary

theorems, and then prove even lower level theorems so that these new rules

can be added.

Skip-proofs and books are the ACL2 theorem prover’s mechanisms for

supporting the top down process of guiding the theorem prover to prove a

theorem. Skip-proofs is a construct that an ACL2 user uses to experiment

with different rules and study what kinds of rules are useful for the prover to

prove the goal theorem. Books are a mechanism allowing an ACL2 user to

organize a set of rules into a module (a knowledge base) for proving a certain

9A formal proof of some theorem is a valid derivation that is built from the axioms and
repeated application of rule of inferences.
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(skip-proofs

(defthm skip-proof-example

(implies (h x y)

(equal (foo x y z) (bar y z)))))

Figure 3.4: Using Skip-proofs

kinds of theorems.

The ACL2 theorem prover relies on the rules from its database to prove

theorems. An ACL2 user guides the theorem prover to prove a goal theorem.

She has two distinct tasks: (1) identify useful rules that the ACL2 theorem

prover can use to prove the goal theorem, and (2) convince the theorem prover

that it is sound to use these rules.

The skip-proofs mechanism allows an ACL2 user to focus on the first

task. One could wrap the key-words skip-proofs around a defthm term, and

the ACL2 theorem prover will accept the theorem as if it has been proved and

add the corresponding rule to its rule database. For example, once we submit

the following term (figure 3.4) to the ACL2 theorem prover, the theorem prover

will have one additional rule that it can use to rewrite any term of shape (foo

x y z) into (bar y z), if it can show that (h x y) is not nil.

By “skip-proofing” some of the theorems, an ACL2 user can experiment

with possible rules and understand how the prover will use these rules to prove

the top level theorem.

By using skip-proofs, an ACL2 user also make very explicit what is

assumed about the model. If our final theorem asserts that the computing

system has a certain property, the skip-proofs often assert what are assumed

about the components, low lower level operations of the model.
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Lemma Books

The ACL2 theorem prover relies on the rules from its database to prove the-

orems. However, it is not true that the more rules that the database has, the

more efficient or effective the ACL2 theorem prover will be in proving new

theorems.

Adding many irrelevant rules will always slow down the prover in prov-

ing new theorems. Furthermore, different rules may interfere with each other

— different rules may guide the theorem prover to follow conflicting strategies

in proving a theorem.

As it is often the case, the strategy for proving a top level theorem can

be quite different from the strategy for proving a supporting lemma. We need

to separate the supporting rules used for justifying adding a target rule from

the proof where the target rule will used. We do not want the rules for proving

a lemma to interfere with rules for proving top level goal theorem.

The ACL2 theorem prover describe a module system called books. An

ACL2 book exports a set of function definitions (as we explained earlier) and

rules. The theorems for justifying the exported rules are “localized” (hidden)

inside the book. The supporting rules for proving these theorems (and lemmas

for justifying these rules) are not exposed to the user of the “books”.

To follow a top down methodology in proving a theorem, we first identify

the obviously helpful rules for the prover to prove the theorem. These rules

can be added by introducing “skip-proofs” forms. We continue to interact with

the theorem prover to identify other necessary rules, usually by studying the

failed attempt at proving the goal theorem. Once we identify the sufficient set

of rules for proving the goal theorem, we can then move on to show that rules
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that we have introduced are justifiable — we need to prove the “skip-proofs”

forms are in fact theorems themselves. We can create a book for each “skip-

proofed” conjecture. The new goal theorem of each book is the corresponding

form that we “skip-proofed” in the first stage. Each book only exports the

rule associated with the goal theorem.

The theoretical foundation for this module system is discussed in Struc-

tured Theory Development for a Mechanized Logic [26] by Kaufmann and

Moore. The practical aspects of organizing lemma books to follow a top down

approach in developing ACL2 proofs are presented in Modular Proof: The

Fundamental Theorem of Calculus [24] by Kaufmann.

In my work of modeling the JVM and verification of the JVM safety, I

have followed the top down methodology and created an extensive set of ACL2

books (over 200) for reasoning about different aspects of the JVM.

3.3.3 Proving Properties of the Hanoi Tower Mover

We continue with the Hanoi Tower example to show how one may use ACL2

to prove theorems. My Hanoi Tower proof presented here is derived from the

Kaufmann and Moore’s proof about the Towers of Hanoi problem as described

in [27]. My model for the Hanoi tower mover is different from their model for

the mover. My model does not check whether a move is legal before executing

it. We also differ on how the desired properties are stated. In particular,

I separate the functional specification from the execution safety specification.

Consequently, the proofs are different in non-trivial ways.

We first prove that a planner generates effective moves for the Tower

mover to move a tower of arbitrary disks — functional correctness. We then
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stack.cert

HANOI.pkg

basic.cert

state.cert perm.cert

move.cert

hanoi-solution.cert

hanoi-model.cert

hanoi-safety.cert

Figure 3.5: Organizing correctness proofs for Hanoi tower mover

prove that during execution of the planner-generated moves: (1) the state of

system remains “good” and (2) all moves are legal moves with respect the

state encountered — execution safety.

We make use of ACL2 books to organize the proofs. Figure 3.5 gives an

overall picture of how the definitions and proofs are organized into this set of

books. We define the basic data structures and operations on them in the files:

move.lisp, stack.lisp, state.lisp. The operational model of the Hanoi

Tower mover is described in hanoi-model.lisp. File hanoi-solution.lisp

contains the definition of the planner model and the planner’s functional speci-

fication. It also contains the lemmas that the ACL2 theorem prover can use to

show the planner is correct. File hanoi-safety.lisp defines the “good-state”

and specifies the execution safety of the mover. The same file also describes
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an ACL2 proof that asserts that the Hanoi tower mover will execute safely by

following the moves generated by the planner. The files are available in hanoi

directory of the dissertation supporting material [22].

Functional correctness

We modeled the Hanoi Tower mover (play moves st) as an ACL2 program.

We wrote the Hanoi Tower move planner (Hanoi n). We specified the func-

tional correctness of the composition of the mover and planner with the fol-

lowing theorem.

(defthm hanoi-correct

(equal (play (Hanoi n) (init-state n))

(final-state n)))

To prove that the composition of Hanoi tower mover play and the move

planner Hanoi is functionally correct, we first observe that we can rewrite

(play (app moves1 moves2) st) into (play moves2 (play moves1 st)).

We prove a lemma to introduce this rewrite rule into the ACL2 theorem

prover’s rule database.

(defthm play-app

(equal (play (app a b) s)

(play b (play a s))))

The ACL2 theorem prover can prove the above theorem from the definition of

app, play, with no additional guidance from us.

We then observe that any non-empty sequence generated by (h from

to temp n) is a concatenation of three segments: (h from temp to (- n
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(defun do-move (m st)

(let* ((from (src m))

(to (dest m))

(from-stk (get-peg from st))

(to-stk (get-peg to st)))

(set-peg from

(pop from-stk)

(set-peg to

(push (top from-stk)

to-stk)

st))))

(defun play (moves st)

(if (endp moves)

st

(play (rest moves)

(do-move (first moves) st))))

Figure 3.6: Modeling Hanoi tower operator (same as figure 3.1)

(defun h (from to temp n)

(if (zp n) nil

(app (h from temp to (- n 1))

(cons (new-move from to)

(h temp to from (- n 1))))))

(defun Hanoi (n)

(h ’A ’B ’C n))

Figure 3.7: Modeling the Hanoi tower moves planner

(defthm hanoi-correct

(equal (play (Hanoi n) (init-state n))

(final-state n)))

Figure 3.8: Proving functional correctness of Hanoi tower mover
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1)), a single move (new-move from to), and (h temp to from (- n 1)).

If we assume that by following first segment the mover will move top most n -

1 disks of peg from to peg temp, we may convince ourselves that by following

these three steps, the mover will successfully move the tower of size n to its

destination. This leads to a proof by induction on the structure of the sequence

of moves.

(defthmd h-lemma

(implies (and (natp n)

(pegp from)

(pegp to)

(pegp temp)

(not (equal from to))

(not (equal from temp))

(not (equal to temp)))

(equal (play (h from to temp n)

(s from (app (tower n)

(g from st)) st))

(s to (app (tower n)

(g to st)) st)))

:hints (("Goal" :do-not ’(generalize fertilize)

:in-theory (enable new-move)

:induct (induction-hint from to temp n st))))

We tell the ACL2 theorem prover to induct according the pattern encoded in

the function definition of (induction-hint from to temp n s) by specify-

ing an induction hint — :induct (induction-hint from to temp n st).
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(defun induction-hint (from to temp n st)

(if (zp n)

(list from to temp n st)

(list (induction-hint from temp to (- n 1)

(s from (push n (g from st)) st))

(induction-hint temp to from (- n 1)

(s to (push n (g to st)) st)))))

Figure 3.9: Encoding induction hints in a function definition

With the induction hint (figure 3.9), The ACL2 theorem prover will

create two subgoals corresponding to whether (zp n) holds.

When n is not an integer or is no more than zero, the prover will prove

the result directly by resorting to the definitions of h, play, tower, as well as

rules about operations s and g — imported by including the “records” book

that exports these rules about s and g.

When n is a positive integer, the ACL2 theorem prover will follow the

induction hints by “assuming”

• Starting from a state

(s from (app (tower (- n 1))

(push n (g from st))) st)

and by following the (h from temp to (- n 1)) moves, the mover

play will move the top n - 1 disks to from peg from to peg temp.

• Starting from a state

(s temp (app (tower (- n 1))

(g temp (s to (push n (g to st)) st)))

(s to (push n (g to st)) st))
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and by following the (h temp to from (- n 1)) moves, the mover

play will move the top n - 1 disks from peg temp to peg to.

With this induction hint, together the rule play-app and rules about s

and g operations, the ACL2 theorem prover can prove the h-lemma.

Once we prove the h-lemma lemma, we can instruct the ACL2 theorem

prover to prove the functional correctness of the composition of the mover and

move planner by giving an explicit :use hint.

(defthm hanoi-correct

(equal (play (Hanoi n) (init-state n))

(final-state n))

:hints (("Goal"

:use (:instance h-lemma

(from ’A)

(to ’B)

(temp ’C)

(st nil)))))

Execution safety

We prove that the mover’s execution following the generated plan will not lead

to a “bad” state. We prove that all planned moves are legal. 10

Recall our “good state” definition asserts (1) that the set of disks in the

system must remain a permutation of the original set at all times — no new

10We have not defined guards for all operations in this Towers of Hanoi example. So we are
not able to show that all operations are guard verified. To guard-verify an entire application
is often a much bigger project; and demands that we identify strong preconditions on each
operation and prove these preconditions to be consistent with each other.
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disks are introduced, nor do disks disappear and (2) that disks on each peg

are in the correct order.

It may appear that the first requirement can be trivially maintained —

all the operations are just moving one disk to another disk, thus the total set

of disks will remain unchanged.

However, in reality it is not easy. With a more careful inspection of

our definition of the operation do-move, one may notice that both (src m)

and (dest m) should be valid peg and they should not be the same. If they

happen to be the same peg, one may verify that any time we execute such a

move, the top-most disk from that peg will disappear.

(defun do-move (m st)

(let* ((from (src m))

(to (dest m))

(from-stk (get-peg from st))

(to-stk (get-peg to st)))

(set-peg from

(pop from-stk)

(set-peg to

(push (top from-stk)

to-stk)

st))))

Another observation is that the from-stk should not be empty, since

otherwise the disk nil will be erroneously added to the set of disks that we

are manipulating. 11

11Applying the top operation to an empty stack returns nil in our definition of top;
applying pop operation to an empty stack returns the same empty stack.
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These two observations help focus our attention on the definition of

legal moves: good state status is not preserved when the mover is asked to

execute an illegal operation, such as a move that specifies the same peg as

both the source and the destination or a move that tries to get a non-existent

disk and place the non-existent disk onto some peg.

We conjecture the following: legal moves preserve the “good-state”. If

we can prove that, then we can reduce the requirement that all encountered

states are good states to (1) all planner-generated moves are legal moves (with

respect the state reached by executing all the moves before the current move),

and (2) the initial states are “good-states”.

We formulated this conjecture and proved it.

(defthmd do-move-preserve-safe-state

(implies (and (legal-movep m st)

(safe-state st n))

(safe-state (do-move m st) n)))

Here, safe-state, legal-movep and related functions are defined in fig-

ure 3.10 on the next page.

After proving this lemma, we move on to show that the moves generated

by the planner form a sequence of legal moves with respect to a certain initial

state. We first need to define what a sequence of legal moves is with respect to

some initial state. We have come up with the following definition: safe-moves

as shown in figure 3.11

The h-is-safe-lemma (figure 3.11) is the key lemma that describes

under what condition the sequence of moves generated by the planner function

h are safe-moves.
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(defun disks-perm (st l) ...)

(defun stack-inorder (stk) ...)

(defund disks-inorder (st)

(and (stack-inorder (g ’A st))

(stack-inorder (g ’B st))

(stack-inorder (g ’C st))))

(defun safe-state (st n)

(and (disks-perm st (tower n))

(disks-inorder st)))

(defund wff-move (m)

(and (movep m)

(not (equal (src m)

(dest m)))))

(defund legal-movep1 (m s)

(let ((from-stk (get-peg (src m) s)))

(and (wff-move m)

(has-morep from-stk))))

(defund legal-movep2 (m s)

(let ((from-stk (get-peg (src m) s))

(to-stk (get-peg (dest m) s)))

(and (wff-move m)

(has-morep from-stk)

(or (not (has-morep to-stk))

(< (top from-stk)

(top to-stk))))))

(defund legal-movep (m s)

(and (legal-movep1 m s)

(legal-movep2 m s)))

Figure 3.10: Expressing Hanoi tower mover safety
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(defun safe-moves (moves s)

(if (endp moves)

t

(and (legal-movep (car moves) s)

(safe-moves (cdr moves)

(do-move (car moves) s)))))

(defthmd h-is-safe-lemma

(implies (and (natp n)

(pegp from)

(pegp to)

(pegp temp)

(not (equal from to))

(not (equal from temp))

(not (equal to temp))

(big-tops from to temp s n))

(safe-moves (h from to temp n)

(s from (app (tower n)

(g from s)) s))))

Figure 3.11: Proving Hanoi tower mover safe: key lemma
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Once ACL2 accepts h-is-safe-lemma as a theorem, we then can use

ACL2 to prove that the sequence of moves is safe, i.e. all state transitions are

legal.

(defthm safe-play

(safe-moves (Hanoi n) (init-state n))

:hints (("Goal" :use (....))))

In order to prove that all reachable states are “good states”, we define

(defun collect-states (moves st)

(if (endp moves)

nil

(let ((nx-state (do-move (car moves) st)))

(cons nx-state (collect-states (cdr moves) nx-state)))))

(defun all-safe-states (stl n)

(if (endp stl) t

(and (safe-state (car stl) n)

(all-safe-states (cdr stl) n))))

Here, collect-states serves as a “monitor”. It collects all the intermediate

states into a list. Operation all-safe-states iterates through the list and

asserts that every state is a safe-state.

In order to prove that all the reachable states are safe,

(defthm safe-play-1

(all-safe-states (collect-states (Hanoi n) (init-state n)) n)

:hints (("Goal" :in-theory (e/d () (Hanoi init-state)))))
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We prove the following lemma that relates (safe-moves moves st)

with (all-safe-states (collect-states moves st))

(defthm safe-moves-implies-safe-states

(implies (and (safe-moves moves st)

(safe-state st n))

(all-safe-states (collect-states moves st) n)))

By making use of the proven theorem safe-play and safe-moves-

-implies-safe-states, we can prove our safety specification safe-play-1,

which asserts that all reachable states are safe.
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Chapter 4

JVM Model

M6 is our formal executable JVM model in ACL2. It is implemented by

following the official JVM specification [45].

In this chapter, we present how the JVM is modeled in M6 — its state

representation and state transition functions. We also explain how the model

can be used for proving properties of Java programs. A significant portion

of the material in this chapter is presented in the first Interpreters, Virtual

Machines and Emulators Workshop 2003 [23] and later published in Science

of Computer Programming [15].

4.1 Introduction

To study the properties of the Java Virtual Machine (JVM) and Java programs,

our research group has produced a series of JVM models written in the ACL2

programming language [19, 31]. In this chapter, we present our most complete

JVM model from this series, namely, M6, which is derived from a careful study

of the JVM Specification and the J2ME KVM [43] implementation.
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On the one hand, our JVM model is a conventional machine emulator.

M6 implements dynamic class loading, class initialization and synchronization

via monitors. It executes most J2ME CLDC Java programs that do not use

any I/O or floating point operations. Engineers may consider M6 an imple-

mentation of the JVM.

On the other hand, M6 is novel because it allows for analytical reasoning

in addition to conventional testing. M6 is written in the ACL2 programming

language. Properties of M6 and its bytecode programs can be expressed as

formulas and proved as theorems in the ACL2 logic. Proofs are constructed in-

teractively with the ACL2 theorem prover. Its concreteness, completeness, ex-

ecutability and mechanized reasoning support make our model unique among

JVM models.

4.2 Approach

The JVM interpreter loop is modeled with an ACL2 function, run, which takes

as its input a “schedule” and an ACL2 representation of the JVM state and

returns the state obtained by executing individual threads as specified by the

schedule. The semantics of each instruction is given by a corresponding state

transition function. Primitives for class resolution, class loading, exception

propagation as well as the Java native methods are also modeled with respec-

tive ACL2 functions. We did not accurately formalize the Java memory model.

We assume that memory read and write primitives are atomic at the bytecode

instruction level.
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4.2.1 State Representation

Because our JVM simulator M6 is written in a functional programming lan-

guage, it is quite different from most simulators written in C. All aspects of

the machine state are encoded explicitly in one logical object denoted by a

term.

A JVM state in M6 is a eight-tuple consisting of a global program

counter, a current thread register, a heap, a thread table, an internal class table

that records the runtime representations of the loaded classes, an environment

that represents the source from which classes are to be loaded, an auxiliary

field that records the pending exceptions to be handled, and a fatal error flag

used by the interpreter to indicate an unrecoverable error.

The thread table is a table containing one entry per thread. Each entry

has a slot for a saved copy of the global program counter, which points to

the next instruction to be executed when this thread is scheduled next time.

Among other things, the entry also records the method invocation stack (or

“call stack”) of the thread. The call stack is a stack of frames. Each frame

specifies the method being executed, a return pc, a list of local variables,

an operand stack, and possibly a reference to a Java object on which this

invocation is synchronized.

The heap is a map from addresses to instance objects. The internal

class table is a map from class names to descriptions of various aspects of each

class, including its direct superclass, implemented interfaces, fields, methods,

access flags, and the bytecode for each method.

All of this state information is represented as a single Lisp object com-

posed of lists, symbols, strings, and numbers. Operations on state compo-
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nents, including the determination of the next instruction, object creation,

and method resolution, are all defined as Lisp functions on these Lisp objects.

Below we describe the representations of selected state components in

some detail.

Objects

Each Java object in the heap has three components:

• A common-info section that contains a unique integer for this object, a

monitor for the JVM and Java programs to synchronize on, and the type

of this object;

• A specific-info section to indicate whether this object is a regular object

or an object that represents a class, and, if the latter, the class that it

represents;

• A java visible section to record the information directly visible to a byte-

code program, which can be accessed with instructions such as GETFIELD

and PUTFIELD.

Figure 4.1 shows an object of type java.lang.String:

The unique integer associated with this object is 0. The “java visible”

part is a list of immediate fields from java.lang.String and the immediate

fields from its superclasses, in this case, java.lang.Object.

We need the information stored in these three components to imple-

ment primitives for PUTFIELD, GETFIELD, and monitor enter/exit operations.

The information is also needed to implement the native methods such as the

getClass method of java.lang.Object.
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(OBJECT

(COMMON-INFO 0 (MONITOR ...)

"java.lang.String")

(SPECIFIC-INFO STRING)

(("java.lang.String" ("value" . 89)

("offset" . 0)

("count" . 4))

("java.lang.Object")))

Figure 4.1: Representing an object

Thread Table Entry

We have described the structure of the thread table informally at the beginning

of this section. Each thread table entry has slots for recording a thread id,

a pc, a call stack, a thread state, a reference to the monitor, the number of

times the thread has entered the monitor, and a reference to the Java object

representation of the thread in the heap.

As a concrete example, the following entry (figure 4.2) is taken from

an actual thread table when we use our model to execute a multi-threaded

program for computing factorial. A semicolon (;) begins a comment extending

to the end of the line.

Method representation

We have developed a tool, jvm2acl2, which takes Java class files and converts

them into a format to be used with our model. Each class file is converted

into a Lisp constant. The environment component of a JVM state contains

an external class table, which is composed of a list of such ACL2 constants.

The class loader in our JVM model reads from the external class table and
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(THREAD 0 ; thread id is 0

(SAVED-PC . 0) ; slot for saved pc

(CALL-STACK

(FRAME (RETURN_PC . 7) ; pc to return to

(OPERAND-STACK) ; empty operant stack

(LOCALS 104)

(METHOD-PTR "FactHelper" "<init>" ...)

(SYNC-OBJ-REF . -1))

(FRAME (RETURN_PC . 18)

(OPERAND-STACK 104)

(LOCALS 102)

(METHOD-PTR "FactHelper" "compute"...)

(SYNC-OBJ-REF . -1))

...)

(STATUS THREAD_ACTIVE) ; thread state

(MONITOR . -1) ; lock

(MDEPTH . 0) ; entering count

(THREAD-OBJ . 55)) ; object rep in heap

Figure 4.2: Representing a thread
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constructs a runtime representation of the class in the internal class table.

The following (figure 4.3) is an example to illustrate how the Java method is

represented in the internal class table of our state representation. The reader

familiar with the class file format will recognize figure 4.3 as being just a Lisp

representation of a method description normally found in a class file.
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public static String valueOf(char data[]) {

return new String(data);

}

is represented as

(METHOD

"java.lang.String"

"valueOf"

(PARAMETERS (ARRAY CHAR))

(RETURNTYPE . "java.lang.String")

(ACCESSFLAGS *CLASS* *PUBLIC* *STATIC*)

(CODE (MAX_STACK . 3)

(MAX_LOCAL . 1)

(CODE_LENGTH . 9)

(PARSEDCODE

(0 (NEW (CLASS "java.lang.String")))

(3 (DUP))

(4 (ALOAD_0))

(5 (INVOKESPECIAL

(METHODCP "<init>"

"java.lang.String"

((ARRAY CHAR)) VOID)))

(8 (ARETURN)

(ENDOFCODE 9))

(EXCEPTIONS)

(STACKMAP)))

Figure 4.3: Representing a method
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4.2.2 State Manipulation Primitives

Our JVM state is represented explicitly as an ACL2 object. We define a set

of primitives to manipulate this ACL2 object. Many of those primitives cor-

respond to the operations and procedures described in the JVM specification

[45]. Some of them correspond to the native methods in the Java runtime

library that are implementation dependent. Others are utilities that we intro-

duce for implementing our simulator.

For example, to find the next instruction for execution in state s, we use

the function next-inst (figure 4.4). It takes s as its only formal parameter.

It then binds three local variables. The variable ip is bound to (pc s). In

ACL2, (pc s) denotes the value of the Lisp function pc when applied to s,

i.e., pc(s). Next, the variable method-ptr is bound to the method pointer in

the top frame of the call stack of the current thread, as determined by the

function current-method-ptr. Finally, the variable method-rep is bound to

the method referred to by method-ptr; we use deref-method to look up the

method in the instance class table. Having bound the three local variables,

we then use inst-by-offset to determine the instruction at offset ip in the

method method-rep and return the instruction.

(defun next-inst (s)

(let* ((ip (pc s))

(method-ptr (current-method-ptr s))

(method-rep

(deref-method method-ptr

(instance-class-table s)))

(inst-by-offset ip method-rep)))

Figure 4.4: Primitive: next-inst
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(defun call_method_general

(this-ref method s0 size)

(let ((accessflags

(method-accessflags method))

(s1

(state-set-pc (+ (pc s0) size) s0)))

(cond

((mem ’*native* accessflags)

(invokeNativeFunction method s1))

((mem ’*abstract* accessflags)

(fatalError "abstract_method invoked" s0))

(t

(let ((s2 (pushFrameWithPop ... s1 ...)))

(if (mem ’*synchronized* accessflags)

(mv-let

(mstatus s3)

(monitorEnter this-ref s2)

(set-curframe-sync-obj this-ref s3))

s2))))))

Figure 4.5: Primitive: invoke a method

As another example, the call method general function (figure 4.5) is

used in the descriptions of the JVM instructions that invoke methods.

We read this roughly as follows. The function has four formals: this-

-ref, the current “self” reference; method, the method to invoke; s0, the

current state; and size, the length in bytes of the invocation instruction.

Let accessflags be the access flags of the method and let s1 be a state

like s0 but with the program counter incremented by size. If accessflags

indicates that the method is native or abstract, we handle the call with special-

purpose functions. Otherwise, let s2 be a state obtained from s1 by popping

the proper number of values off the current operand stack, and pushing a

suitable call frame on top of the current call frame. We construct this state
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with pushFrameWithPop. If accessflags indicates the invoked method is

synchronized, we call monitorEnter to obtain two results, namely, mstatus

(which we ignore) and a state s3, in which the current thread holds the monitor

on this-ref; we return s3 after updating the new frame to indicate that the

monitor on this-ref must be released upon exit from the method. If the

invoked method is not synchronized, we return s2.

Notice, that the function monitorEnter mentioned above is just another

state manipulating primitive that takes a reference and a state and returns a

status flag and a state. There are two kinds of states that can be returned by

monitorEnter. If monitorEnter succeeds, the state returned is representing a

state in which the current thread is holding the monitor and the current thread

is still active. If monitorEnter does not succeed, possibly because some other

thread is holding the monitor, then the state returned represents a state in

which the current-thread is suspended and moved to the waiting queue for the

monitor.

As our last example in this section, in figure 4.6, we show the function

implementing the native method currentThread of java.lang.Thread. It

takes a state as its input and pushes on the operand stack of the current frame

a reference to the Java object that represents the current thread.

4.2.3 State Transition Function

We model the semantics of the JVM instructions operationally, in terms of such

primitives as discussed above. The meaning of executing a JVM instruction is

given operationally by a state transition function on JVM states. Here is the

state transition function for the IDIV instruction.

98



(defun execute-IDIV (inst s)

(let ((v2 (topStack s))

(v1 (secondStack s)))

(if (equal v2 0)

(raise-exception

"java.lang.ArithmeticException" s)

(ADVANCE-PC

(pushStack (int-fix (truncate v1 v2))

(popStack (popStack s)))))))

Here, inst is understood to be a parsed IDIV instruction. ADVANCE-PC

is a Lisp macro to advance the global program counter by the size of the

instruction. PushStack pushes a value on the operand stack of the current

frame (the top call frame of the current thread) and returns the resulting

state. When the item on the top of the operand stack of the current frame

is zero, the output of execute-IDIV is the state obtained from s by raising

an exception of type java.lang.ArithmeticException. If the top item is

not zero, the resulting state is obtained by changing the operand stack in

the current frame and advancing the program counter. The operand stack

(defun Java_java_lang_Thread_currentThread (s)

(let*

((tid (current-thread s))

(thread-rep

(thread-by-id tid (thread-table s)))

(thread-ref (thread-ref thread-rep)))

(pushStack thread-ref s)))

Figure 4.6: Primitive: native method
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(defun execute-invokestatic (inst s)

(let* ((cp (arg inst))

(method-ptr (methodCP-to-method-ptr cp)))

(mv-let

(method new-s)

(resolveMethodReference method-ptr t s)

(if method

(let*

((class

(static-method-class-rep method new-s))

(cname

(classname class))

(cref

(class-ref class)))

(cond

((class-rep-in-error-state? class)

(fatalError "class in error state!"

new-s))

((not (class-initialized? cname new-s))

(initializeClass cname new-s))

(t

(call_static_method cref method new-s))))

(fatalSlotError cp new-s)))))

Figure 4.7: Instruction semantics: invokestatic

is changed by pushing a certain value (described below) onto the result of

popping two items off the initial operand stack. The value pushed is the

twos-complement integer represented by the low-order 32-bits of the integer

quotient of the second item on the initial operand stack divided by the first

item on it.

As an example of a more complicated instruction, figure 4.7 shows our

semantics for invokestatic. To invoke a static method, we first get the con-

stant pool entry and obtain a symbolic method-ptr. Then we call the method
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resolution procedure resolveMethodReference to find the method to which

method-ptr resolves. Since method resolution may cause class loading, the

procedure returns a pair (method new-s) as declared in the mv-let. The

fatal error flag is set when the method is nil, i.e., the method resolution

fails. If the class to which the method belongs has not been initialized, we

choose not to advance the program counter, instead returning a state pre-

pared for starting the class initialization procedure using (initializeClass

cname new-s). Otherwise, we use call static method to return a state prop-

erly prepared for the interpreter to start executing the resolved method. The

definition of call static method (not shown here) uses the previously shown

call method general to construct that state.

4.3 M6 as a Simulator

Not only have we modeled the semantics of most JVM instructions, we have

also provided implementations for native methods from the CLDC runtime

library. As a result, we can use the formal model as a simulator to execute

realistic JVM programs.

We have translated the entire Sun CLDC library implementation into

our representation with 672 methods in 87 classes [43]. We provide implemen-

tations for 21 out of 41 native methods that appear in Sun’s CLDC library.

The remaining ones are mostly related to the I/O of the JVM, which we do

not model in our current simulator.

We have written several test programs to run on this model to exercise

various aspects of the simulator such as exception handling, synchronization,

and class initialization. One of the test programs is a multi-threaded Java

101



program that implements an impractical but illuminating parallel factorial

algorithm.

The program takes a command line parameter represented in a java.-

lang.String. It calls the method parseInt of java.lang.Integer, which

in turn invokes a dozen Java functions to parse the string and return an in-

teger. Then it spawns a specified number of FactHelper threads (5 in the

current version). Those threads share an instance of FactJob, in which the

intermediate result is stored. Those FactHelpers repeatedly compete for the

monitor on the FactJob, compute one iteration and then release the monitor

by executing monitorexit. The main thread prints the result and quits when

it is awakened by a notify call from any of the FactHelpers indicating that

the computation has terminated.

class FactJob {

int value = 1;

int n;

... };

class FactHelper implements Runnable {

FactJob myJob;

public void run() {

... wait for notifyAll on myJob.

for (;;) {

synchronized(myJob) {

if (myJob.n<=0) {

myJob.notify();

return; // done
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} else {

myJob.value = myJob.value*myJob.n;

myJob.n = myJob.n - 1;

}}}}

...};

public class Fact {

static int HELPER_COUNT = 5;

public static int fact(int n) {

FactJob theJob = new FactJob(n);

... spawn HELPER_COUNTER FactHelpers.

... send notifyAll to FactHelpers

try{

synchronized (theJob){ theJob.wait();};

//wait for at least one Helper to finish.

} catch ...

return theJob.value;};

}

The main method is:

public static void main(String[] args) {

int n = Integer.parseInt(args[0]);

System.out.println(""+Fact.fact(n));

}

To compute factorial of 10, the simulator executes 1748 steps — most
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of which are spent in the class initialization, parsing an integer from a string,

string copying, and printing the result character by character. In the process,

5 threads are spawned, 118 heap objects are created, and 18 classes are loaded

and initialized.

In the rest of this section, we pick some aspects of our simulator and

explain them in some more detail.

4.3.1 Interpreter Loop

As mentioned previously, our JVM model takes a “schedule” (a list of thread

ids) and a state and repeatedly executes the next instruction from the thread

as indicated in the schedule, until the schedule is exhausted.

(defun run (sched s)

(cond ((endp sched) s)

(t (let ((nid (car sched))

(cid (current-thread s)))

(cond ((equal cid nid)

(run (cdr sched) (step s)))

(t (run (cdr sched)

(loadExecutionEnvironment nid

(storeExecutionEnvironment s))...)

Figure 4.8: Interpreter loop

The scheduling policy is thus left unspecified. Any schedule can be

simulated. However to use the model as a JVM simulator without providing

a schedule explicitly, we have implemented some simple scheduling policies.

One of them is a not very realistic round-robin scheduling algorithm, which

does a rescheduling after executing each instruction.
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4.3.2 Class Initialization

Class initialization is a very complicated aspect of the JVM. Multi-threading

adds to the complexity. To initialize a class, the JVM needs to execute a special

class initialization method as part of the process. Thus the initialization of

a class cannot be made atomic. The process needs careful synchronization

between threads that may try to initialize the same class at the same time.

We explain this aspect of our simulator in detail.

Modeled after the KVM implementation [43], our simulator follows the

11-step algorithm described in the JVM specification Sec. 2.17.5. [45] and com-

pletes a class initialization in 6 stages. 1 Recall the state transition function

that describes invokestatic. If the class to which the resolved method be-

longs has not been initialized the function does not advance the pc; instead

it returns a state by calling (initializeClass classname s). Roughly, the

state returned is a special state recognized by the interpreter loop as indi-

cating the start of the class initialization process. Each thread maintains a

simple finite state machine to keep track of the class initialization stage that

the thread is currently in. A series of functions, with names of the form

runCliniti, implements the transitions of this machine. The details are in

jvm-static-initializer.lisp of [22].

To initialize a class, the current thread first needs to acquire the monitor

associated with the class. This is necessary because we need to cope with the

situation that multiple threads may be trying to initialize the same class at

the same time. If the acquisition attempt fails, i.e. the mstatus is not equal

1Because the class initialization process is not atomic, the interpreter loop is needed to
executing a special method class initializer. A thread executing the class initializer may be
interrupted. A finite state machine is used to keep track of the stage of the initialization
process.
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(defun runClinit1 (classname s)

(let ((cid (current-thread s)))

(mv-let (mstatus new-s)

(classMonitorEnter classname s)

(if (not (equal mstatus

’MonitorStatusOwn))

(set-cinit-stage cid 2 new-s)

(runClinit2 classname new-s))))))

Figure 4.9: Class initializer: stage one

to MonitorStatusOwn, we return the following state to the interpreter loop:

the original “current” thread is suspended and the class initialization process

stage of the thread is set to 2 with (set-cinit-stage cid 2 new-s). The

set-cinit-stage call is needed so that when the thread is resumed after the

JVM grants the monitor, the top level interpreter loop can resume from the

second stage of the class initialization process. Otherwise, we directly advance

to stage 2. In stage 2, we first check whether some other thread is initializing

the class. If some other thread is initializing the class, we return a state in

which the current thread is suspended to wait for a notify signal from the

monitor and the class initialization stage remains at 2. If no other thread is

initializing the class, we check whether the class has already been initialized.

If it has not been initialized, we mark the state to indicate that the current

thread is initializing the class and return the resulting state to the interpreter

loop.

In stage 3 of class initialization, we first check whether the superclass

has been initialized. If the superclass is not initialized yet, we use initialize-

Class to prepare a state so that the interpreter loop can recognize and start

the initialization process for the superclass. We also properly mark the state
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(defun runClinit2 (classname s)

(let*

((class-rep (class-by-name classname ...))

(initThread (init-thread-id class-rep))

(cid (current-thread s)))

(cond

((and (not (equal initThread -1))

(not (equal initThread

(current-thread s))))

(let

((new-s (classMonitorWaitX classname s)))

(set-cinit-stage cid 2 new-s)))

((or (equal initThread (current-thread s))

(class-initialized? classname s))

....)

(t

(let

((sinit

(setClassInitialThread classname cid s)))

(mv-let (mstatus exception-name s-new)

(classMonitorExitX classname sinit)

(runClinit3 classname s-new)))))))

Figure 4.10: Class initializer: stage two
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(defun runClinit3 (classname s)

(let ((class-rep (class-by-name classname ...))

(cid (current-thread s)))

(if (not (isInterface class-rep))

(if (and (super-exists class-rep)

(not (class-initialized?

(super class-rep) s)))

(initializeClass

(super class-rep)

(set-cinit-stage cid 4 s))

(runClinit4 classname s))

(runClinit4 classname s))))

Figure 4.11: Class initializer: stage three

so that, when class initialization for the superclass is completed, the process

of initializing the current class enters stage 4.

(defun runClinit4 (classname s)

(let* ((clinit-ptr (clinit-ptr classname))

(thisMethod

(getSpecialMethod clinit-ptr s))

(cid (current-thread s)))

(if thisMethod

(pushFrame clinit-ptr nil

(set-cinit-stage cid 5 s))

(runClinit5 classname s))))

Figure 4.12: Class initializer: stage four

Now we are in class initialization stage 4. To complete the class initial-

ization, the interpreter must execute the class initialization method of the class.

We achieve this by pushing a call frame for the class initialization method onto

the call stack. We also mark the state so that when the interpreter is done

with the invocation of the class initialization method, it can recognize that
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it needs to resume the class initialization process from stage 5. In stage 5,

we try to acquire the monitor associated with the class. In stage 6, the class

initialization process is completed, and we send the notifyAll signal so that

threads that are waiting in stage 2 can proceed.

4.3.3 Dynamic Class Loading

The Java virtual machine maintains a “method area” (see section 3.5.4 of the

JVM specification [45]), which we call a class table in this paper. The class

table contains various information about Java classes that exist in the JVM.

Among others, type hierarchy information is encoded in the superclass and

superinterface declarations in the class table.

When the interpreter encounters instructions that refer to a class by

name, such as a (NEW C) instruction, the definition of the class C needs to be

available to the interpreter. If class C’s definition is not already available,

the class loader is used to load the definition and extend the class table at

runtime.

The class loading mechanism in a full JVM is a delicate process, espe-

cially when user defined class loader are permitted. Being a model for CLDC

JVM, M6 does not allow user defined class loaders. The class loader in M6

matches the description for the bootstrap class loader in the JVM Specifica-

tion [45].

The simplified class loading process happens in two stages. In the first

stage, given a name, the bootstrap class loader returns a byte array in a

platform-dependent manner. The byte array is purported to represent the

class of that name in the Java class file format. The JVM then checks the form
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and extracts relevant information to extend the class table in the second stage

of class loading. We call this second stage the “defining” stage, because in the

Sun Microsystems’ JVM implementation, this stage is implemented with the

defineClass method of java.lang.ClassLoader. For contrast, we also refer

the first stage as the “loading” stage in its narrow sense, which corresponds to

the loadClass method of the ClassLoader class or user defined subclasses.

In the process of “defining” a class, the JVM may need to initiate class loading

of the superclass and superinterfaces of the class being loaded, if they have

not already been loaded. If any of the superclasses or the superinterfaces fails

to load correctly, or the byte array does not represent a well formed class, the

class loading fails.

Loading stage

In M6, we record all the available classes in the external class table (one of

the components of the JVM state). Classes are stored “pre-parsed;” that is,

instead of being in a byte array in class file format, we store the M6 form of

the unloaded class. The “loading” stage is thus simply defined as a lookup

operation in the table that maps class names to some ACL2 constants that

represent class files. Figure 4.13 shows a fragment of the ACL2 constant that

represent the class java.lang.ArithmeticException.

The external class table is a list of such constants. The “loading” stage

is implemented with class-by-name-s, which iterates through the list of ex-

ternal class files scl as follows.

(defun class-by-name-s (name scl)

(if (endp scl) ; list exhausted?
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(defconst *java.lang.ArithmeticException*

’(class

"java.lang.ArithmeticException" ; Class name

"java.lang.RuntimeException" ; Superclass name

(constant_pool) ;

(fields) ; No instance fields

(methods ; Method definitions

(method "<init>" ; One constructor

(parameters ) ;

(returntype void) ;

(accessflags *class* *public*)

(code ;

(max_stack 1) (max_locals 1) (code_length 5)

(parsedcode ;

(0 (aload_0)) ; Actual instrs

(1 (invokespecial ;

(methodCP ;

"<init>" ;

"java.lang.RuntimeException" () void)))

(4 (return)) ;

(endofcode 5)) ;

(Exceptions ) ; Exception handlers

.... ;

(method "<init>" ; Other methods

....))) ;

(interfaces) ; Interface decls

(accessflags

*class* *public* *super* *synchronized*)

(attributes ....)))) ; class attributes

Figure 4.13: Class loader: external class representation
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(mv nil nil) ; search failed

(if (equal (classname-s (car scl)) name)

(mv t (car scl)) ; if the name matches.

(class-by-name-s name (cdr scl)))))

Class-by-name-s returns a pair of values. The first slot indicates

whether a class by that name has been found. If (equal (classname-s

class) name) is true for some class in the scl, the class is returned in the

second slot.

Later, load class internal (not shown here) takes the static represen-

tation returned by class-by-name-s. It creates a runtime representation of

the class. Among other things, load class internal runs through the static

constant pool and creates objects and values to populate a runtime constant

pool in the runtime representation of the class. It adds the new definition

into the class table and updates the heap by introducing an object of type

java.lang.Class to represent the newly loaded class.

It is important that load class internal is only executed when the

JVM state meets certain criteria to ensure correct execution of the Java pro-

grams. One requirement is that before a class is made visible for user programs,

all its superclasses are correctly loaded.

Defining stage

In a real JVM loader, the “defining” stage takes the byte array returned by

the “loading” stage, extends the class table, and creates a java.lang.Class

instance to allow bytecode programs to refer to the class. For it to be correct,

a set of constraints must be respected. Section 5.3.5 of the JVM specification
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provides a detailed description for this process of “Deriving a Class from a

class File Representation”.

Since there is only one class loader in the CLDC JVM, the constraints

on “deriving a class C from a class file representation” (section 5.3.5 of the

JVM specification [45]) can be reduced to the following simplified form:

1. The purported representation of C needs to be in the predefined class

format. Exceptions indicating format error may be thrown.

2. Symbolic reference from C to its superclass needs to be resolved. To

resolve a symbolic reference, the JVM needs to “load” and “define” the

class referred by the symbolic name, if a class of that name is not already

loaded.

If a class or interface named as the direct superclass of C is in fact an

interface, loading throws an IncompatibleClassChangeError.

If any of the superclasses of C is C itself, loading throws a Class-

CircularityError

3. Symbolic references from C to its superinterfaces need to be resolved

also, which involves initiating class loading for the superinterfaces.

If any of the classes or interfaces named as direct superinterfaces of

C is not in fact an interface, loading throws an IncompatibleClass-

ChangeError.

If any of the superinterfaces of C is C itself, loading throws a Class-

CircularityError.

4. If any exception is thrown as a result of either class loading and resolution
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or their recursive invocations, the class loading process fails to load the

class.

The class loader in M6 follows these descriptions. The major differ-

ence is that M6 does not handle any exception generated from within the

class loader. Instead of throwing an exception, a fatal error flag is set in the

execution state and the top level interpreter is halted. Another difference is

that instead of parsing a byte array and checking for the well-formedness of

the representation, we rely on our external tool jvm2acl2 to read the binary

representation and convert the binary representation into a Lisp constant.

The “defining” stage of the class loader is implemented with four mu-

tually recursive operations:2

• load class

(defun load_class (classname s seen)

(cond (class-loaded? classname s) s ; loaded? s

((mem classname seen) ; otherwise

(fatalError "ClassCircularityError" s))

(t (if ...

(let*

((s1 (load_super classname s seen))

(s2 (load_interfaces ... s1 seen)))

(if (not (no-fatal-error? s1)) s2

(if (no-fatal-error? s2) ;

(load_class_internal ... ))..))))))

Figure 4.14: Class loader: load class

2In the actual M6 implementation, the mutually recursive operations are defined to be
different execution modes of a single recursive operation. The recursive operation takes a
mode flag which identifies the operation being executed. The ACL2 code presented in this
section is edited form of the less intuitive recursive definition.
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To load a class, M6 first locates the purported representation for the class

being using class-by-name-s. It then invokes load super to make sure

that the class referred is the superclass of the purported class. After the

superclass is successfully loaded without error, it uses load interfaces

to make sure that all superinterfaces are loaded. Only after these steps

complete without error, the JVM can build an internal representation

of the class and insert it into the class table. This is achieved with

load class internal.

(defun load_class_internal (classname s)

(if ... ; if not found

(fatalError

"java.lang.ClassNotFoundException" s)

(let* (...

(the-Class-Object ...))

(new-heap (bind new-address

the-Class-object ...))

(runtime-class-rep ...)

(new-dcl (add-instance-class-entry

runtime-class-rep dcl)))

(state-set-heap new-heap

(state-set-class-table

(make-class-table new-dcl

(array-class-table new-state2))

new-state2)))))))

Figure 4.15: Class loader: load class internal

Next, we describe the clique of mutually recursive functions for imple-

menting load class in more detail. In order to detect loops in the

superclass chain and superinterface chains, all four operations take an

extra parameter seen, which is a list of class names that are being loaded

because of the initiating class loading request.
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• load super To load a superclass, the JVM recursively invokes

load class after updating the seen parameter to note that the

class of classname is being loaded.

(defun load_super (classname s seen)

(let ((supername ...)) ; just load the super

(load_class supername s (cons classname seen))))

Figure 4.16: Class loader: load super

• load interfaces uses load interface classes, which in turn invokes

load class on each interfaces referred to by the class being loaded.

(defun load_interfaces (classname s seen)

(let ((interfaces ....)) ; load a list of classes

(load_interface_classes interfaces s

(cons classname seen)))))

Figure 4.17: Class loader: load interfaces

• load interface classes loads classes one at a time using load class

operation and checks that the classes are in fact representing interfaces.

This concludes the description of the top level operations for imple-

menting the class loader. In order to implement load class internal, we

have also defined many low level operations. For example, we defined op-

erations to create java.lang.String objects that correspond to the string

literals in the constant pool. We also defined operations to build instances of

java.lang.Class for representing the new class being loaded. The figure 4.19

shows just one of such low level operations.
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(defun load_interface_classes (interfaces s seen)

(if (not (consp interfaces)) s

...

(let*

((new-s (load_class (car interfaces) s seen))

(class-rep (class-by-name (car interfaces)

(instance-class-table new-s))))

....

(if (not (isInterface class-rep))

(fatalError ...) ; actual interface?

(load_interface_classes

(cdr interfaces) new-s seen))..)...))

Figure 4.18: Class loader: load interfaces classes

Load CP entry takes one argument, cpentry-s which represents a con-

stant pool entry in a class file. It returns a pair. The first component of the

pair is the runtime representation of the constant pool entry, the second is the

updated state after loading the constant pool entry. If the entry represents

a string literal, we first create a java.lang.String object the-String-obj

with ACL2-str-to-JavaString to represent the string literal. We then create

a runtime representation of the constantpool entry. Instead of referring to a

string literal, the runtime constant pool entry contains a reference (in the form

of a number) to the newly created java.lang.String object.

4.4 Formal Analysis

The focus of our research has been on developing a practical methodology for

reasoning about complex hardware and software artifacts, including models of

the complexity of the one described here. We have shown that our executable
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(defun load_CP_entry (cpentry-s S)

(if (equal (cpentry-type-s cpentry-s) ’STRING)

(let ((str (string-value-cp-entry-s cpentry-s)))

(mv-let (the-String-obj new-S)

(ACL2-str-to-JavaString str S)

(let* ((heap (heap new-S))

(new-addr (alloc heap))

(new-heap (bind new-addr

the-String-obj heap)))

(mv (make-string-cp-entry new-addr)

(state-set-heap new-heap new-S)))))

...))

Figure 4.19: Class loader: load CP entry

JVM model includes enough detail to permit its use as a simulator. But it has

dual use as a formal semantics of the JVM and as such permits us to reason

about the JVM and its bytecode methods.

We study two broad categories of the properties using this accurate

JVM model. We use our JVM model to study the properties of the JVM

specification. We also use the formal model to study the properties of Java

programs that run on “real” (practically efficient) JVMs. In the rest of the

section, we present some work we have done in these two categories.

4.4.1 Properties of the Model

We are interested in studying dynamic class loading in the JVM. We have

formally proved an invariant of dynamic class loading using our JVM model,

M6. The invariant says that if class A is loaded and if a value of type class

A is assignable to a slot of type class B, then, class B must have already been

correctly loaded. As a relevant note, the concept of assignable to is rather
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complicated. For a value of type class A to be assignable to a slot of type class

B, B must be a direct superclass of A, one of the direct superinterfaces of A, or

there must be a class C, where values of type class C are assignable to a slot

of type class B, and class C must be a direct superclass of class A or one of the

direct superinterfaces of class A.

The JVM relies on this invariant about loaded classes to behave cor-

rectly in field resolution and method dispatching. In fact, JVM operations

that involve examining the class hierarchy by searching through the super-

class chain rely on this property to operate correctly. It is useful to be sure

that this alleged “invariant” is in fact preserved by the class loader in the

JVM.

We have proved that this invariant is preserved by the class loader in M6.

Our proof has two main steps. First, we proved a different formulation of the

invariant, which roughly says that all classes reachable from any loaded class

through its superclass chain and superinterfaces chains are also loaded. The

reformulated property is named load-inv. We first defined a Lisp function

collect-assignableToName that crawls along the class hierarchy and collects

all classes reachable from a given one. We use that concept to express the idea,

formalized as loader-inv-helper1, that all classes reachable from a given one

are correctly loaded.

(defun loader-inv-helper1

(class-rep class-table env-class-table)

(let* ((classname (classname class-rep))

(supers (collect-assignableToName

classname env-class-table)))
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(all-correctly-loaded?

supers class-table env-class-table)))

Finally, we defined the reformulated invariant conjecture, loader-inv,

to check loader-inv-helper1 for every class in the class table. To establish

that load-inv is an invariant, we proved the following theorem.

(defthm loader-inv-is-inv-respect-to-loader

(implies (loader-inv s)

(loader-inv (load_class classname s))))

This theorem has one hypothesis and one conclusion. The hypothesis

says that s satisfies the loader-inv property. The conclusion says that the

state produced by load class satisfies it.

The second step of our proof is to show that the above reformulated

property implies our original one.

(defthm inv-and-isAssignableTo-env

(implies

(and (loader-inv s)

(no-fatal-error? s)

(isAssignableTo-env A B

(env-class-table (env s))))

(implies (correctly-loaded? A

(instance-class-table s)

(env-class-table (env s)))

(correctly-loaded? B

(instance-class-table s)

(env-class-table (env s))))))
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4.4.2 Properties of Bytecode Programs

Besides reasoning about properties of the JVM model itself, we use the model

to reason analytically about the programs that run on it. This gives us op-

portunities for finding program flaws beyond those likely to be uncovered by

simulation of executions.

For example, we have proved a single-threaded program for computing

factorial is correct on M6 [14]. The property is stated by the following ACL2

formula. The ACL2 system mechanically checked our proof of the theorem.

As a note, our description below illustrates only one of many possible styles

of proofs for reasoning about Java programs. This particular style uses an

explicit clock function. This proof methodology works well for proving total

correctness for single-threaded programs. However one is not limited to this

particular style. Ray and Moore recently show that one can use different styles

in verifying different parts of programs [30, 37, 18].

(defthm factorial-is-correct

(implies

(and (poised-to-execute-fact s)

(integerp n)

(<= 0 n)

(intp n)

(equal n (topStack s)))

(equal (simple-run s (fact-clock n))

(state-set-pc

(+ 3 (pc s))

(pushStack (int-fix (fact n))
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(popStack s)))))

This theorem has five hypotheses. The first, (poised-to- execute-fact

s), is a rather complicated predicate whose definition is not shown here. It

says that the state s is well formed and that the next instruction will invoke

a particular bytecode factorial method produced by compiling with javac a

recursive int-valued Java definition of factorial. The other hypotheses say

that the value, n, on top of the operand stack is a non-negative int. The

conclusion is an equality between two expressions denoting M6 states. The

first expression denotes the state produced by executing the single thread

in question a certain number of steps, namely, the number produced by

(fact-clock n), from state s. The second expression denotes the state ob-

tained from s by incrementing the pc by 3 (the size of the invoke instruction),

popping one item (namely n) from the operand stack, and pushing the int

denoted by the low-order 32 bits of the mathematically precise n! (written in

ACL2 as (fact n)).

In formal methods literature, “partial” correctness specifies that a

method returns an acceptable answer if it terminates; “total” correctness adds

to that — the proof requirement that the method terminates. The theorem

above is a specification for total functional correctness of the corresponding

bytecode factorial method. Indeed, we characterize, with (fact-clock n),

exactly how many bytecode instructions must be executed. This theorem

was proved mechanically with the ACL2 theorem prover. Partial correctness

results can also be proved [30]. An explicit clock function is not needed and

sometimes could not be defined. ACL2 proofs that employ explicit clock

functions and proofs that employ no such clock function constructs can be
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used together to reason about different parts of a same program [37].

4.5 Conclusion

In this chapter, we described several selected aspects of our realistic JVM

model as a simulator. We presented our general approach for writing such

a detailed JVM model in a functional programming language. The state is

represented with a ACL2 object. The semantics of executing a bytecode in-

struction in a JVM state is defined by a state transition function. We show

that this approach allows us to model the delicate internals of a realistic JVM,

use it as a simulator, and prove theorems about the resulting behaviors.

This executable JVM model has been the basis for our ongoing inquiry

into the correctness of the bytecode verifier specification.

Although a realistic JVM model is necessary to study the correctness of

the bytecode verifier and the class loader, proving properties of concrete Java

programs on this complicated JVM model may be difficult and unnecessary.

This can be one of its limitations. After proving the properties of the bytecode

verifier and the class loader, we may be able to reduce executions on this model

to executions on an alternative simpler model via a proof. Porter has done

a similar proof for relating a multi-threaded JVM model to a single-threaded

model under necessary restrictions [33]. We will need to look into the proper

thread reduction and heap abstraction techniques.

This model, although fairly complete, still contains certain omissions

and simplifying assumptions. The following two might be of particular interest.

Our JVM simulator has assumed the simplest memory model. Any

memory access in our simulator is always atomic at the instruction level. Al-
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though we expect that such omission will not affect our study on the cor-

rectness of bytecode verifier, it does prevents us from reasoning about certain

behaviors of legal Java programs.

The other limitation is that our current model of the bytecode verifier

does not interact with the class loader dynamically. The JVM specification

allows a JVM implementation to delay the bytecode verification until link

time. In our implementation, the bytecode verifier uses the class hierarchy

information from “unloaded” classes to conduct the bytecode verification of

a method. In fact, our bytecode verifier never causes dynamic class loading

itself. We expect that one will be able to prove that the bytecode verification

result is independent of the class table being used, as long as the runtime class

table is correctly loaded from the “environment”.

In summary, our approach of writing an executable JVM simulator in

ACL2, a precise language with clean axiomatic semantics and a computer-

aided deduction environment, provides an opportunity to analytically deduce

the properties of the artifact being modeled. It has the benefits and oppor-

tunities of both simulation and machine-checked analytical reasoning. We are

researching ways for making better use of such opportunities.
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Chapter 5

Java Bytecode Verifier Model

The JSR139 (Java Specification Request No.139) expert group published the

formal specification of the JVM bytecode verifier in 2004. The formal specifi-

cation is given as a set of Prolog-style rules.

In this chapter, we present our ACL2 model of the bytecode verifier writ-

ten in ACL2. It is constructed systematically from the Prolog-style rules. It is

executable. One may think our model as an implementation of the bytecode

verifier. One may also view our model as an alternative formal specification

of the bytecode verification process.

Being operational, our model may serve as a better reference for guiding

the Java bytecode verifier implementation; written in ACL2, it is amenable to

rigorous reasoning. We present a simple property which we proved about our

bytecode verifier. The model itself is a 4500-line program with 480 function

definitions.
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5.1 Introduction

As explained in chapter 2, programs can be understood as describing sequences

of operations (algorithms) to be applied to objects (data structures) from a

certain universe. To execute a program on a machine is to have the “machine”

mechanically carry out the corresponding sequence of operations on the input

objects.

It is often natural to describe a problem and design its solution as a

program in a high level programming language like Java. However, we do not

have a physical machine to execute Java programs. The physical machines

that we have are (possibly) x86 computers. Programs that can be executed

on x86 computers are assembled x86 programs, which only read and write

machine registers and arrays of memory cells that holds 0s and 1s. To exe-

cute a Java bytecode program, we resort to representing abstract Java entities

as collections of 0s and 1s, and emulating Java operations by manipulating

these representations. These representations and manipulations are coded in

programs on the low level machine (e.g., an X86).

A JVM implementation is a program that emulates a machine that can

execute Java programs. It bridges the semantic gap between the Java universe

and the 0s and 1s of the low level machine. It is desirable for a good JVM

implementation to have the following properties:

• Correctness (Accuracy)

A JVM implementation shall behave like the Platonic JVM on all byte-

code programs;

• Safety
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A JVM implementation shall always execute safely on the low level ma-

chine. No inputs (i.e. bytecode program + inputs to the bytecode pro-

gram) can induce an execution that violates the safety constraints of the

low level machine;

• Efficiency

Additionally, a JVM implementation shall emulate the JVM with good

efficiency for all bytecode programs.

In practice, it is difficult to build a JVM implementation that has all of

the above properties on today’s general purpose computers. For instance, the

naive way to ensure that it is always safe to execute the JVM implementation

with arbitrary inputs, is to always check before executing any step. If executing

the next step would violate some safety constraints of the low level machine,

the execution can just halt. This naive implementation will not be efficient for

emulating the JVM. Furthermore, by refusing to take a step because executing

it would violate the safety constraints on the low level machine, the naive

implementation will likely to behave differently from the JVM being emulated.

Thus, we have the following scenario: on the one hand, people want

a correct, safe, and efficient JVM implementation; on the other hand, people

realize that it is difficult to build such an implementation on today’s general

purpose computers, because of the semantic gap between the universe of the

JVM bytecode language and the universe of low level machine code language.

A trade-off is necessary.

The trade-off that the JVM designers have made is to accept only a

certain subset of bytecode programs as valid JVM bytecode programs. They

intended to design a JVM that only executes valid bytecode programs so that
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a good JVM implementation is feasible. The intuition behind this trade-off is

that although not all bytecode programs can be correctly, safely, and efficiently

emulated, a large, useful subset can be. The suitable set can be efficiently

identified with static program analysis algorithms.

The bytecode verifier is designed to recognize the subset. By design,

it is the central piece to ensure that a JVM implementation may correctly,

safely, and efficiently emulates the (Platonic) JVM for executing the verified

bytecode programs [46, 29].

We are interested in the correctness of the bytecode verifier. Specifically,

we want to show that executions of the verified bytecode programs can be

correctly, safely and efficiently emulated.

The official JVM specification is carefully crafted to contain the follow-

ing information:

• It describes a bytecode verification algorithm for recognizing the valid

JVM bytecode programs.

• It defines the proper behaviors of the JVM operations, however, only

in JVM states that meet certain constraints. Different operations put

different constraints on states.

It is believed (belief 1) that these constraints will be met if the JVM

executes a valid bytecode program. If belief 1 is in fact true, although the

JVM specification only defines the behaviors of its operations partially, the

JVM specification still completely defines the JVM behaviors for executing

valid bytecode programs.

It is also believed (belief 2) that a correct, safe, and efficient JVM imple-

mentation is feasible on today’s general purpose computers after we introduce
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the bytecode verifier to accept only valid bytecode programs.

Our project is to find out whether beliefs 1 and 2 are justified. If belief

1 is true, we want to present a mechanically checkable formal proof of it. After

belief 1 has been proven to be true, we want to study the justification for belief

2, which asserts that it is feasible to represent the JVM states that meet the

constraints, and more importantly, it is feasible to emulate the JVM operations

on such states correctly, safely, and efficiently.

Towards this goal, we have built a model of JVM implementation, see

Chapter 4. In this chapter, we explain how we modeled the JVM bytecode

verifier. In Chapter 7, we explain the methodology for proving belief 1 is true:

the overall approach and the supporting ACL2 libraries.

This chapter is organized as follows. We present the official CLDC byte-

code verifier specification in section 5.2. We then describe our bytecode verifier

model and explain how we derived it from the official CLDC specification. We

present the formulation of one simple bytecode verifier property and highlight

some steps in its mechanically checked proof.

5.2 Official BCV Specification

5.2.1 Bytecode Verification

Before the JVM executes any Java method for the first time, it invokes a

bytecode verifier (BCV) to check the instructions in the method. The hope

is that executing a verified method will not break the integrity of the JVM

implementation. Nor will its execution lead to a JVM state in which the next

state is undefined.
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As a simple example, the bytecode verifier should ensure that whenever

an IADD instruction is reached, the operand stack of the current activation

record of the current thread has at least two values on it. The two values must

be 32-bit integers. For a more complicated example, when an INVOKEVIRTUAL

instruction is reached at runtime, the operand stack must contain a suitable

number of values. The types of these values must be compatible with the types

of the declared parameters. The object used to invoke the method should also

be of a suitable type. Furthermore, if the resolved method is a protected

method from a superclass of the current class and if the current class is in a

different Java package than the class in which the resolved method is defined,

the type of the object we used to invoke the method must be the current class

or a subclass of the current class.

5.2.2 CLDC Bytecode Verifier

The new CLDC bytecode verifier specification is introduced to address the

concerns of speed, memory requirement, and complexity of the original it-

erative bytecode verification algorithm. (The original iterative algorithm is

described in Chapter 4 of the Java Virtual Machine Specification [45]). The

CLDC bytecode verification algorithm is “lightweight” [9]. It is described in

Appendix One of CLDC 1.1 Specificiation [42]. The new algorithm was origi-

nally designed for JVMs that execute on resource constrained devices such as

cellphones. The next version of the regular JVM implementation, Mustang,

will implement a similar lightweight bytecode verification algorithm.

The original bytecode verifier described in the regular JVM specifica-

tion is “heavyweight”. It uses an iterative type inference process to infer the
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most general type of runtime values that may appear when program execution

reaches any given instruction in the method. It then checks the correctness of

executing the instruction in that context. The iterative algorithm is expensive

in both time and memory requirements.

Furthermore, the original algorithm is also more complex. It is difficult

to ensure that the algorithm is correct. It is even more difficult to verify that

an implementation of the algorithm is correct. Bugs have been found in the

bytecode verifier implementation in the past [8, 38].

The new CLDC bytecode verifier implements a type checking algorithm.

Different from the iterative type inference algorithm, the type checking algo-

rithm effectively demands that the type information of the JVM state be given

for each instruction before the bytecode verification starts.

With certain simplifications, the bytecode verifier can be considered to

take an association list and a method as its inputs. The association list is

understood to map each instruction of the method to an abstract state. The

abstract state records type information for the operand stack and the locals

of some JVM state as well the type hierarchy information. It is expected that

when a JVM’s execution reaches the given instruction, the state of the JVM

will be “approximated” by the associated abstract state.

To check a method,

• The bytecode verifier constructs an initial abstract state from the method

declaration.

It checks that the initial abstract state is compatible with the abstract

state recorded for the first instruction in the association list.

• The bytecode verifier checks for each instruction with respect to the
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association list, that

– it is safe to execute the instruction in the corresponding abstract

state (as recorded in the association list).

Typical checking includes whether the recorded abstract state has

the right number of operands of suitable types for executing the

current instruction, and whether it is allowed to access a method

or a field of another class.

– it updates the abstract state to obtain the next abstract state ac-

cording to the JVM semantics. It checks to confirm that the re-

sulting abstract state is in fact compatible with the abstract state

provided for executing the next instruction.

For example, in cases of branching instructions, such as ifeq or

tableswitch, the resulting abstract state must be compatible with

given abstract states at all possible jump targets. If the instruction

is protected by an exception handler, the state must be compatible

with the given abstract state associated with the entry point of the

exception handler.

The method is accepted if and only if the bytecode verifier can exe-

cute the entire method without an error, i.e. safety conditions for executing

instructions are never violated and no incompatibility exists between the ab-

stract state produced by an abstract step and the recorded abstract state for

the next instruction.
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Figure 5.1: Bytecode verifier: type hierarchy

5.2.3 Type Hierarchy

Figure 5.1 shows types and the type hierarchy used by the CLDC bytecode

verifier [11]. The upward arrow indicates the assignment compatible relation

between types.

This picture is reproduced from the official bytecode verifier specifi-

cation. It is used in the specification as a tool to help people to obtain an

intuitive grasp of the relevant Prolog-style rules. The relevant rules encode

type hierarchy information.

In our study of the formal specification, we noticed with surprise that

the rules given in the formal bytecode verifier specification do not match with

this intuitive picture — the actual isAssignable relation enforced by the offi-

cial bytecode specification is not transitive. For example, java.lang.Object
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is assignable to any interface class and any array type is assignable to java.-

lang.Object, however no array type is assignable to any interface type.

The following are the actual rules from the specification:

isJavaAssignable(class(_), class(To)):-

loadedClass(To, ToClass),

classIsInterface(toClass).

isJavaAssignable(arrayOf(_), class(’java/lang/Object’)).

The first rule asserts that any class is Java assignable to class To, if

a class of name To exists and represents an interface type. The second rule

asserts that any array type is Java assignable to java.lang.Object.

If the Java assignable relation were transitive, any array type would be

assignable to any loaded interface class. However, the only other rule that can

derive a isJavaAssignable(arrayOf( ), class( )) term is the following:

isJavaAssignable(arrayOf(_), class(X)):-

isArrayInteface(X).

However, the specification notes that there is no rule to derive isArrayInter-

face, because the array class from the CLDC JVM does not implement any

interfaces. As a result, no array type is Java assignable to class C, if C is neither

an array type nor a java.lang.Object.

This fact that isJavaAssignable is not transitive implies that while

some assignments of an array reference into a slot of interface type will be

detected at the bytecode verification time, some other assignments of an array
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reference into a slot of interface type will have to be detected at runtime and

the JVM will throw an exception. 1

5.2.4 Specification: AASTORE

The specification of the bytecode verifier is given in the form of Prolog-style

declarative rules. As we have shown in the previous section, assignment com-

patible judgement is expressed by conditions showing whether a specific term

is derivable from the set of rules. Similarly, whether it is safe to execute an

instruction in an abstract state is also given by whether some specific term is

derivable.

For example, the following is the rule for deciding whether it is safe to

execute AASTORE. AASTORE stores an object reference into a given offset of an

array.

instructionIsTypeSafe(aastore, _Environment, _Offset,

StackFrame,

NextStackFrame, ExceptionStackFrame) :-

canPop(StackFrame,

[class(’java/lang/Object’),

int,

arrayOf(class(’java/lang/Object’))],

NextStackFrame),

exceptionStackFrame(StackFrame,

ExceptionStackFrame).

1This is because some array reference types can be generalized to java.lang.Object at
bytecode verification time and thus be judged by the BCV as suitable for assigning into a
slot for holding an interface value.
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This rule literally means if one can find some substitution for variables Stack-

Frame, NextStackFrame, and ExceptionStackFrame such that both can-

Pop(...) and exceptionStackFrame(...) are derivable under that sub-

stitution, one can then derive the term instructionIsTypeSafe(aastore,

....) in which StackFrame, NextStackFrame, and ExceptionStackFrame

are instantiated according to the original substitution, while Environment

and Offset can be instantiated arbitrarily.

This rule can also be understood operationally as expressing:

• AASTORE instruction is checked in an abstract state. The abstract state

is comprised of an Environment, a program counter value Offset and

a StackFrame. The StackFrame records an abstract operand stack and

an abstract local variable array as well as some other components (not

shown here).

• In order for AASTORE to execute safely, one must be able to show that

it is possible to pop three values from the abstract operand stack of

the StackFrame. The three values must be assignment compatible to

java.lang.Object, int, and array of java.lang.Object.

• If AASTORE can execute safely, the resulting abstract state is updated to

NextStackFrame. The ExceptionStackFrame is obtained by popping

every value off the operand stack of the original StackFrame.

We call this understanding an operational view of the rules. The dif-

ference between the operational view of the Prolog-style rules and the literal

interpretation of them are the following:
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• The operational interpretation obliges us to map the function symbol of

a term into an operation.

• The operational interpretation obliges us to identify the input and output

for each operation.

• The operational interpretation obliges us to clearly identify the condition

under which an operation can be applied.

• The operational interpretation obliges us to clearly separate the state

changing effects of applying one operation from the condition under

which the operation can be applied.

We think that an operational interpretation of the rules is more help-

ful in guiding an implementation of an actual bytecode verifier. In the next

section, we explain our implementation of the bytecode verifier and how we

translate the original rules into their operational counterparts.

5.3 Executable BCV Model in ACL2

We derived the executable BCV model from the specification. The model in

ACL2 has 480 function definitions in 4500 lines, which corresponds to over 200

rules described in the official (CLDC) bytecode verifier specification.

Our bytecode verifier model is executable. We use our jvm2acl2 tool to

translate a binary class file into a format readable by our bytecode verifier. We

translated the entire CLDC class library (115 classes, 927 bytecode methods,

16723 instructions). We ran our bytecode verifier on the library.2 The verifier

2We also ran our bytecode verifier on the translated JDK1.3.1’s class library, which
contains 5,273 classes, 34,177 methods, and 821,627 instructions.
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verified all methods in a context where all classes are loaded. The running time

is about 0.15 second on a Pentium M 1.6GHz laptop, achieving a bytecode

verification speed of over 100K instruction per second.

5.3.1 Input Format

Class and methods

Figure 5.2 on the next page shows one class file from the CLDC library. Our

bytecode verifier takes a list of classes in this format, and verifies every method.

Type annotations for the method

With a little simplification, the basic algorithm for verifying one method (as

explained in the section 5.2.2) takes two inputs, the instructions and an asso-

ciation list that maps each instruction to an abstract state.

An abstract state (associated with instruction X) records the types of

values that exist in the concrete execution state. An abstract state character-

izes the expected execution state of the thread right before the that thread

executes instruction X. The bytecode verification algorithm checks the instruc-

tions against the association list that maps instructions to abstract states.

One may view the association list as type annotations for the methods.

The actual bytecode verifier algorithm does not expect the method to

have type annotations for each instruction. The bytecode verification actually

works on a list of instructions and a list of type annotations (StackMaps) for

a subset of the instructions in the method.

Such type annotations (StackMaps) are recorded in our class represen-

tation. For example, the constructor method (figure 5.2) has the StackMaps
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; A comment starts with a semicolon

; and extends to the end of the line.

’(CLASS "com.sun.cldc.io.DateParser" ; class name

NIL ; not an interface class

"java.lang.Object" ; super is java.lang.Object

(CONSTANT_POOL (INT 1721426) ; the constant pool entry

(STRING "Jan") ;

....)

(INTERFACES) ; implements no interfaces

(FIELDS (FIELD "year" INT

(ACCESSFLAGS *CLASS* *PROTECTED*) ...)

....) ; a protected field

(METHODS ; list of method

(METHOD

"<init>" ; constructor for DateParser

(PARAMETERS INT INT INT INT INT INT)

(RETURNTYPE VOID) ; return none

(ACCESSFLAGS *CLASS*)

(CODE

(MAX_STACK 5) ; use at most 5 slots for op stack

(MAX_LOCALS 7) ; use at most 7 slots for locals

(CODE_LENGTH 329) ; instructions are 329 byte long

(PARSEDCODE

(0 (ALOAD_0))

(1 (INVOKESPECIAL ; call constructor

(METHODCP "<init>" "java.lang.Object" ...)))

....))))))

Figure 5.2: Input to the bytecode verifier
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in figure 5.3.

It is expected that when the execution of the init method reaches the

instruction at offset 246, the machine state will have the following signature:

(246 (frame

(locals (class "com.sun.cldc.io.DateParser")

int int int int int int)

; locals contains values of specific types

(stack ) ; the operand stack is empty

nil))

That is, the operand stack is empty, and the local variable at slot 0 is a

reference to a com.sun.cldc.io.DateParser object and the remaining 6 slots

contain values of type int.

5.3.2 Algorithm

The bytecode verifier implements the operation for checking whether a class

is safe as shown in figure 5.4

This operation takes two arguments. The Class is the class that needs to be

checked. The CL is the class table that we want to check the Class against. CL

encodes the Java type hierarchy information as shown in figure 5.1 on page 133.

First, the bytecode verifier checks that Class is a syntactically correct

with (isClassTerm Class). Then it checks that the current class is either

java.lang.Object or the superclass of the current class exists and is not

marked with a Final flag — (classIsNotFinal superClass). It also checks that

all methods from the class are well-typed with (checklist-methodIsTypeSafe

Class Cl Methods).
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(method "<init>"

(parameters int int int int int int)

(returntype void)

(accessflags *class* )

(code

(max_stack 5) (max_locals 7) (code_length 329)

(parsedcode

(0 (aload_0))

(1 (invokespecial

(methodCP "<init>" "java.lang.Object" () void)))

....)

...

(StackMap

(246 (frame

(locals (class "com.sun.cldc.io.DateParser")

int int int int int int)

(stack )

nil))

(282 (frame

(locals (class "com.sun.cldc.io.DateParser")

int int int int int int)

(stack )

nil))

(290 (frame

(locals (class "com.sun.cldc.io.DateParser")

int int int int int int)

(stack )

nil)))))

Figure 5.3: Type annotations on a method
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(defun classIsTypeSafe (Class CL)

(let ((Methods (classMethods Class))

(Name (classClassName class)))

(prog2\$

(acl2::debug-print "Checking class ~p0 ~%"

(classClassName class))

(and (isClassTerm Class)

(or

(equal Name "java.lang.Object")

(let*

((superClassName (classSuperClassName Class))

(superClass (class-by-name superClassName CL)))

(classIsNotFinal superClass)))

(checklist-methodIsTypeSafe Class Cl Methods)))))

Figure 5.4: Bytecode verifier: classIsTypeSafe

The core of the bytecode verifier is embodied in the methodWithCode-

IsTypeSafe, which describes how it checks for a regular method with instruc-

tions. The bytecode verifier first collects the relevant information out of the

method, (such as FrameSize, MaxStack) and creates a data structure called

Environment to hold them. In particular, at this information collection stage,

the instructions ParsedCode and the their corresponding type annotations

StackMaps are merged together into a single list MergedCode. The bytecode

verifier invokes mergedCodeIsTypeSafe to check whether the resulting merged

code is type safe in the context of the newly constructed Environment.

As a concrete example, figure 5.6 shows a merged sequence of in-

structions and type annotations from the byteToCharArray method of the

com.sun.cldc.i18n.Helper class.

To check whether the merged code (instructions with type annotations

mixed in) is safe to execute on the JVM, the bytecode verifier uses the following
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(defun methodWithCodeIsTypeSafe (Class Method CL)

(and (isWellFormedCodeAttribute Class Method)

(let* ((FrameSize (FrameSize method Class))

(MaxStack (MaxStack Method Class))

(ParsedCode (ParsedCode Method Class))

(Handlers (Handlers Method Class))

(StackMaps (StackMap Method Class))

(MergedCode (mergeStackMapAndCode

StackMaps ParsedCode))

(StackFrame (methodInitialStackFrame

Class Method

FrameSize))

(ReturnType (methodReturnType Method))

(Environment (makeEnvironment Class Method

ReturnType

MergedCode

MaxStack

Handlers

CL)))

(and (handlersAreLegal Environment)

(mergedCodeIsTypeSafe Environment

MergedCode

StackFrame)))))

Figure 5.5: Bytecode verifier: methodWithCodeIsTypeSafe
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(8 (ILOAD_1))

(9 (INVOKESTATIC (METHODCP "toString"

"java.lang.Integer" (INT)

(CLASS "java.lang.String"))))

(12 (INVOKESPECIAL (METHODCP

"<init>"

"java.lang.IndexOutOfBoundsException"

((CLASS "java.lang.String"))

’VOID)))

(15 (ATHROW))

(STACK_MAP (16 (FRAME (LOCALS (ARRAY BYTE)

INT INT

(CLASS "java.lang.String")

TOPX TOPX TOPX)

(STACK)

NIL)))

(16 (ILOAD_2))

(17 (IFGE 32))

Figure 5.6: Bytecode verifier: a fragment of the merged code
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one-pass algorithm. The algorithm maintains an abstract state during its

execution.

• If the current abstract state is the special state aftergoto,

– If the head of the merged code indicates that it is the end of the

instructions, the method is considered verified.

– If the head of the merged code is a type annotation, the verifier uses

the type annotation as its new current abstract state and continues

to verify the tail of the merged code.

– If the head of the merged code is a regular instruction, the verifica-

tion fails.

• If the head of the merged code is a type annotation, the bytecode verifier

checks whether the current abstract state is compatible with the type

annotation.

– If it is compatible, the bytecode verifier uses the type annotation

as its current abstract state and continues.

– If the type annotation is not compatible with the current abstract

state, the method verification fails.

• If the head of the merged code is a regular instruction, the bytecode

verifier checks whether it is safe to execute the instruction in the current

abstract state.

– If it is safe to execute the instruction, the bytecode verifier updates

its current abstract state to the result of executing the instruction

symbolically and continues the method verification process.
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(defun mergedCodeIsTypeSafe(Environment MergedCode StackFrame)

....

(let ((cur (first MergedCode))

(rest (rest MergedCode)))

(cond

((isStackMap cur)

(let ((MapFrame (mapFrame (getMap cur))))

(and (frameIsAssignable StackFrame MapFrame Environment)

(mergedCodeIsTypeSafe Environment rest MapFrame))))

((isInstruction cur)

(let ((offset (instrOffset cur))

(instr cur))

(if (instructionIsTypeSafe instr Environment StackFrame)

(mv-let (NextStackFrame ExceptionStackFrame)

(sig-do-inst instr Environment StackFrame)

(and (instructionSatisfiesHandlers

Environment offset ExceptionStackFrame)

(mergedCodeIsTypeSafe Environment

rest

NextStackFrame)))

nil))))))

Figure 5.7: Bytecode verifier: key algorithm

– If it is not safe to execute the instruction, the verification process

fails.

As one may observe, the bytecode verification algorithm is described

in a very peculiar way. One may be wondering why we need first collect

pieces of information into an Environment, why we need to first merge the

instructions with their type annotations into a single list, and why we have

to define mergedCodeIsTypeSafe to check the type safety against the merged

code.

The explanation is that our ACL2 implementation of the bytecode ver-
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ifier is systematically derived from the official CLDC bytecode verification

specification. The official specification is formulated in this way.

The official bytecode verification formalizes the bytecode verification as

a set of Prolog-style rules. In order to make the official specification executable,

the declarative rules are over-engineered to express ideas that could be more

naturally expressed with a conventional language. As a result, some of the

rules from the specification are themselves convoluted. To keep our bytecode

verifier model faithful to the official specification, our bytecode verifier also

contains similar peculiarities in its implementation of the intuitively simple

bytecode verification algorithm.

This peculiar way of specifying the bytecode verifier adds to the diffi-

culty in proving that the bytecode verification algorithm is effective. One of

the contributions of this dissertation is that we designed a simplified version

of the bytecode verifier. We used the simplified bytecode verifier as an in-

termediate step for proving bytecode verification effective. To prove that the

bytecode verification algorithm (as specified in the official CLDC document) is

effective, we have first proved a reduction theorem that if the official bytecode

verifier verifies a program, our simplified version will also verify it. We also

have an incomplete proof that suggest that all verified programs (accepted by

the simple bytecode verifier) will execute safely — together with an approach

and a support lemma library for completing the proof.

5.3.3 Connection with the CLDC Specification

We derived our bytecode verifier from the Prolog style rules by collecting the

distinct function symbols of all the head terms of Prolog rules and defining
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one ACL2 function for each such function symbol.

For example, the function symbol classIsTypeSafe appears and only

appears in the head term of the following rule.

classIsTypeSafe(Class) :-

...

classMethods(Class, Methods), ; extract methods

checklist(methodIsTypeSafe(Class), Methods).; verify all methods

We introduce a corresponding ACL2 definition of the same name,

(defun classIsTypeSafe (Class CL)

(let ((Methods (classMethods Class)))

...

(checklist-methodIsTypeSafe Class Cl Methods)))

The actual definitions of the corresponding ACL2 functions for Prolog

clauses depend on the form of the clauses. We need to identify the inputs and

outputs of an operation by studying the form of related clauses. We need to

identify the relations between arguments of the head term. For each clause, we

start by trying to determine whether bindings for some subset of the arguments

uniquely determine the bindings for the remaining arguments. Consider the

Prolog clause with head term classClassName(Class, ClassName), in which

it is obvious that once Class is bound to some concrete object that represents

a class, the body of the clause uniquely determines the binding for ClassName.

As a result, the corresponding ACL2 function takes a Class as its argument

and returns its class name.

We introduced three kinds of ACL2 functions. Each kind corresponds

to a specific pattern in the official Prolog-style rules.
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• Accessor operations take one compound object and return one or more

components of the compound object.

One example is classClassName(Class, ClassName). We translated

it into an accessor function classClassName(Class), which takes one

input that presents the class and returns the class name component.

• Boolean predicates, like classIsTypeSafe. They characterize properties

of the inputs. We effectively translated the derivability of a Prolog term

into the truth value returned by the corresponding ACL2 function.

• Guarded operations, like instructionIsTypeSafe. They not only de-

cide whether a term is derivable, they also give the binding for some

non-input arguments.

To be more concrete, take the clause for deriving instructionIsType-

Safe(aastore, ...) as an example. We translated the clause into a

pair of ACL2 functions:

– A guard function that defines the condition under which the oper-

ation is legal:

(defun check-aastore (inst env StackFrame)

(declare (ignore inst))

(canPop Env StackFrame

’((class "java.lang.Object")

int (array (class "java.lang.Object")))))

– An effect function that defines the effects of applying the operation:

(defun execute-aastore (inst env StackFrame)

(declare (ignore inst))
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(mv (TypeTransition env

’((class "java.lang.Object")

int

(array (class "java.lang.Object")))

’void

StackFrame)

(exceptionStackFrame StackFrame)))

We invite the reader to compare the supporting materials for the actual

definition of our bytecode verifier [22] with the Prolog rules from the official

bytecode verifier specification [11]. Our bytecode verifier definitions should

be readily readable as a Common Lisp program. It follows closely with the

Prolog-style rules.

5.4 A Simple Property Proved

We proved one property of our JVM bytecode verifier model. The property

asserts that the result of bytecode verifying one method is independent of the

code from other methods. The proof is mechanically checked with ACL2.

We were prompted to prove this intuitive property because of the fol-

lowing practical problem. We translated the entire class library of the J2SE

1.3.1 into our jvm2acl2 format. This particular library contains 5,273 classes

and over 34,000 methods. The entire class table in our format is a 190MB text

file. Our Common Lisp environment (GNU GCL) cannot load such a big Lisp

constant. To test our bytecode verifier on the entire class table, we needed to

reduce the memory requirement. We abstracted each class by removing the

actual code of each method. The resulting abstract class table can be loaded
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(defthm classIsTypeSafe-judgment-is-unchanged

(implies (isClassTerms cl)

(iff (classIsTypeSafe C cl)

(classIsTypeSafe C (abstract-class-table cl)))))

Figure 5.8: One simple bytecode verifier property verified

into the memory by GCL. We ran our bytecode verifier to verify classes one at

a time with respect to the abstract class table that contains all classes modulo

the actual method bodies.

We proved that verifying the bytecode verifier produces the same answer

whether we use the actual class files or the abstract ones. Figure 5.8 shows

the actual ACL2 theorem that we proved.

The name of the theorem is classIsTypeSafe-judgment-is-un-

changed. It asserts that if cl is a list of classes, then for any class C,

(classIsTypeSafe C cl) judgment is always the same with (classIsType-

Safe C (abstract-class-table cl)), where (abstract-class-table cl)

strips off the code array from all methods contained in the cl.

This property is very intuitive. The bytecode verifier essentially exe-

cutes a type checking algorithm. The necessary pieces of information are the

type hierarchy information, the access permission information, and the instruc-

tion sequences being verified. Thus, stripping the actual code from all methods

will not affect any judgment made on some known instruction sequence.

The proof is not as trivial as it may seem to be. We are proving a

property of a 4500-line Common Lisp program. JVM types are no longer

abstract entities, but instead are mapped to ACL2 objects manipulated by

the concrete ACL2 functions. Our ACL2 proof script is about 500 lines.

To prove the theorem, we first formalize the intuitive reason why strip-
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ping off the code array does not matter. We identify an equivalence relation on

the possible class tables. We show that (1) judgment about relations between

types only depends on the equivalence class that the class table belongs to,

and (2) the abstraction step produces a class table equivalent to the original

one.

For example, we define the following predicate with two inputs. We use

it to characterize a relation on the class table.

(defun class-table-type-equiv (ct1 ct2)

(if (endp ct1)

(endp ct2)

(if (endp ct2)

nil

(and (class-def-type-equiv (car ct1) (car ct2))

(class-table-type-equiv (cdr ct1) (cdr ct2))))))

This relation asserts that two class tables ct1 and ct2 are equivalent

if and only if the class representations contained in them are pairwise class-

-def-type-equiv. We need to prove this relation is an equivalence relation,

i.e. it is reflexive, transitive and symmetric. ACL2 proves the class-table-

-type-equiv is an equivalence relation automatically after we first ask ACL2

to show that class-def-type-equiv defines an equivalence relation. Two

classes are class-def-type-equiv if the only differences between them are in

method codes.

We then prove isJavaSubClassOf admits class-table-type-equiv as a con-

gruence relation, so that ACL2 knows it is safe to replace a class table with

some equivalent one for making judgments on whether one class is a subclass

of another class.
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5.5 Conclusion

We presented the official lightweight bytecode verifier from the latest CLDC

specification. We described the type hierarchy used by the bytecode verifier.

We showed examples of the Prolog style rules. We discussed the need for

providing an operational interpretation of the formal Prolog-style rules used

to specify the bytecode verifier.

We presented our formal executable model of the BCV. The model is

derived from the Prolog rules. The model closely follows the BCV specifica-

tion and executes efficiently, achieving a bytecode verification speed of 100K

instruction per second.

The model is amendable to formal reasoning. We proved one intuitive

theorem that asserts that bytecode verification depends only on the class hi-

erarchy and the code being analyzed.

This work on modeling a realistic BCV is one step in our project of

formalizing and verifying the JVM safety.
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Chapter 6

JVM Safety Specification

6.1 Two Kinds of Safety

When people talk about Java being safe, we think that they expect two kinds

of safety guarantees: (1) all reachable JVM states are “good” and all state

transitions meet suitable preconditions and (2) executing arbitrary Java pro-

grams on a JVM implementation will not induce unexpected behavior of the

JVM implementation.

The first kind of guarantee provides the comforting assurance for Java

programmers that their program will be executed in a way consistent with

their understanding of the JVM — operations will be applied to operands

of correct type, all private data and functionalities will be protected against

unauthorized access, and the reachable JVM states remain sensible.

The second kind of safety guarantee provides the assurance for JVM

users that executing an arbitrary Java program via a correct JVM implemen-

tation will not produce unexpected effects in the environments in which they

154



execute the JVM implementation. We may view a JVM implementation as

providing a virtual universe of Java objects. Executing a Java program is to

carry out the operations on objects from this virtual world. We expect that

Java programs that execute inside the virtual world will not unexpectedly

affect the outside environment. 1

These two kinds of safety guarantees are in fact closely related. The first

kind asserts that all reachable states are “good” JVM states and all operations

are executed with their preconditions met. These are two useful facts to JVM

implementors. As long as they can find a low level representation that can

represent all the “good” JVM states and can emulate all the operationally

defined JVM primitives, we can be sure that such a JVM implementation

will provide the second kind of safety guarantee — the JVM implementation

provides a confined sand box in which to execute Java programs.

As a concrete example, if we can prove during arbitrary execution of

the JVM that the size of the operand stack is bounded by a fixed number, a

JVM implementor can then chose to represent a JVM operand stack with a

fixed sized memory section, knowing that such a representation always suffices.

Similarly, if we can show that the POP operations are always executed with at

least one operand on the stack, the JVM implementation can execute the low

level operations that emulates the POP operations — knowing that the low

level representation of the stack will always represent a stack with at least one

operand.

For the JVM implementors, the more they know about constraints on

a “good” JVM state, the more likely they can find an efficient low level repre-

1Some operations in this virtual world, e.g., printing, may have expected side effects on
the outside environment, e.g., changing the pixels on the screen.
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sentation to represent all the “good” JVM states. The more they know about

the preconditions for executing a JVM operation, the more likely they can find

an efficient way to emulate the JVM operation effectively.

JVM implementors can also benefit from a more direct formulation of

“good” state. In order to write a correct JVM implementation, JVM imple-

mentors are obliged to check — for each JVM operation that they implement

— whether executing their implementation of the operation on the low level

state representation of a “good” state will result in a suitable low represen-

tation that also represents the next state and whether that next state is a

“good” state.

One way to define a “good state” is as follows: (1) The state has prop-

erty G and (2) all reachable states from the state also have property G.

However, a “good state” defined in this fashion is not directly useful to

JVM implementors. To check whether a state is a “good state”, they need to

reason about the JVM in addition to the state itself. It is better to have a

more direct definition of a “good state” such that, to know whether a state is

a “good” state or not, the JVM implementors do not need to reason about the

JVM as a whole and only focus on the inherent property of the state itself.

In this dissertation, we formalize the first type of safety guarantee that

the JVM provides. We identify a stronger version of “good” state (stronger

than what is declaratively specified in the JVM specification). Whether a

JVM state is a “good” state can be checked directly against the JVM state

— without the need to check any requirements on all reachable states by the

JVM from the state. We also identify a stronger version of preconditions for

executing JVM operations. 2

2We may also observe that our decision to identify stronger versions of the “good” state
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6.2 Defensive JVM

6.2.1 Why Another JVM Model?

We formalize the first kind of safety guarantee. We want to show that pro-

gram executions according to the operational specification of the JVM will

not result in a “bad” state where the next state is not defined. Our JVM

model, M6, embodies the specification that how JVM operations would exe-

cute operationally (see Chapter 4). We still need to capture the constraints

under which, these operations can be executed. The existing M6 state does

not maintain enough information to describe these constraints. This leads to

the development of a new JVM model that we will describe in this section.

The JVM specification describes the operational semantics of the JVM

instructions only when a certain set of constraints are met. Otherwise the

semantics of executing the instruction is left undefined.

For example, AALOAD is an instruction that loads a value from the index

slot of an array in the heap. The array object is expected to be holding an

array of references to other objects. Let the reference to the array object be

arrayref, the JVM specification stipulates the following constraints:

the arrayref must be of type reference and must refer to an array

whose components are of type reference. The index must be of

and preconditions is not only motivated by trying to create a more useful safety specification
to the JVM implementors, it is also a necessary step for us to prove that the JVM as
originally specified can provide the original (weaker) form of the safety guarantee. For
example, suppose originally, the only requirement for a state to be a “good” state is that
its operand stack size is within a fixed bound. However, as we will see in section 7.1 of this
dissertation, to prove that all reachable states — while executing verified programs — have
bounded operand stacks, induction requires that we strengthen the definition of the “good”
states by demanding an additional on-track requirement.
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type int. Both arrayref and index are popped from the operand

stack. The reference value in the component of the array at index

is retrieved and pushed onto the operand stack.

We need to write an ACL2 predicate that capture these constraints.

To prove that the JVM is safe, we need to show when the JVM is about to

execute an AALOAD instruction, such constraints are always met.

In order to capture the must requirements, we need to maintain type

information for the values on the operand stack and the local variables. How-

ever, M6 only follows the operational part of the JVM specification and does

not maintain the necessary information to express these requirements.

We define a “defensive” machine in parallel with M6. 3 The defensive

JVM (DJVM) maintains the extra type information during the execution, be-

fore executing an instruction, the DJVM “defensively” looks for any potential

causes for “bad” events and only executes a step if the operational semantics

is defined according to the official JVM specification (JVMSpec) [45].

To prove that the JVM specification provides the first kind of safety

guarantee (as asserted by JVMSpec) is to prove that executing DJVM does

not get stuck and that the execution matches the corresponding M6 execution.

3We have not defined a complete DJVM that can execute realistic Java bytecode pro-
gram like M6 can. Our DJVM model is still only a set of ACL2 definitions for eight
kinds of bytecode instructions (AALOAD, AASTORE, ALOAD, ASTORE, ANEWARRAY, ACONST NULL,
GETFIELD and IFEQ) and primitives for implementing these instruction. These primitives
include simple operations to manipulate the operand stacks. These primitives also include
more complicated ones that load a class definition.
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6.2.2 State Representation

In a regular JVM, the following information needs to be maintained to imple-

ment necessary runtime checks and JVM functionalities:

• class hierarchy information,

• access permissions to fields, methods, and classes

• type information for objects that exist in the heap, and

• the context of execution, including the current program counter, the

current executing method, the operand stack, and the locals are being

updated.

A defensive JVM needs to maintain additional information in its exe-

cution state:

• type information for values that reside in activation records,

• resource limits on various operand stacks and local variable arrays, and

• the initialization status of every Java object in the heap.

Using the AALOAD example from the previous section, one can verify that

the following constraints can in fact be checked with the additional information

maintained by the defensive machine.

• Current thread exists.

• Current call frame exists.

• Top element of the operand stack exists.
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• Top element of the operand stack is of type int.

• Second element of the operand stack exists.

• Second element of the operand stack is a reference type.

• One of the following two is true:

– the second element of the operand stack is a null reference,

– the conjunction of

∗ the object pointed by the reference at the second element is of

a valid array type, and

∗ the component type of the array is not a primitive type.

• Executing the instruction will not overflow the operand stack.

Like an M6 state, a DJVM state is an eight-tuple consisting of a program

counter, a current thread register, a heap, a thread table, an internal class

table, an environment, an auxiliary field, and an error flag.

The internal class table records the loaded classes; the environment

records the sources from which a class definition is to be loaded; the heap

maps addresses to Java instance objects.

The one obvious difference between an M6 state and a DJVM state is

that values in the operand stacks and the local variable arrays are tagged with

their types. For example, the corresponding DJVM thread for the M6 thread

(figure 4.2) is depicted in figure 6.1 on the next page.

Another difference between an M6 state and a DJVM state is that the

auxiliary field of a DJVM state not only records the pending exception that
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(THREAD 0

(SAVED-PC . 0)

(CALL-STACK

(FRAME (RETURN_PC . 7) ; this frame represents the call

(OPERAND-STACK) ; to FactHelper’s constructor

(LOCALS (REF . 104)) ; a reference type

(METHOD-PTR "FactHelper" "<init>" ...)

(SYNC-OBJ-REF . -1))

(FRAME (RETURN_PC . 18) ;

(OPERAND-STACK (REF . 104))

(LOCALS (REF . 102)) ; a reference type

(METHOD-PTR "FactHelper" "compute"...)

(SYNC-OBJ-REF . -1))

...)

(STATUS THREAD_ACTIVE)

(MONITOR . -1)

(MDEPTH . 0)

(THREAD-OBJ . 55))

Figure 6.1: Representing a DJVM thread
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djvm−step

m6−step

S0 S1

state−equiv

m6−s1m6−s0

state−equiv(m6−s1, djvm−s1)

djvm−s0 djvm−s1

M6

DJVM

Figure 6.2: Relating the DJVM and the M6

needs to be handled, it also records the object initialization status for every

object present in the heap.

Intuitively, as pictured in figure 6.2, some M6 state and some DJVM

state might represent the same state, and if an M6 state m6-s0 and a DJVM

state djvm-s0 do represent the same state S0, we expect that, by executing

M6 one step from m6-s0 and executing DJVM one step from djvm-s0, the

two resulting states will still represent the same state S1. We formalize the

connection between such an M6 state and its corresponding DJVM state in

the state-equiv (see Figure 6.3).

A M6 state m6-s is state-equiv with a DJVM state djvm-s if and

only if after stripping the types from the djvm-s state, the (untag-state

djvm-s) is only different from the m6-s by having a thread-table-equiv

thread-table. 4

4This definition of state-equiv is not correct. Because a DJVM state also keeps track
of the object initialization status for each objects. The DJVM maintains such information
during its execution, however M6 will not keep such information. For a cut down version
of the M6, M6’, we have not defined the DJVM instruction NEW nor INVOKESPECIAL that
updates the object initialization status. The current definition of state-equiv suffices. We
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(defun state-equiv (m6-s djvm-s)

(and (thread-table-equiv (thread-table m6-s)

(thread-table djvm-s))

(equal (state-set-thread-table

(thread-table m6-s)

(untag-state djvm-s))

m6-s)))

Figure 6.3: Relating DJVM and M6 states: state-equiv

It is necessary for us to define state-equiv in this particular way. The

apparent (however, incorrect) alternative is to define state-equiv by asserting

that the DJVM state with type annotation stripped is equal to the M6 state

that it relates to.

(defun state-equiv (m6-s djvm-s)

(equal (untag-state djvm-s)

m6-s))

Figure 6.4: Incorrect state-equiv definition

This alternative definition of state-equiv is incorrect. This definition

dictates that for each DJVM state djvm-s, there is one and only one M6 state

(untag-state djvm-s) that is state-equiv with the original djvm-s. This is

not the case. In any M6 state, slots in local variable arrays may contain values

that will never be used before being overwritten or discarded. These memory

slots are irrelevant slots. That is, information stored in them is irrelevant to

the program execution. We want the set of M6 states to correspond to a same

DJVM state, if the only difference among the M6 states is that they contains

different values in these irrelevant slots.

can prove that M6’, a cut-down version of M6, executes verified program safely.
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(defun resolveMethodReference (method-ptr needStatic? s)

(mylet* ((classname (method-ptr-classname method-ptr))

(new-s (resolveClassReference classname s))

(thisMethod (lookupMethod method-ptr new-s)))

(if (pending-exception new-s)

(mv nil new-s)

(if thisMethod

....

(mv thisMethod new-s)

(mv nil (state-set-pending-exception-safe

"java.lang.IllegalAccessException" new-s))

....

(mv nil (state-set-pending-exception-safe

"java.lang.NoSuchMethodError" new-s))))))

Figure 6.5: Shared JVM operations: resolveMethodReference

6.2.3 State Manipulation Operations

DJVM and M6 have very similar state representations. DJVM reuses many

M6 operations to access and update the DJVM state components that share

the same representation with the corresponding M6 state components.

For example, in both the DJVM and M6, the representation of the

class table, heap, and environment are the same. We use the same oper-

ation resolveMethodReference (figure 6.5) to resolve a symbolic reference

method-ptr to a method signature.

We also defined operations unique to DJVM. Some of these operations

are used to access and update the operand stacks and local variables arrays.

The operation invalidate-category2-value (figure 6.7) is one example.

In a JVM state, a long type value will occupy two adjacent slots when

it is stored in a local variable array. The JVM specification demands that a

Java program must never attempt to read a long value from these two slots,
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4  5 

.....

......INVALID 1

1L......

......

Originally Long value 1L is stored in slot 4 and 5.   

Write int value 1 into location 5

The DJVM invalidates slot 4. 

Local variables afterwards

Local variables initially 0

Figure 6.6: Corrupting a size 2 value

(defun invalidate-category2-value (index s)

(if (< index 0)

s

(if (equal (type-size (tag-of (local-at index s)))

1)

s

(state-set-local-at index ’(topx . topx) s))))

Figure 6.7: Updating types for local variables

if one of them is reused to store some other value.

In order to detect whether a Java program is about to read a corrupted

long value, we need to mark a long value as invalid after one of the slots for

storing the long value has been written into. The invalid-category2-value

operation marks a value contained in a specific offset of the local variable array

as corrupted and not to be read from.

We also define a third kind of DJVM operation, illustrated by safe-
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; DJVM operation: safe-pushStack

(defun safe-pushStack (value s)

(declare (xargs :guard

(and (consistent-state s)

(not (mem ’*native*

(method-accessflags

(deref-method

(method-ptr (current-frame s))

(instance-class-table s)))))

(<= (+ 1 (len (operand-stack (current-frame s))))

(max-stack s)))))

(mylet* ((curthread-id (current-thread s))

....)

(state-set-thread-table new-thread-table s)))

; M6 operation: pushStack

(defun pushStack (value s)

(declare (xargs :guard

(and (current-frame-guard s)

(wff-call-frame (current-frame s)))))

(mylet* ((curthread-id (current-thread s))

....)

(state-set-thread-table new-thread-table s)))

Figure 6.8: DJVM operation: safe-pushStack vs. generic pushStack

-pushStack (see Figure 6.8). The definition is essentially the same as its M6

counterpart pushStack — except that we have attached a stronger guard to

the operation. The stronger guard of safe-pushStack asserts not only that

the operand stack exists, it also asserts that the stack is a valid stack from a

consistent DJVM state and pushing the value will not overflow the operand

stack.
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6.2.4 State Transition Function

For each DJVM instruction, we define a pair of operations. Consider ALOAD,

for example. We define check-ALOAD and execute-ALOAD.

Before DJVM uses the execute-ALOAD to make a state transition,

DJVM invokes the check-ALOAD operations to check whether it is safe to

execute ALOAD. The pair of functions are composed by following the descrip-

tions from the JVM specification. The JVM specification for ALOAD is shown

in figure 6.9

According to this specification, the effects of executing ALOAD is only

defined, when the index is a valid index into the local variable array and the

value at the offset is of type reference.

We define the check-ALOAD operation (figure 6.10). The wff-aload as-

serts that the instruction is of proper form. The valid-local-index captures

that index needs to be a valid offset into the local variable array of the current

frame. The REFp asserts that the value at that specific offset is a reference.

We define the (valid-local-index index locals) to check whether

the value at offset index is a valid value. A local variable array can hold

values that each occupies either one or two slots. It can also contain unini-

tialized slots. For a certain index to be valid, the index cannot point to some

uninitialized slots, nor can it point to the middle of a value that occupies two

slots.

To check whether a value is of type reference, we define (REFp v hp),

we check that the value v is either a NULL value or that it points to some

object in the heap hp. 5

5Notice this is different from what the bytecode verifier checks when its symbolic execu-
tion reaches an ALOAD instruction. The bytecode verification process does not maintain a
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Operation

Load reference from local variable

Format

aload index

Forms

aload = 25 (0x19)

Operand Stack

... ⇒ ..., objectref

Description

The index is an unsigned byte that must be an index into the local
variable array of the current frame (§3.6). The local variable at
index must contain a reference. The objectref in the local variable
at index is pushed onto the operand stack.

Notes

The aload instruction cannot be used to load a value of type
returnAddress from a local variable onto the operand stack.

Figure 6.9: Official specification for ALOAD
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(defun check-ALOAD (inst s)

(declare (xargs :guard (consistent-state s)))

(mylet* ((cframe (current-frame s))

(locals (locals cframe))

(opstack (operand-stack cframe))

(index (arg inst))

(value (local-at index s)))

(and ....

(wff-aload inst)

....

(valid-local-index index locals)

(REFp value (heap s))

....)))

Figure 6.10: ACL2 specification for check-ALOAD

In addition to what is specified in the official specification (figure 6.9)

for ALOAD, we also need to capture the general declarative assertions that the

official JVM specification made about the JVM executions. For example, the

section 4.8.2 Structural Constraints of the JVMSpec [45], explicitly assert that:

At no point during execution can the operand stack grow to a

depth (§3.6.2) greater than that implied by the max stack item.

Although not shown in figure 6.10, our definition of check-ALOAD in fact con-

tains assertions that one plus the size of operand stack is still no more than

max stack.

heap nor keep track of concrete values stored in the locals. The bytecode verifier only keeps
track of the type of the value that will be stored in that slot. The bytecode verifier will
check whether the type is a reference type.
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6.3 What is a Good Safety Specification

The obvious way to specify JVM safety is to assert that the check-XXX style

operations will always succeed — DJVM will not get stuck when executing

verified programs. This is in fact how JVMSpec declaratively specifies the

safety of the JVM.

Although this DJVM does not get stuck specification is good for the

JVM user and programmers who write Java programs, for the JVM implemen-

tors, this safety specification is not good enough. For a JVM implementor,

who build a JVM by following the operational specification of the JVM, there

is always the worry that such an implementation may still get stuck.

What the JVM implementors have is an implicit guarantee from the

JVM designer that as long as their program implements operationally specified

JVM operations (including class loading and class verification) correctly, the

execution will not get stuck.

We are interested in proving that the JVM specification in fact fulfills

the promise. In the process towards proving the that operationally specified

JVM is safe (i.e. execution will not get stuck), we realize that we need to

strengthen the concept of the JVM execution safety before we can ever expect

to prove by mathematical induction that the JVM is safe.

We need to identify a stronger safety assertion that (1) implies the

original weaker form of safety assertions (check-XXX always succeeds and the

DJVM does not get stuck), (2) is inductively preserved over machine execu-

tions. 6, and (3) holds on intended initial states.

In rest of this section, we present our strengthened version of the safety

6For a property P to be inductively preserved over machine executions, we mean that for
any state s, if P holds on state s, i.e. (P s), then, P holds on the next state, (P (step s))
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specification. Although the strengthened safety specification presented here

was initially conceived as a stepping stone for proving that the JVM execution

will not violate the original constraints specified in the JVM specification, our

strengthened version is a good safety specification in its own right.

6.4 Global Inductive Invariant

In our JVM safety specification, we first demand that a safe JVM maintains

a global invariant on its execution state.

Not only do we want to define a requirement (useful to application

programmers) that a safe JVM shall preserve, we aim to define a stronger

property that, once proved about the JVM specification, will be useful to

the JVM implementors. In order for an invariant to be useful to the JVM

implementors, we think such an invariant needs to be direct and sufficiently

strong, but not overly restrictive.

• A: The requirement shall be expressible in term of the state itself without

referring to some other requirements on the reachable states by the JVM.

• B: The requirement shall be sufficiently strong such that we will know

enough about a JVM state to be able to judge with ease:

– (1) whether the state is sensible,

– (2) whether executing any operation in such a state will be safe

— as specified in the official JVM specification, i.e. check-XXX

succeeds,

– (3) whether executing any operation in such a state will produce a

resulting state that also meets this requirement.
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• C: The invariant shall not be overly restrictive. The initial states for

executing verified programs shall satisfy the invariant.

First, we need the invariant to be directly expressible without refer-

ring to other requirements on some other states. We intend to prove that

the requirement that we identify is an invariant of the JVM execution. Our

strategy for proving that is to prove that the property is preserved by every

JVM operations individually. This way, we do not have to reason about the

complicated JVM as a whole. The difficulty of the proofs is thus reduced. If

the property itself were defined in terms of other properties on the reachable

states by the JVM, our strategy would be defeated, because to show that any

JVM operation preserves such a property, we would need to reason about the

complicated JVM as whole.

We identify the following three kinds of requirements on a “good state”

to “answer” the questions posed in B.1 and B.2: Objects must be well formed,

the class table must represent classes that form a valid class hierarchy, and

runtime states of threads must be sensible.

The difficulty lies in identifying a requirement on the JVM state so that

we can judge whether B.3 holds for a state that satisfies the requirement.

Our key requirement is that the JVM state be on track with some

abstract state observed by the bytecode verifier in a successful bytecode veri-

fication run.

6.4.1 Consistent Objects

Our first requirement is that a sensible JVM state shall not have ill-formed

objects.
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For a non-array object to be well formed, we expect that,

• the object is of a known class in the JVM state,

• the values recorded in the fields of the object are well-formed values,

and,

• the types of these values are compatible with their declared field type

We define the ACL2 predicate consistent-object (figure 6.11) to as-

sert that a non-array object obj is consistent with respect to the set of known

objects hp and known class definitions cl.

(defun consistent-object (obj hp cl)

(and (wff-obj-strong obj) ; syntatically correct

... ; some assertions elided.

(if (isArrayType (obj-type obj))

t ; we check the array object in a separate function

(and

(class-exists? (obj-type obj) cl)

(consistent-jvp (obj-type obj)

(java-visible-portion obj)

cl hp)))))

Figure 6.11: DJVM: consistent-object

The function consistent-jvp asserts:

• all superclasses of (obj-type obj) exist in the class table,

• all fields declared by the class of (obj-type obj) and its superclasses

exist in (java-visible-portion obj),

• all field values are well-formed values, and,
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• all field values are compatible with the declared types for the fields.

For a value to well-formed value, if the tag is a primitive type, we require

that the value be within the range of that primitive type. If a tagged value

is of reference type, we require that the object being referenced exist in the

heap. 7

For each field, the consistent-jvp operations needs to look up the

actual type rtype of field value and compare it with the declared type type

of the field using AssignmentCompatible operation (see Figure 6.13).

6.4.2 Consistent Class Table

For a JVM state to be sensible, we identify the following constraints on its

class table:

• Classes recorded in the class table are well formed.

• If a class is represented in the class table, its superclasses are represented

in the class table.

• Similarly, if a class is represented in the class table, its superinterfaces

are represented in the class table.

• There are no loops in the class hierarchy.

• The class java lang.Object is a superclass of every Java class.

• Classes are correctly loaded from their static description.

7We could recursively demand that the referenced object is a consistent-object. How-
ever, because the objects in the heaps may form data structures with loops, to avoid non-
terminating recursive assertions we chose only to demand that the referenced object exists
and all objects in the heap are consistent-object.
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(defun consistent-value (tagged-value type cl hp)

(if (not (wff-tagged-value tagged-value)) nil

(let ((vtype (tag-of tagged-value))

(value (value-of tagged-value)))

(cond ((primitive-type? type)

(and (equal vtype type)

(cond ((equal type ’INT) (INT32p value))

((equal type ’ADDR) (ADDRp value))

((equal type ’CHAR) (CHARp value))

((equal type ’BOOLEAN)

(jvmBOOLEANp value))

((equal type ’SHORT) (SHORTp value))

((equal type ’BYTE) (BYTEp value))

((equal type ’FLOAT)

(jvmFLOATp value))

((equal type ’DOUBLE) (DOUBLEp value))

((equal type ’LONG) (INT64p value))

(t nil))))

((NULLp tagged-value) t)

((REFp tagged-value hp)

(let* ((ref tagged-value)

(obj (deref2 ref hp))

(rtype (obj-type obj)))

(assignmentCompatible rtype type cl)))

(t nil)))))

Figure 6.12: DJVM: consistent-value
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(defun isJavaAssignmentCompatible (rtype type cl)

(declare (xargs :guard (consistent-class-hierachy cl)))

(cond ((primitive-type rtype) ...)

((equal rtype ’NULL) ...)

((isClassType rtype)

(and (isClassType type)

(class-exists? (classname-classtype rtype) cl)

(class-exists? (classname-classtype type) cl)

(isJavaClassAssignmentCompatible

(classname-classtype rtype)

(classname-classtype type) cl)))

((isArrayType rtype)

(cond ((isClassType type)

(or ...

(isJavaLangObject type)))

(t (and (isArrayType type)

(let ((x (component-type rtype))

(y (component-type type)))

(or ....

(and (compound x)

(compound y)

(isJavaAssignmentCompatible

x y cl)..))

(defun assignmentCompatible (rtype type cl)

(and (or (primitive-type rtype)

(reference-type-s rtype cl))

(or (primitive-type type)

(reference-type-s type cl))

(isJavaAssignmentCompatible rtype type cl)))

Figure 6.13: DJVM: assignmentCompatible
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(defun consistent-class-table (cl scl hp)

(and (wff-instance-class-table-strong cl)

(consistent-class-decls cl cl hp)

;; well formed.

(consistent-class-hierachy cl)

;; super and interfaces exist

;; no loops in supers, and interfaces.

(class-table-is-loaded-from cl scl)))

;; loaded correctly

Figure 6.14: DJVM: consistent-class-table

Our consistent-class-table (figure 6.14) captures these require-

ments.

The consistent-class-hierarchy requires that (1) for any class in

the class table its superclass is defined in the class table, unless the class is

java.lang.Object, (2) similarly, all the interfaces that the class is declared

to implement are also defined in the class table, and (3) for any class in the

class table, the superclass chain from the class contains no loops and the

superinterface chains contain no loops.

Among other requirements, a good class table also requires that the ba-

sic classes such as “java.lang.Object”, “java.lang.String”, and “java.lang.Class”

are present.

6.4.3 Sensible Thread Runtime State

In addition to the constraints that we described about objects and class tables,

we also assert that execution state of the threads in a JVM state is sensible.

We identify the following desirable properties of a thread runtime state:
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(defun class-hierachy-consistent1-class-n (n cl)

;;

;; 1. super ends with "java.lang.Object"

;; 2. interfaces all bounded and are in fact interfaces.

;;

(and (class-exists? n cl)

(if (equal n "java.lang.Object")

(let ((class-rep (class-by-name n cl)))

(and (not (class-exists? (super class-rep) cl))

(all-interfaces-bounded?

(interfaces class-rep) cl)))

(let ((class-rep (class-by-name n cl)))

(and (class-exists? (super class-rep) cl)

(all-interfaces-bounded?

(interfaces class-rep) cl))))))

(defun superclass-chain-no-loop-class-n (n1 cl seen)

(if (not (wff-instance-class-table cl)) nil

(if (not (class-exists? n1 cl)) t

(if (mem n1 seen) nil

(let ((n2 (super (class-by-name n1 cl))))

(superclass-chain-no-loop-class-n

n2 cl (cons n1 seen)))))))

Figure 6.15: DJVM: consistent-class-hierarchy
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• Call frames represent executions of non-abstract methods.

• Adjacent frames on the call stack form a valid caller-callee relation —

with the lower call frame representing a paused caller execution and the

upper call frame representing the callee’s execution.

• The operand stack and local variable array in any call frame hold well-

formed values.

• The size of the operand stack is less than the declared operand stack size

limit of the method being executed.

• The uninitialized objects accessible in a frame are created in the correct

call frames. An uninitialized object is accessible in a frame if and only

if a reference to the object is stored somewhere on the operand stack or

in the local variable array of the frame.

We formalize the first four requirements by asserting consistent-

-thread-entry (figure 6.16) for each thread in a safe JVM state. For a

thread to be a consistent-thread-entry, we assert that every frame is

a consistent-frame (figure 6.17) via consistent-call-stack. We de-

mand that the caller-callee relation holds between adjacent call frames via

consistent-call-stack-linkage.

For a call frame to be a consistent-frame (figure 6.17), among other

things, its operand stack must contain only consistent values — consistent-

-opstack. Its local variable array must also contain consistent values —

consistent-locals. 8

8Consistent-locals is more complicated than consistent-opstack, because the local
variable array may have slots with uninitialized values in addition to consistent values, while
a consistent operand stack must record consistent values only.
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(defun consistent-thread-entry (th cl hp)

(declare (xargs :guard (and (consistent-class-hierachy cl)

(wff-heap-strong hp))))

(and (wff-thread th)

(Valid-REFp (tag-REF (thread-ref th)) hp)

(consp (thread-call-stack th)) ;; at least one frame

(consistent-call-stack (thread-call-stack th) cl hp)

; each call frame are consistent-frame

(consistent-call-stack-linkage (thread-call-stack th) cl)

; caller-callee relation holds between adjacenent frames.

(let* ((obj (deref2 (tag-REF (thread-ref th)) hp))

(rtype (obj-type obj)))

(or (assignmentCompatible rtype "java.lang.Thread" cl)

; either a subclass of java.lang.Thread

(classImplementInterface rtype

"java.lang.Runnable" cl)))

; or implement the java.lang.Runnable interface.

(or (equal (thread-mref th) -1)

; either does not hold a monitor on some object

(bound? (thread-mref th) hp))))

; or the holding some monitor on some valid object

Figure 6.16: DJVM: consistent-thread-entry
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(defun consistent-frame (frame cl hp)

(mylet* ((method (deref-method (method-ptr frame) cl)))

(and (wff-call-frame frame)

(consistent-opstack (operand-stack frame) cl hp)

(consistent-locals (locals frame) cl hp)

(consistent-frame-max-local frame cl)

(wff-method-ptr (method-ptr frame))

(valid-method-ptr (method-ptr frame) cl)

(valid-sync-obj (sync-obj-ref frame) hp)

(wff-method-decl method)

(not (mem ’*abstract*

(method-accessflags method)))

(or (mem ’*native* (method-accessflags method))

;; either it is a native method

;;

;; else it has valid code and max stack

(and (wff-code (method-code method))

(integerp (method-maxlocals method))

(integerp (method-maxstack method))

(<= (len (operand-stack frame))

(method-maxstack method)))))))

Figure 6.17: DJVM: consistent-frame
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(defun consistent-adjacent-frame (caller callee cl)

(and (equal (return-pc callee)

(resume-pc caller))

(valid-offset-into (return-pc callee)

(method-code

(deref-method

(method-ptr caller) cl)))

(<= (+ (len (operand-stack caller))

(type-size

(method-ptr-returntype (method-ptr callee))))

(method-maxstack

(deref-method (method-ptr caller) cl)))))

Figure 6.18: DJVM: consistent-adjacent-frame

The consistent-adjacent-frame (figure 6.18) records what needs to

hold for the two call frames to represent a valid caller-callee relationship.

Concerning the accessible uninitialized objects from a frame, we require

that:

• If the current method is a regular method, the only uninitialized objects

accessible from the current frame must have been created in the current

frame.

• If the current method is a constructor method, we can have references to

at most one uninitialized object that is not created in the current frame

and is passed in as the this pointer by the caller of the constructor.

Any other uninitialized objects accessible to the current frame have to

have beeen created in the current frame.
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6.4.4 JVM Execution On Track

The assertions presented so far are necessary requirements for a sensible JVM

state. However they are not sufficient to guarantee that the next state of a

sensible state will also be a sensible state.

To see why the conjunction of assertions presented so far is not sufficient,

we can look at our requirements for a sensible thread runtime state. Our

requirements only assert that the operand stack contains consistent values

and the size is within the declared limit; there are no requirements preventing

the next JVM operation from overflowing the operand stack.

On the other hand, if we know that the program that we are executing

has been accepted by the bytecode verifier, i.e., the abstract execution of the

program finished successfully on the bytecode verifier, we then know that the

corresponding operation during the abstract execution did not overflow the

operand stack. If we can use such a fact about the abstract execution state

to predict the result during actual execution, we can show that executing the

next operation will not overflow the operand stack of the runtime state.

We thus identify the on-track requirement.

A JVM state records a set of threads in execution. Each thread main-

tains a call stack. The top most call frame of each call stack represents an

“on-going” method execution. Other call frames in the call stacks represent

“paused” (suspended) executions of a “caller” method, waiting its “callee” to

return a value to its operand stack stack. Each call frame effectively records

a pc that points to the next instruction for execution.

For a JVM execution to be on-track (with the bytecode verifier’s ab-

stract execution), we require that each call frame in the JVM state is approxi-
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(defun frame-sig (frame cl hp hp-init)

(declare (xargs :guard ...))

(let* ((locals-sig (locals-sig (locals frame)

cl hp hp-init

(method-ptr frame))

(stack-sig (opstack-sig (operand-stack frame)

cl hp hp-init

(method-ptr frame)))

(flags (gen-frame-flags frame hp-init))))

(make-sig-frame locals-sig stack-sig flags)))

Figure 6.19: On-track definition: frame-sig

mated by a specific abstract state — the one observed by the bytecode verifier

when the abstract execution of the method (associated with the call frame)

reaches the specific pc. An abstract state bcv-state is said to approximate

a concrete state djvm-state, if the extracted type signature (obtained by ap-

plying frame-sig (figure 6.19) to the concrete state), is frameIsAssignable

(figure 6.20) to the bcv-state.

The full definition of the on-track requirement on a “good”

state is encoded in consistent-state-bcv-on-track (figure 6.21) from

DJVM/consistent-state-bcv-on-track.lisp [22].

We expect with this additional on-track requirement, we can prove that

our conjectured global inductive invariant is in fact an inductive invariant.

The two major proof steps involved are

• we need to prove that when the top frame of the current thread is approx-

imated by an abstract state and the bytecode verifier’s check succeeds

on the abstract state, then the runtime check by DJVM check-XXX will

also succeed.
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(defun frameIsAssignable (Frame1 Frame2 env)

(let ((Locals1 (frameLocals Frame1))

(Locals2 (frameLocals Frame2))

(StackMap1 (frameStack Frame1))

(StackMap2 (frameStack Frame2))

(Flags1 (frameFlags Frame1))

(Flags2 (frameFlags Frame2)))

(and (equal (len StackMap1)

(len StackMap2))

(typeListAssignable Locals1 Locals2 env)

(typeListAssignable StackMap1 StackMap2 env)

(subset Flags1 Flags2))))

Figure 6.20: On-track definition: frameIsAssignable

(defun consistent-state-bcv-on-track (s)

(and (bcv::good-scl-strong (env-class-table (env s)))

(consistent-thread-table-bcv

(thread-table s)

(pc s)

(current-thread s)

(heap s)

(heap-init-map (aux s))

(instance-class-table s)

(env-class-table (env s)))))

Figure 6.21: On-track definition
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• we need to prove that when check-XXX succeeds and the top frame of

the current thread is approximated by the abstract state observed by

the bytecode verifier at the current program counter, the updated top

frame of the resulting state of executing the operation execute-XXX will

be approximated by the abstract state observed by the bytecode verifier

at the next program counter. For operations that modify the call frames

stack (such as INVOKE-family and RETURN-family operation), we need to

prove that after those updates to the call stack, the DJVM state is still

on-track.

6.5 Local Guard Assertions

As explained in the Using ACL2 chapter, section 3.2.3, we can write assertions

for an ACL2 program as guards. Similar to type annotations in Java programs,

guards for an ACL2 program can be viewed as a systematic way of expressing

expectations about the domain that a program will operate in. Different from

a typical type system, we do not have a fully automatic decision procedure to

“type check” whether the set of guards is compatible with each other. Instead,

we need to interact with the ACL2 theorem prover to prove theorems that

relate the guards for the set of ACL2 functions.

We interact with the ACL2 theorem prover to identify strong guards

about JVM operations. We aim to identify guards for operations that can be

guard verified. That is the guard for an operation is strong enough so that for

all sub-operations it invokes, these sub-operations will be invoked on inputs

that meet the corresponding guards — assuming the top level operation is

invoked with its guard met.
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To identify verifiable guards for JVM operations, we often start with

what is obviously necessary to hold. We then attempt to guard-verify it. By

studying the failed guard verification attempts, we obtain more insight into

what other necessary properties the inputs must have. We use the new insights

to strengthen our guard definition for JVM operations.

The process of identifying verifiable guards is non-trivial. It often in-

volves several iterations of strengthening of the guard conjecture and we are

obliged to prove non-trivial theorems.

The value of having strong verifiable guards on JVM operations is that

by knowing that the lower level sub-operations will be invoked with their

guards met, a JVM implementor have more ways to optimize the implemen-

tations of these JVM operations — choosing how to represent the inputs and

deciding on how to emulate the JVM operations. For the JVM designers,

having a set of verifiable guards, is also a good indication that the JVM spec-

ification itself is internally consistent and can be implemented.

We use the identified guards as part of our JVM safety specification:

(1) JVM operation must pass guard verification using this set of guards and

(2) the JVM initial state must meet the guard for executing the very first JVM

operation used for starting the JVM’s execution.

In the following sections, we present guards that we have identified for

a few JVM operations.

6.5.1 Simple Primitives

Before we can guard-verify a complicate JVM operation, we need to guard-

verify all the operations that may be invoked by this operation.
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ACL2 primitives such as cons, consp are guard-verified with their built-

in guard definition. For every user defined primitive operations, no matter how

simple it is, we need to guard-verify the operation, before we can attempt to

guard-verify any operations that use them.

The following are a few examples of such simple primitives that we have

defined guards for.

(defun cpentry-type (cpentry)

(declare (xargs :guard (wff-constant-pool-entry cpentry)))

(car cpentry))

Figure 6.22: Guards: cpentry-type

The cpentry-type is an accessor function. It takes one input argument

cpentry, which is expected to be a wff-constant-pool-entry. It returns the

first component of the entry.

To guard-verify the operation cpentry-type, the ACL2 theorem prover

generates the proof obligation that 9

(implies (wff-constant-pool-entry cpentry)

(consp cpentry))

This is because the operation car expects its operand to be consp.

For another example, class-by-name (figure 6.23), is an operation that

looks up a class definition of a given name. It is defined as a recursive function.

Before the ACL2 theorem prover can guard-verify the operation, we

first need to guard-verify classname (consp, car, equal, if and cdr as well),

whose guard is wff-class-rep.

9ACL2 also demands that the wff-constant-pool-entry is also guard verified to have
a guard t.
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(defun class-by-name (class-name dcl)

(declare (xargs :guard (wff-instance-class-table dcl)))

(if (not (consp dcl))

nil

(if (equal (classname (car dcl)) class-name)

(car dcl)

(class-by-name class-name (cdr dcl)))))

Figure 6.23: Guards: class-by-name

To guard-verify class-by-name, we need to prove theorems showing

that when various operations are invoked, their guards are met. One of the

properties that we need to prove when the recursive call of (class-by-name

class-name (cdr dcl)) is reached is that its guard, (wff-instance-class-

-table (cdr dcl)), is met.

(implies (and (wff-instance-class-table dcl)

(consp dcl)

(not (equal (classname (car dcl)) class-name)))

(wff-instance-class-table (cdr dcl)))

6.5.2 Class Loading Operations

Class loading operations are complicated. Recall our description of the JVM

bootstrap class loader in the section 4.3.3, loading a class involves parsing

the static class description, creating new objects in the heap, and recursively

loading the superclasses and superinterfaces. A class loader needs to do all

the above — in addition to creating a representation of the class and adding

it to the internal class table.

To invoke these class loading operations, delicate conditions must be
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(defun build-a-java-visible-instance-guard (classname S)

(and (wff-state s)

(wff-class-table (class-table s))

(wff-env (env s))

(wff-instance-class-table (instance-class-table s))

(wff-static-class-table (external-class-table s))

(equal (collect-superclass-list classname

(instance-class-table s))

(collect-superclassname classname

(external-class-table s)))

(build-a-java-visible-instance-data-guard

(collect-superclass-list classname

(instance-class-table s)) s)))

Figure 6.24: Guards: build-a-java-visible-instance-data-guard

met. We formulate these conditions as guards.

For example, to add a new object to the heap with the bind operation,

we need the heap to be an alistp.

(defun bind (x y alist)

(declare (xargs :guard (alistp alist)))

(cond ((endp alist) (list (cons x y)))

((equal x (car (car alist)))

(cons (cons x y) (cdr alist)))

(t (cons (car alist) (bind x y (cdr alist))))))

To create an object of type classname, we expect that the precondition

shown in figure 6.24 to be met.

Specifically, to build an object of class classname in the heap

• we first expect that the components of the JVM state to be well formed
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(and (wff-state s)

(wff-class-table (class-table s))

(wff-env (env s))

(wff-instance-class-table (instance-class-table s))

(wff-static-class-table (external-class-table s)))

• We also expect that all superclasses of the class classname to be loaded

(equal (collect-superclass-list classname

(instance-class-table s))

(collect-superclassname classname

(external-class-table s)))

• It also needs to be safe for the JVM to create default data values for all

declared fields

(build-a-java-visible-instance-data-guard

(collect-superclass-list classname

(instance-class-table s)) s)

As our last example, the safety constraint that we identified for load-

class internal is formalized in load class internal guard (figure 6.25).

To safely execute the load class internal to load a new class definition into

the class table, we need to check

• The state is well formed

(and (wff-state s)

(wff-env env)
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(defun load_class_internal_guard (classname s)

(mylet* ((env (env s))

(class-table (class-table s))

(scl (env-class-table env)))

(and (wff-state s)

(wff-env env)

(wff-heap (heap s))

(wff-class-table class-table)

(loader-inv s)

(all-correctly-loaded?

(cdr (collect-superclassname

classname (external-class-table s)))

(instance-class-table s)

(external-class-table s))

(all-correctly-loaded?

(cdr (collect-superinterface

classname (external-class-table s)))

(instance-class-table s)

(external-class-table s))

(wff-static-class-table scl)

(mv-let (found class-desc)

(class-by-name-s classname scl)

(mylet* ((static-cp

(constantpool-s class-desc))

(static-field-table

(fields-s class-desc))

(static-method-table

(methods-s class-desc)))

(or (not found)

(and (wff-class-rep-static class-desc)

(load_CP_entries_guard static-cp s)

(build-a-java-visible-instance-guard

"java.lang.Class" s)

(wff-fields-s static-field-table)

(runtime-method-rep-guards

static-method-table))))))))

Figure 6.25: Guards: load class interna guard
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(wff-heap (heap s))

(wff-class-table class-table))

• The current state satisfies an invariant loader-inv

(loader-inv s)

which asserts that either the execution is in a fatal error state or any

loaded class are in fact correctly loaded — their superclasses are all loaded

and the internal representation matches the external description.

• all superclasses and superinterfaces of the class classname are loaded.

(and

(all-correctly-loaded?

(cdr (collect-superclassname

classname (external-class-table s)))

(instance-class-table s)

(external-class-table s))

(all-correctly-loaded?

(cdr (collect-superinterface

classname (external-class-table s)))

(instance-class-table s)

(external-class-table s)))

• Either the external class descriptions do no have an entry for the

class classname or the corresponding external description must
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be well-formed wff-class-rep-static and it must be safe to use

load CP entries and other operations to create a runtime representa-

tion of the class.

(and

(wff-static-class-table scl)

(mv-let (found class-desc)

(class-by-name-s classname scl)

(mylet* ((static-cp (constantpool-s class-desc))

(static-field-table

(fields-s class-desc))

(static-method-table

(methods-s class-desc)))

(or (not found)

(and (wff-class-rep-static class-desc)

(load_CP_entries_guard static-cp s)

(build-a-java-visible-instance-guard

"java.lang.Class" s)

(wff-fields-s static-field-table)

(runtime-method-rep-guards

static-method-table))))))

6.5.3 JVM Instructions

For the JVM operation execute-GETFIELD (figure 6.26), we specify the local

safety condition for executing it as GETFIELD-guard (figure 6.27).
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(defun execute-GETFIELD (inst s)

(declare (xargs :guard (GETFIELD-guard inst s)))

(mylet* ((fieldCP (arg inst)))

(mv-let (field-rep new-s)

(resolveFieldReference fieldCP s)

(if (not (no-fatal-error? new-s)) new-s

(if (pending-exception s)

(raise-exception (pending-exception s) s)

(if field-rep

(let ((new-s2 (execute-getfield1 field-rep new-s)))

(if (pending-exception new-s2)

(raise-exception

(pending-exception new-s2) new-s2)

(ADVANCE-PC new-s2)))

(fatalSlotError fieldCP new-s)))))))

Figure 6.26: Guards: execute-GETFIELD

6.5.4 Guard as Specification

A guard defines the set of expected inputs that the operation will execute

with.

We would like to note that not all guard definitions are useful as good

local safety specifications. A good guard definition should interestingly capture

what are the valid inputs for executing the operation. The process for checking

whether a input satisfies the guard should be direct and should not depend on

how the operation is implemented. These statements may be more clear after

we look at the following fact.

There is a systematic but uninteresting method to define a verifiable

guard for every ACL2 function.

For a simple non-recursive operation, simple-op, we can define the

guard simple-op-guard (figure 6.28) — assuming that the test, f, and g
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(defun GETFIELD-guard (inst s)

(mylet* ((obj-ref (safe-topStack s))

(fieldCP (arg inst)))

(and

(wff-getfield inst) ; safe to access the fieldCP

(wff-fieldCP fieldCP) ; fieldCP syntatically correct

(consistent-state-strong s) ; additional safety requirement

(topStack-guard-strong s) ; safe to access the topStack

...

(resolveClassReference-guard s) ; can invoke class loader

(protectedAccessCheck inst s) ;

(or (mv-let (field-rep new-s)

(resolveFieldReference (arg inst) s)

(declare (ignore new-s))

(not field-rep)) ; either field doesnot exists

(or (CHECK-NULL obj-ref) ; or either obj-ref is NULL

(and ; or

(REFp obj-ref (heap s)); valid pointer

(mv-let (assignable new-s)

(isAssignableTo

(obj-type (deref2 obj-ref (heap s)))

(fieldCP-classname fieldCP) s)

(declare (ignore new-s))

assignable) ; suitable type

(mv-let (field-rep new-s)

(resolveFieldReference (arg inst) s)

(declare (ignore new-s))

(or (and (equal (field-size field-rep) 2)

(<= (+ 1 (len (operand-stack

(current-frame s))))

(max-stack s))) ; operand stack size ok

(and (equal (field-size field-rep) 1)

(<= (len (operand-stack (current-frame s)))

(max-stack s)))))))))))

Figure 6.27: Guards: GETFIELD-guard
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(defun simple-op (a b)

(if (test a b)

(f a)

(h a b)))

(defun simple-op-guard (a b)

(and (test-guard a b)

(if (test a b)

(f-guard a)

(h-guard a b))))

Figure 6.28: Guards: simple-op-guard

already have their verifiable guard defined.

To understand how we arrive at this guard definition, one can imagine

how the operation simple-op is evaluated. Because the first operation that

we will do is the (test a b), thus we first assert (test-guard a b) to hold.

Then depending on whether (test a b) is true or not, we may evaluate (f a)

or (h a b) as necessary. So subsequently, we assert the condition (if (test

a b) (f-guard a) (h-guard a b))

Using the same method, we can define for a recursively defined operation

recursive-op the following guard in figure 6.29.

However, guards defined this way are not particularly interesting. The

definition of the guard closely depends on the definition of the operation itself.

They are of a dynamic flavor. To check whether recursive-op-guard holds,

we need to essentially execute recursive-op — because we have to check the

following assertion

(op3-guard (recursive-op a (op2 b)))

which depends on the return value of (recursive-op a (op2 b))
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(defun recursive-op (a b)

(if (test (f a) b)

(simple-op (op1 a) b)

(op3 (recursive-op a (op2 b)))))

(defun recursive-op-guard (a b)

(and (f-guard a)

(test-guard (f a) b)

(if (test (f a) b)

(and (op1-guard a)

(simple-op-guard (op1 a) b))

(and (op2-guard b)

(recursive-op-guard a (op2 b))

(op3-guard (recursive-op a (op2 b)))))))

Figure 6.29: Guards: uninteresting recursive-op-guard

For a guard to be useful as a local safety specification, we demand the

guard be direct about what the set of valid inputs is. Given an input, there

should be a simple way to tell whether the input is among the valid inputs.

Specifically, we do not expect that checking whether an input satisfies the

guard for recursive-op will involve invoking recursive-op itself.

In our work, we have strived to define good guards, ones useful as local

safety specifications. For example, we define the guard for load CP entries

(figure 6.30).

An uninteresting guard for load CP entries would be of the following

form (figure 6.31).

The uninteresting version of load CP entries-guard is easy to guard

verify. However, it invokes the complicated operation (load CP entry (car

cpentries) s) to produce a new-state and asserts the additional require-

ment (load CP entries-guard (cdr cpentries) new-state) about the

198



(defun load_CP_entries-guard (cpentries s)

(if (not (consp cpentries)) t

(and (load_CP_entry-guard (car cpentries) s)

(load_CP_entries-guard (cdr cpentries) s))))

(defun load_CP_entries (cps s)

(declare (xargs :guard (load_CP_entries-guard cps s)))

(if (not (consp cps))

(mv nil s)

(mv-let (new-ent new-state)

(load_CP_entry (car cps) s)

(mv-let (new-ents final-state)

(load_CP_entries (cdr cps) new-state)

(mv (cons new-ent new-ents) final-state)))))

Figure 6.30: Guards: load CP entries-guard

(defun load_CP_entries-guard (cpentries s)

(if (not (consp cpentries)) t

(and (load_CP_entry-guard (car cpentries) s)

(mv-let (new-ent new-state)

(load_CP_entry (car cpentries) s)

(ignore new-ent)

(load_CP_entries-guard

(cdr cpentries) new-state)))))

Figure 6.31: Guards: uninteresting load CP entries-guard
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....

(defthm create-string-guard_after_load_cp_entry

(implies (create-string-guard str s)

(create-string-guard str

(mv-nth 1 (load_CP_entry any s)))))

(defthm load_CP_entry_guard-load_CP_entry_guard

(implies (load_CP_entry-guard x s)

(load_CP_entry-guard x

(mv-nth 1 (load_CP_entry any s)))))

(defthm load_CP_entries-guard-load_CP_entry-guard

(implies (load_CP_entries-guard cps s)

(load_CP_entries-guard cps

(mv-nth 1 (load_CP_entry any s)))))

Figure 6.32: Lemmas for guard-verify load CP entries

new state. Checking such a guard is of dynamic flavor and obscures the

essential reason it is safe to execute load CP entries.

Our definition of the guard for load CP entries is more difficult to

guard-verify. But it is a more direct specification. Given an input, we do not

need to invoke an operation to modify the state. We essentially assert for all

entries in the cpentries, (load CP entry-guard entry s) holds. Checking

such a guard is of a static flavor.

To guard-verify load CP entries with our definition of the guard, we

need to prove the additional lemmas in figure 6.32. The load CP entry-

guard-load CP entry guard lemma says that if it is safe to create a runtime

time constant pool entry x in the current state s, it will still be safe to do so

after we create a constant pool entry any first.
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6.6 Conclusion

The official JVM specification specifies the semantics of executing JVM op-

erations only when certain constraints on the JVM state and inputs to the

operations are satisfied. The official JVM specification also declaratively as-

serts that these constraints will always be met during a JVM execution. The

safety guarantee of a Platonic JVM is that it will not get stuck because some

of the constraints are violated.

To formalize this concept that the JVM will not get stuck, we introduce

the defensive JVM model (DJVM) that maintains additional type information

and checks the stipulated constraints at runtime. The safety of the JVM is

then formalized by requiring that the execution bytecode verified programs

will not fail any runtime check (check-XXX) conducted by the DJVM.

Since our ultimate project is to study the effectiveness of the bytecode

verification process, we want to prove that a JVM is in fact safe while executing

verified programs. In the process, we realized that safety as specified can not

be proved inductively. We strengthened the safety specification to prove it

inductively. We also think that safety as specified as the JVM will not get

stuck is not very useful to JVM implementors. They will benefit by having a

direct way to check whether a given JVM state is a “good” state or not — so

that they can easily check whether their choice of the state representation is

adequate and whether their implementation of the JVM operations preserve

the “good” state property.

These reasons motivated us to search for a better safety specification —

both as a stepping stone for proving the the bytecode verifier is effective and

to make the safety specification more useful to JVM implementors.
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We formalized the safety requirement for a JVM as

• it maintains a consistent-state, which we hopes to prove to be an

inductive invariant of the JVM execution.

The key observation in defining this consistent-state is that we need

to assert that the JVM executions being on-track with a collection of the

abstract executions of the bytecode verifier.

• the JVM operations have strong guards that can be guard verified.
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Chapter 7

Framework and Relevant Proofs

7.1 A Complete Proof For A Simple System

We modeled a simple virtual machine and its static checker. We call the virtual

machine Small. The Small machine maintains its execution state in a stack of

call frames. Each call frame has an operand stack and a local variable array.

The static checker takes a program as its input and returns a yes or no answer.

If the static checker returns a yes answer on a specific program, the program

is verified.

We formalized a safety requirement that executing verified programs

never overflows the operand stack in any call frame. We proved that the

simple virtual machine is in fact safe.

The machine model (the interpreter and the static checker) is 913 lines

with 92 function definitions. The mechanically checked ACL2 proof input is

11,360 lines in 47 files, which includes 175 function definitions, 691 lemmas,

requiring 196 inductive proofs.
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The work described in this section is a good miniature of our project

for specifying and verifying the Java Virtual Machine and its bytecode verifier.

Formalizing and verifying the Small machine provides a road map for proving

that the JVM is safe and the bytecode verifier is effective. It presents a useful

big picture for understanding the apparently disconnected pieces of proofs that

we present in the later sections of this chapter.

We have gained a few keys insights for how to formalize and verify that

a virtual machine is safe and its static checker is effective.

• We need to strengthen the safety requirement (never overflow operand

stack) into a “good-state” predicate on the machine state so that it can

be proved as an inductive invariant of program executions.

• In order for a “good-state” predicate to be strong enough, we need to

assert that the runtime state is not only well formed (operand stack has

suitable size) but also on-track with some specific abstract execution of

the static checker.

This on-track requirement is necessary for allowing the execution of the

actual machine to be predicted by the fact that the static checker suc-

ceeded in verifying the programs.

• It is of great help to first define an intermediate static checker and prove

that programs verified by this simpler static checker are safe to execute.

We then need to prove a reduction lemma showing that any program

verified by the original static checker can also be verified by the simpler

static checker.
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7.1.1 Simple Virtual Machine

State representation

The virtual machine state has two components: a call stack and a method table

(figure 7.1). The method table is the “static” component of the state that maps

method names to their definitions. The method table is not dynamically ex-

tended during program execution. The call stack is the “dynamic” component

of the machine state, which is updated during each step of program execution

to capture effects of the program execution. 1

The call stack is a stack of call frames. Each call frame records a

program counter pc, an operand stack, a local variable array, and a method-

name. Using the pc and method-name from a call frame, together with the

method table, one can locate the next instruction to execute. The top-most

call frame corresponds the current method being executed. Call frames below

it correspond to paused executions of callers.

The method table is a collection of method definitions. Each method

definition of this simple machine contains a max-stack field — in addition to

the fields for describing the method name, number of formals, and the sequence

of bytecode instructions.

It is significant that method definitions to have this max-stack field.

Such a method definition not only encodes the operational behavior of the

program with sequences of instructions, but also encodes (implicitly) a declar-

ative “claim” that this method will never use more than max-stack number of

1This is a great simplification from a JVM state, which has multiple call stacks (one for
each thread), a heap, and a class table that can be dynamically extended during program
execution. In addition, a JVM method of a given name may have different definitions
depending on the type of the object that is used to invoked it.
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Figure 7.1: Small machine: state representation
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slots in the operand stack during its execution. This distinguishes the method

definition from a conventional assembly subroutine for an X86, for example,

which only specifies the operational behavior of the code. The Small machine

will use the static checker to check the “claim” of a method before it executes

the method. The expectation is that the static checker is effective in detecting

all possible violations of the “claim” without actually executing the method.

Semantics of Instructions

The simple virtual machine only recognizes six simple instructions PUSH, POP,

INVOKE, IFEQ, RETURN, and HALT.

• (PUSH v) instruction takes one argument, and pushes the argument v

onto the current operand stack — the operand stack of the top most call

frame (current frame) in the call stack. It also advances the program

counter in the current frame by one.

Effects are not defined if the push operation would overflow the operand

stack.

• (POP) instruction pops one value off the current operand stack and

advances the program counter by one.

Effects are not defined if there are no values to be popped off.

• (INVOKE method-name) instruction looks up the method and pops the

correct number of values off the operand stacks. The virtual machine

then creates and initializes a new call frame for executing the callee.

It also adjusts the program counter to the next instruction after the

INVOKE instruction.
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Effects are not defined if the method does not exist. Effects are also not

defined if there are not enough values on the operand stack.

• (IFEQ target) instruction pops a value off the current operand stack

and updates the program counter in the current frame to either target

or the current program counter plus one — depending on whether the

popped value is zero or not.

Effects are not defined if the operand stack is empty. Effects are also not

defined when the target is not a valid pc in the current method being

executed.

• (RETURN) instruction pops a value off the current operand stack,

pushes the value onto the caller’s operand stack, and pops the callee’s

call frame off the call stack.

Effects are not defined if the current operand stack is empty or if pushing

one extra value on the caller’s operand stack will overflow the caller’s max

stack limit.

• (HALT) instruction does not change the state – thus halting any execu-

tion whose pc points to a HALT.

What is expected of a specification

If the machine specification had only described the above semantics for its in-

structions, it would have been incomplete in specifying the behavior of certain

programs — programs whose executions violate the preconditions for instruc-

tions.
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However, application programmers, who write programs for executing

on the virtual machine, expect a complete specification.

A specification can be made complete either by specifying the effects

of executing an instruction in all states, or declaratively demanding that the

virtual machine will never attempt to execute an instruction in states where

its effects are not defined.

It is often more desirable to adopt the second approach to complete

a machine specification. In this case, the declarative requirements become a

safety guarantee, asserting all reachable state will not get “stuck”. This is

useful to an application programmer and user of the virtual machine.

On the other hand, virtual machine implementors prefer to avoid any

declaratively specified requirements. They write programs that execute on

physical machines to emulate the ideal virtual machine. It is easy to follow an

operationally described specification, which is explicit about what operations

needs to be emulated and how they are going to be emulated. It is more diffi-

cult to know when declarative specifications are met by their implementation.

To address these requirements from both application programmers and

virtual machine implementors, the official JVM specification describes a byte-

code verifier operationally. The promise is that programs verified by the opera-

tionally described bytecode verifier will never attempt to execute an instruction

whose effects are not defined.

Following this pattern, the specification for our simple virtual machine

Small also defines a bytecode verifier style static checker. We need to prove

that the static checker is effective to guarantee that the behavior of each ver-

ified program is well defined.
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Static checker

The objective for the static checker is to detect potentially unsafe programs.

Verified programs will not get stuck.

One may take the following high level view of a CLDC bytecode verifier

style static checker:

• The specification demands each method carry both the code and its

“proof” that it is safe to execute.

• The checker checks the “proof” against the code

• If the checker accepts the “proof”, the method is allowed to execute on

our simple virtual machine.

In our simple static checker for the Small machine, a safety “proof”

appears in the form of a list of pairs. The first number of a pair is interpreted

to be a pc into the method. The second number of the pair is interpreted to

be the size of the operand stack when the program is about to execute the

instruction at the pc.2

To check a “proof” against a method, the static checker maintains an

abstract state also in form of a pair, (pc . opsize).

• Initially, the abstract state is set to (0 . 0) to represent the initial

operand stack is empty where the next instruction to execute is at pc 0.

2Note that this notion of proof precludes some “correct” programs from being verifiable.
For example, no verified program can contain an instruction that can be reached by two
paths, each of which produces a different stack size upon arrival at the instruction. But one
can write programs that never overflows their declared stack size while using such paths.
The JVM bytecode verifier suffers this same limitation.
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• Before the static checker symbolically executes any instruction, it first

checks if the abstract state is compatible with what the “proof” claims

the abstract state would be. 3.

• Then the static checker checks whether it is safe to execute the next

instruction in the abstract state. It checks that

– the modification to the operand stack is valid. For example, to check

a PUSH operation, it checks whether, after the push, the operand

stack size is within the size limit stipulated by the current method,

– the updated program counter is a valid pc in the method (and in

the case of IFEQ both possible updated program counters are valid)

– for instruction INVOKE, it checks that the method to be invoked

exists and the current operand stack has enough values for invoking

the method with, and

– for instruction IFEQ, it checks that, at the target of branch, the

“proof” records an abstract state that is compatible with popping

one value off the current abstract state and setting the program

counter to the target.

• If the checks succeed, the static checker updates its abstract state and

moves on the next instruction in the sequence of the code.

– For INVOKE, it assumes the callee returns immediately.

– For IFEQ, it assumes the true branch is never taken.

3For an abstract state to be compatible with the proof, the stack size of the abstract
state must be equal to that recorded in the proof at the pc of the abstract state. In the
world of the CLDC JVM bytecode verifier, the definition for compatibility is much more
complex and involves assignment compatibility (figure 6.20 and figure 6.13)
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• If the static checker successfully reaches the end of the method, the

method is considered verified.

7.1.2 Formal Machine Model and Its Static Checker

State representation

We use the dictionary data structured defined in the ACL2 system book

misc/records extensively to represent various state components. 4

The machine state is represented as a dictionary with two keys

call-stack and method-table. The operation (g ’call-stack s) gets the

call stack component of state s, and (s ’call-stack new-cs s) sets the

call stack component to new-cs.

A call frame is also represented as a dictionary. The operation (g ’pc

frame) returns the program counter of a frame. Similarly, (g ’op-stack

frame) returns the operand stack.

State Manipulation Primitives

The concept of the current method is defined as follows:

(defun current-method (st)

(let* ((method-name (g ’method-name

(topx (g ’call-stack st))))

(method-table (g ’method-table st)))

(binding method-name method-table)))

4It is also called the record data structure. A dictionary defines a “get” operation g and
a “set” s. The ACL2 book not only describes how g and s are implemented, it also provides
lemmas that configure the ACL2 theorem prover for reasoning about compositions of g and
s operations.
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Figure 7.2: Small machine: static checker algorithm by example
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That is, let method-name be the value of the method-name slot in the top frame

of the call-stack slot of the state and let method-table be the method table

of the state. Then return the binding of method-name in method-table.

The operation popStack pops one value of the current operand stack

of the top most call frame in a state and then updates the state with the new

call stack.

(defun popStack (st)

(let* ((call-stack (g ’call-stack st))

(top-frame (topx call-stack))

(op-stack (g ’op-stack top-frame)))

(s ’call-stack

(pushx (s ’op-stack

(popx op-stack)

top-frame)

(popx call-stack))

st)))

State Transition Functions

The semantics for executing an instruction is encoded in a corresponding

ACL2 function that maps a state to a state. For example, the ACL2 function

execute-INVOKE encodes the semantics for executing an INVOKE instruction.

(defun execute-INVOKE (inst st)

(let* ((method-name (arg inst))

(method-table (g ’method-table st))

(method (binding method-name method-table))
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(nargs (g ’nargs method)))

(pushInitFrame

method-name

(init-locals (op-stack st) nargs)

(set-pc (+ 1 (get-pc st))

(popStack-n st nargs)))))

To execute an INVOKE operation,

• we first look up the method, using the information encoded in the in-

struction and the method table.

(binding method-name method-table).

• We find out how many formals the method takes.

(g ’nargs method) where method is (binding method-name method-

-table).

• We pop off that number of values from the operand stack.

(popStack-n st nargs)

• We then use these values to initialize a new call frame and push that call

frame onto the call stack

(pushInitFrame (init-locals (op-stack st) nargs) ...)

CLDC-style static checker

We implemented a static checker algorithm for the simple machine (sec-

tion 7.1.1) in the same way we implement the CLDC bytecode verifier

(figure 5.7) on page 146.
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(defun bcv-method (method method-table)

(let* ((code (g ’code method))

(maps (g ’stackmaps method)))

(and (wff-code (parsecode code))

(wff-maps maps)

(merged-code-safe

(mergeStackMapAndCode

maps

(parsecode code)

(g ’method-name method)

method-table)

(sig-method-init-frame method

method-table)))))

Figure 7.3: Small machine: static checker

The maps here (figure 7.3) is a list of pairs. Conceptually, the first

element of a pair from the list is interpreted as a pc in the method, the second

element of the pair records an expected abstract state when any execution

of the method reaches the pc. It is expected that the list is sorted in the

non-decreasing order using the first element as the key.

To verify a method using bcv-method, we first extract the code code

and the “proof” — maps. We then use mergeStackMapAndCode to merge the

maps with the list of instructions — (parsecode code) into one list. We then

set up an initial state (sig-method-init-frame method method-table) and

symbolically execute the merged code with merged-code-safe.

The definition of merged-code-safe is shown in figure 7.4.

• When mergedcode is exhausted, if either the last element is not a spe-

cial flag END OF CODE, or the current sig-frame is not a special frame

aftergoto, the merged code fails verification.
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(defun merged-code-safe (mergedcode sig-frame)

(if (endp mergedcode) nil

(if (endp (cdr mergedcode))

(and (equal (car mergedcode) ’END_OF_CODE)

(equal sig-frame ’aftergoto))

(if (equal sig-frame ’aftergoto)

(and (stack-map? (car mergedcode))

(equal (g ’pc (car mergedcode))

(g ’pc (cadr mergedcode)))

(merged-code-safe (cdr mergedcode)

(car mergedcode)))

(cond ((stack-map? (car mergedcode))

(and (sig-frame-compatible sig-frame

(car mergedcode))

(merged-code-safe (cdr mergedcode)

(car mergedcode))))

((inst? (car mergedcode))

(and (equal (g ’pc sig-frame)

(g ’pc (car mergedcode)))

(bcv-check-step-pre (car mergedcode)

sig-frame)

(merged-code-safe

(cdr mergedcode)

(bcv-execute-step (car mergedcode)

sig-frame))))

(t nil))))))

Figure 7.4: Small machine: merged-code-safe
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• If the current frame sig-frame is an aftergoto, we demand that the

head element in the list mergedcode satisfy stack-map?. The algorithm

also demands that the recorded stack map must (car mergedcode) have

the same program counter as the next item (cadr mergedcode) (which

can be either a stack map frame or an actual instruction).

• Otherwise, if the head element satisfies stack-maps?, we demand that

the current frame is compatible with the head element

(sig-frame-compatible sig-frame (car mergedcode))

• If the first element of the list is an instruction, we expect it is safe to

execute the instruction in the context of the current frame.

(bcv-check-step-pre (car mergedcode) sig-frame)

We then update the current frame by executing the current instruction

and assert merged-code-safe on the rest of the code with respect to

updated current frame.

(merged-code-safe

(cdr mergedcode)

(bcv-execute-step (car mergedcode) sig-frame))

The definition of merged-code-safe refers to the function bcv-check-

-step-pre and bcv-execute-step. We show their definitions in figure 7.5 to

invoke the appropriate bcv-check-XXX function for each opcode.
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(defun bcv-check-step-pre (inst sig-frame)

(let* ((opcode (bcv-op-code inst)))

(cond ((equal opcode ’INVOKE)

(bcv-check-INVOKE inst sig-frame))

((equal opcode ’PUSH)

(bcv-check-PUSH inst sig-frame))

((equal opcode ’IFEQ)

(bcv-check-IFEQ inst sig-frame))

((equal opcode ’HALT)

(bcv-check-HALT inst sig-frame))

((equal opcode ’POP)

(bcv-check-POP inst sig-frame))

((equal opcode ’RETURN)

(bcv-check-RETURN inst sig-frame))

(t nil))))

(defun bcv-execute-step (inst sig-frame)

(let* ((opcode (bcv-op-code inst)))

(cond ((equal opcode ’INVOKE)

(bcv-execute-INVOKE inst sig-frame))

((equal opcode ’PUSH)

(bcv-execute-PUSH inst sig-frame))

((equal opcode ’IFEQ)

(bcv-execute-IFEQ inst sig-frame))

((equal opcode ’HALT)

(bcv-execute-HALT inst sig-frame))

((equal opcode ’POP)

(bcv-execute-POP inst sig-frame))

((equal opcode ’RETURN)

(bcv-execute-RETURN inst sig-frame))

(t nil))))

Figure 7.5: Small machine: static checker primitives
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(defun bcv-check-INVOKE (inst sig-frame)

(let* ((method-name (bcv-arg inst))

(method-table (g ’method-table sig-frame))

(method (binding method-name method-table))

(nargs (g ’nargs method)))

(and (bound? method-name method-table)

;; method defined

(integerp nargs)

(<= 0 nargs)

(<= nargs (g ’op-stack sig-frame))

;; enough operand.

;; note the op-stack field of sig-frame

;; is an number. c.f. with the concrete state

;; where the op-stack is a list of values.

(<= (+ 1 (- (g ’op-stack sig-frame)

nargs))

(max-stack sig-frame))

;; assume the method returns,

;; pushing the return value will not overflow

;; the operand stack

Figure 7.6: Small machine: bcv-check-INVOKE
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Bcv-check-XXX style functions are defined to check whether it is safe

to execute a specific instruction in a given abstract state. Bcv-execute-XXX

style functions are defined to update the abstract state.

The Sig-frame-compatible function is defined to check whether one

abstract state is compatible with another abstract state.

7.1.3 The Static Checker Is Effective

Defensive version of the machine

To specify the safety of program execution, we introduce a defensive version

of the virtual machine. The defensive machine always checks for safety con-

straints before executing an instruction. If the safety constraints are violated,

the instruction is effectively turned into a HALT instruction and execution loops

on the same state. 5

For each instruction, we define the following djvm-check-XXX style

function (figure 7.7) to capture the constraints under which the effects of ex-

ecuting the instruction are defined.

A djvm-check-XXX style constraint checks the following three types of

requirement:

• The current state is a good state consistent-state;

• The operand stack has the proper number of operands on it for the

operation in question;

5This defensive machine is much simpler than the DJVM that we have defined for our
JVM model M6. The defensive machine can use the same state representation of the original
Small machine. This is feasible because the safety requirements in the world of Small can be
readily expressed with existing components in the state of Small machine. In case of DJVM
and M6, DJVM needs to augment M6 state representation to include type information.
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(defun djvm-check-INVOKE (inst st)

(let* ((method-name (arg inst))

(method-table (g ’method-table st))

(method (binding method-name method-table))

(nargs (g ’nargs method)))

(and (consistent-state st)

(bound? method-name method-table)

(<= 0 (g ’max-stack

(binding method-name method-table)))

(integerp nargs)

(<= 0 nargs)

(<= nargs (len (op-stack st)))

(<= (+ 1 (- (len (op-stack st))

nargs))

(g ’max-stack (topx (g ’call-stack st))))

(pc-in-range (set-pc (+ 1 (get-pc st))

st)))))

Figure 7.7: Small machine: djvm-check-INVOKE
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(defthm verified-program-never-overflow-operand-stack-in-m

(implies

(and (consistent-state stx)

(state-equiv st stx))

(<= (len (g ’op-stack (topx (g ’call-stack (m-run st n)))))

(max-stack

(binding (g ’method-name

(topx (g ’call-stack (m-run st n))))

(g ’method-table st))))))

Figure 7.8: Verified programs never overflow operand stack

• The next program counter is well defined (except for djvm-check-

-RETURN).

Verified programs are safe and the static checker is effective

We formulated and proved that verified programs execute safely. Specifically,

we proved that executing verified programs never overflows the operand stacks

in any call frame (figure 7.8).

This theorem (figure 7.8) can be read as follows: starting from a ma-

chine state st and executing some arbitrary number n steps without check-

ing djvm-check-XXX-type of conditions — (m-run st n) — the size of the

operand stack in the topmost frame is no greater than the operand stack size

limit of the method being executed — (max-stack (binding ...)), as long

as if there exists a good defensive machine state stx that matches the initial

st — (state-equiv st stx).

To understand this particular formulation, one may view

• st as an untyped term — a program without a safety proof;

• stx as a typed term — a program with its safety proof;
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(defthm djvm-run-preserve-consistent-state

(implies (consistent-state st)

(consistent-state (djvm-run st any))))

(defthm verified-program-executes-safely

(implies (and (consistent-state stx)

(state-equiv st stx))

(state-equiv (m-run st n)

(djvm-run stx n))))

Figure 7.9: Efficient machine is safe

• (consistent-state stx) asserts that stx is well typed — the proof is

accepted by the static checker as a valid proof that the program will not

overflow its operand stacks;

• (state-equiv st stx) asserts that erasing type annotations from stx

results in st — stx and st are essentially the same program to the Small

machine.

In the jargon of programming language research, this theorem roughly asserts

that if a term (with no type annotation) can be augmented into an well-typed

term, we then know that during evaluation of the term, the size of its operand

stack component is always within bound.

If the above theorem is a kind of progress property in the type safety

jargon, the following theorems may be considered a preservation property

(figure 7.9).

Viewed from a different perspective (other than type safety), these two

theorems assert that it is safe to execute a program on a more efficient machine

(using m-run rather than the defensive djvm-run) to obtain equivalent effects

on states, without violating any constraints — as long as the initial state is a
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good state.

These two theorems are what we consider as expressing that the static

checker is effective.

Intuition for why static checking works

To prove that the verified programs execute safely (executions do not overflow

operand stacks) and the static checker is effective (the efficient machine pro-

duces an equivalent final state as the defensive machine does), the key is to

show djvm-check-XXX style checks always succeeds. This is because (1) djvm-

-check-XXX explicitly asserts that the operand stacks do not overflow and (2)

the only difference between the original machine m-run and the defensive ver-

sion djvm-run is that djvm-run may get stuck because some djvm-check-XXX

checks fails.

As explained earlier, a djvm-check-XXX style constraint demands the

following three types of properties:

• The current state is a good state consistent-state;

• The operand stack has a proper number of operands;

• The next instruction is well defined (except for djvm-check-RETURN).

Consequently, to show that the djvm-check-XXX style constraints are

always met, we need to prove that the three types of properties asserted in

djvm-check-XXX always hold during executions of verified programs.

First we observe that there is a direct connection between the checks

encoded in bcv-check-XXX and the second type of check from djvm-check-

-XXX. For example, djvm-check-PUSH checks
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(<= (+ 1 (len (op-stack st)))

(g ’max-stack (topx (g ’call-stack st))))

while bcv-check-PUSH checks

(<= (+ 1 (g ’op-stack sig-frame))

(max-stack sig-frame))

We can show that the second type of check will succeed if

(1) (len (op-stack st))

== (g ’op-stack sig-frame)

and

(2) (g ’max-stack (topx (g ’call-stack st)))

== (max-stack sig-frame)

and the method being executed is verified, i.e. the bcv-check-PUSH style

checks succeed.

Conditions (1) and (2) above encode the fact that the execution state

st is on-track/approximated by with the abstract execution state seen by the

static checker at the corresponding program counter — sig-frame.

We add this on-track requirement directly into the definition of

consistent-state. The remaining task is to show this consistent-state

is preserved over steps for executing verified programs.

When we are trying to prove the consistent-state is an inductive

invariant, we can relieve the first type of property (asserted in the djvm-

-check-XXX) by resorting to the inductive hypothesis.

As for the third type of assertion — that verified programs will never

branch into an undefined pc nor will they fall through the end of their code —
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we observe that this type of property can also be derived from the fact that

the program has been successfully verified. Although the bcv-check-XXX does

not explicitly check that the next instruction is defined, such requirement is

implicitly checked in the algorithmic details of merged-code-safe (figure 7.4)

and mergeStackMapAndCode.

We fold requirement on the program counter into the consistent-

-state definition as well. When we try to prove that consistent-state is

an inductive invariant, we assume that the current program counter is within

range. We can then resort to the facts about the static checking at the pc to

show that the program counter after taking a step is also within range.

The proof for our goal theorems hinges on identifying a strong consis-

tent-state property on the machine state and proving that it is preserved

over machine execution.

One may better appreciate the necessity for identifying a good consis-

tent-state with the following figure 7.10.

We start with an initial conjecture about what kind of state is a good

state. The state space enclosed by the dotted line represents our conjecture.

For example, initially, we might postulate that states that have, (1) a valid

program counter, (2) a sufficiently small operand stack size, and (3) a defined

next state are good states.

The states outside the boundary are considered “bad” states. We can

define the “safe” states as being those states from which arbitrary execution

can never reach a “bad” state. This subset corresponds to the space that has

a curvy boundary in the picture.

However identifying the exact boundary is difficult and is often not

necessary. People are more interested in finding an efficient way to confirm that
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recognized by checker 

All states

"Bad" states and "stuck" states

consistent−state 

Safe states 

(outside the dotted line)

Initial states 

Figure 7.10: Categorizing machine states
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it is safe for a program to execute — people are willing to reject some programs

(that are actually safe) when recognizing them would be too inefficient.

The static checking algorithm is such an algorithm; it can can recognize

a subset of the safe states among the initial states — the inner-most rectangle.

If we can define a consistent-state and prove that,

• it does not admit any obviously “bad” states,

• it is an inductive invariant of machine execution — that it is a transitive

closure of itself (a fix point under machine steps), and,

• it admits all the initial states that the bytecode verifier admits,

we will have effectively proved that (1) executing verified programs is safe and

(2) it is not necessary to conduct the runtime checks for the verified programs

— the static checker is effective.

Approach

The first challenge is to identify a suitable consistent-state.

We start out with some inherent requirements for a state to be consid-

ered as a consistent-state:

• current program counter is within range;

• the operand stack size is within bounds;

• there is a well defined next state.

We attempt to prove that this definition is an inductive invariant of ma-

chine execution. We study the failed attempts and decide why each attempt
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failed: is it because what we want to prove is not true — the “inductive invari-

ant” that we identified is not strong enough – or is it because the non-essential

peculiarities in the definition of consistent-state and static checker have

prevented the ACL2 theorem prover (and us) from proving it?

The process for identifying a good consistent-state is an iterative

process that is interleaved with strengthening the invariants and simplifying

the definition by removing non-essential aspects.

• We strengthen the consistent-state definition to capture the idea that

the executions of verified programs are in some sense on-track with the

accepting run of the static checker — the successfully abstract execution

that leads the static checker to accept the program.

• We separate the procedural aspects of the static checker from the essen-

tial checks that it conducts. We introduce an alternative version of the

static checker so that (1) we can explicitly talk about the abstract state

observed by the static checker during its abstract execution of a program

and (2) we can directly refer to the checks done by the static checker in

the abstract state.

To formalize the on-track concept that relates a concrete state with a set

of abstract states observed by the static checker during its verification process,

we need to be able to more directly refer to the intermediate state observed

by the static checker.

However, the existing definition of bcv-method is one function that only

returns a “yes” or “no” answer without exposing the intermediate abstract

state observed by the static checker.
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We augment the static checker bcv-method so that when the checker

returns “yes” it also returns a list of abstract states, one abstract state for each

pc into the method. The list records the specific abstract states observed by

the static checker when the static checker’s execution reached that location.

The augmented version is collect-witness-bcv-method.

To state that a concrete state is on-track, we assert that for each frame,

after abstracting away the concrete value in the operand stack with extract-

-sig-frame — converting the concrete frame into the size of its operand stack

— the resulting abstract state shall be compatible with the recorded abstracted

state at the location returned by collect-witness-bcv-method. The func-

tion consistent-caller-frame (figure 7.11) defines whether a caller frame

caller-frame is representing an execution that is on-track with the abstract

execution of the method by the static checker.

After identifying the consistent-state, one useful lemma about it is

that that the consistent-state is an inductive invariant of the executions

on the defensive machine (figure 7.12). 6

The proof of djvm-run-preserve-consistent-state is reduced to

proving the leaf lemma shown in figure 7.13.

The mechanically checked ACL2 proof input is presented in small/djvm-

-is-safe.lisp [22]. We produced a set of ACL2 proof library books to prove

6In the case of Small machine, we can prove that it is an inductive invariant of the ex-
ecutions on the original machine — m-run. A simple proof sketch is as follows, we first
prove verified-program-executes-safely (figure 7.9) as we have done in this work,
we then prove (state-equiv st st), combining these two results, we can conclude the
consistent-state is preserved by m-run also.

However, in general, such as in the case of the JVM, such a result is not meaningful. This
is because, m-run and djvm-run will operate on states that use different representations.
The consistent-state never holds on any of the regular state that m-run may operates on.
The consistent-state will be a trivial inductive invariant, as none of the regular machine
state satisfies it.
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(defun consistent-caller-frame

(caller-frame callee-frame method-table)

(let* ((caller-name (g ’method-name caller-frame))

(callee-name (g ’method-name callee-frame))

(caller (binding caller-name method-table))

(callee (binding callee-name method-table))

(sig-frame (extract-sig-frame caller-frame

method-table))

(pc (g ’pc sig-frame))

(record-frame-sig

(binding pc

(collect-witness-bcv-method

caller method-table))))

(and (bcv-method caller method-table)

(<= (+ 1 (len (g ’op-stack caller-frame)))

(g ’max-stack caller-frame))

;; enough space for return value

(equal (g ’method-name caller)

caller-name)

;; correct method-name

(integerp (g ’pc caller-frame))

(<= 1 (g ’pc caller-frame))

(< (g ’pc caller-frame) (len (g ’code caller)))

;; pc with in range

(sig-frame-compatible

(sig-frame-push-value (g ’ret callee) sig-frame)

record-frame-sig))))

;; runtime state’s signature matches the

;; abstract state that bcv-method recorded.

Figure 7.11: Concrete execution on track with abstract execution
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(defthm djvm-run-preserve-consistent-state

(implies (consistent-state st)

(consistent-state (djvm-run st any))))

Figure 7.12: Inductive invariant consistent-state

(encapsulate ()

(local (include-book "djvm-INVOKE"))

(defthm consistent-state-preserved-by-DJVM-INVOKE

(implies (and (consistent-state st)

(equal (next-inst st) inst)

(equal (op-code inst) ’INVOKE)

(djvm-check-INVOKE (next-inst st) st))

(consistent-state

(djvm-execute-INVOKE inst st)))))

(encapsulate ()

(local (include-book "djvm-PUSH"))

(defthm consistent-state-preserved-by-DJVM-PUSH

(implies (and (consistent-state st)

(equal (next-inst st) inst)

(equal (op-code inst) ’PUSH)

(djvm-check-PUSH inst st))

(consistent-state

(djvm-execute-PUSH inst st)))))

(encapsulate ()

(encapsulate ()

(local (include-book "djvm-IFEQ"))

(defthm consistent-state-preserved-by-DJVM-IFEQ

(implies (and (consistent-state st)

(equal (next-inst st) inst)

(equal (op-code inst) ’IFEQ)

(djvm-check-IFEQ inst st))

(consistent-state

(djvm-execute-IFEQ inst st))))))

Figure 7.13: Leaf lemma: djvm-is-safe
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(defun bcv-simple-method1 (pc code sig-vector)

(declare (xargs :measure (len code)))

(if (endp code) t

(let* ((inst (car code)))

(and (bcv-simple-inst pc inst sig-vector)

(bcv-simple-method1 (+ 1 pc)

(cdr code)

sig-vector))))))

Figure 7.14: Alternative version of bcv-method

this type of leaf lemma for the Small machine. 7

The third step is to relate the checking done by the static checker to

the checking done by the defensive version of the machine. The facts that we

have access to are (1) the concrete state is related to some abstract state by

consistent-state and (2) the bcv-method succeeded.

The difficulty lies in the apparent mismatch between the step-by-step

execution of the defensive machine and the one-sweep style operation of the

bcv-method. We need a more direct way to obtain bcv-check-XXX type results

from the fact that bcv-method succeeded.

We define a new and simple step-by-step static checking algorithm (fig-

ure 7.14) in small/bcv-simple-model.lisp. In this alternative version of the

static checker, what is checked at each program counter is very explicit.

We then prove a second set of leaf-level theorems about each instruction,

relating the results of checks done by this alternative static checker to the result

of runtime checks done by the defensive machine.

The last big step is to prove if a method is verified by the original static

7See small/consistent-state-properties.lisp, small/generic.lisp, and
small/consistent-state-step.lisp.
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(defthm bcv-simple-check-implies-djvm-check

(implies (and (consistent-state djvm-s)

(bcv-simple-check-step-pre

(next-inst djvm-s)

(extract-sig-frame

(topx (g ’call-stack djvm-s))

(g ’method-table djvm-s)))

(djvm-check-step djvm-s))))

Figure 7.15: Relating bcv-simple-inst with djvm-check-step

(encapsulate ()

(local (include-book "INVOKE"))

(defthm bcv-simple-check-invoke-implies-djvm-check

(implies

(and (consistent-state djvm-s)

(equal (op-code (next-inst djvm-s)) ’INVOKE)

(bcv-simple-check-invoke

(next-inst djvm-s)

(extract-sig-frame (topx (g ’call-stack djvm-s))

(g ’method-table djvm-s))))

(djvm-check-invoke (next-inst djvm-s) djvm-s))))

(encapsulate ()

(local (include-book "PUSH"))

(defthm bcv-simple-check-push-implies-djvm-check

(implies

(and (consistent-state djvm-s)

(equal (op-code (next-inst djvm-s)) ’PUSH)

(bcv-simple-check-push

(next-inst djvm-s)

(extract-sig-frame (topx (g ’call-stack djvm-s))

(g ’method-table djvm-s)))

(djvm-check-push (next-inst djvm-s) djvm-s))))

Figure 7.16: Leaf lemma: bcv-simple-check-implies-runtime-check
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(defthm |method-verified-implies

-bcv-simple-check-step-pre-on-recorded-signature|

(implies

(and (bcv-method method method-table)

(equal method

(binding (g ’method-name method) method-table))

(bcv-verified-method-table method-table)

(integerp pc)

(<= 0 pc)

(< pc (len (g ’code method)))

(equal inst (nth pc (g ’code method)))

(member inst (g ’code method)))

(bcv-simple-check-step-pre

inst

(binding pc

(collect-witness-bcv-method

method method-table)))))

Figure 7.17: Relating bcv-method with bcv-simple-inst

checker algorithm, the particular checks conducted by the bcv-simple-method

at each instruction are satisfied (figure 7.17).

An important lemma for proving this result is to show that all methods

accepted by the original bcv-method will be also be accepted by the bcv-

-simple-method.

After strengthening the definition of consistent-state and simplifying

the definition of the static checker, we can prove that consistent-state is

preserved by execution according to m-run.

(defthm djvm-run-preserve-consistent-state

(implies (consistent-state st)

(consistent-state (djvm-run st any))))
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(encapsulate ()

(local

(include-book "bcv-succeed-implies-bcv-simple-succeed"))

(defthm bcv-succeed-implies-bcv-simple-succeed

(implies (and (bcv-method method method-table)

(equal method (binding (g ’method-name method)

method-table))

(bcv-verified-method-table method-table))

(bcv-simple-method

(s ’sig-vector

(collect-witness-bcv-method

method method-table)

method)

method-table))))

Figure 7.18: Relating bcv-method with bcv-simple-method

(defthm verified-program-executes-safely

(implies (and (consistent-state djvm-s)

(state-equiv jvm-s djvm-s))

(state-equiv (m-run jvm-s n)

(djvm-run djvm-s n))))

Making use of the above results and the definition of consistent-state

and state-equiv, we can prove

(defthm verified-program-never-overflow-operand-stack-in-m

(implies

(and (consistent-state stx)

(state-equiv st stx))

(<= (len (g ’op-stack (topx (g ’call-stack (m-run st n)))))
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(max-stack

(binding (g ’method-name

(topx (g ’call-stack (m-run st n))))

(g ’method-table st))))))

7.1.4 Summary

The simple safety requirement for the Small machine is that executing verified

program does not overflow operand stacks. However this simple property can

not be proved directly. We identified a stronger property consistent-state.

We proved that executing verified program preserves this property. We then

proved that operand stacks from various call frames in a consistent-state

are never too big. To prove that verified programs preserve the consistent-

-state, we introduced an alternative definition of the static checker. We

appealed to the fact that programs are verified — that they are accepted by

the abstract executions of the new static checker to prove that consistent-

-state is preserved. We then showed that programs verified by the original

static checker will also be verified by the new static checker. We completed the

definitions and proofs in formalizing and verifying the simple machine and its

static checker. The mechanically checked ACL2 proof input is of 11,360 lines

in 47 files [22]. The proof input describes 691 lemmas, requiring 196 inductive

proofs.

Our (incomplete) proof for showing that the JVM is safe follows the

same approach. The JVM and its CLDC bytecode verifier are much more

complicated than the Small counterparts. (1) The JVM has a class loading

mechanism that can introduce new classes and methods during program exe-
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cution and (2) the abstract states explored by the bytecode verifier is different

from the concrete states traversed by a regular JVM — it is more difficult to

show that bcv-check-XXX style checks can be used to predict the outcome of

djvm-check-XXX (See Divergence 1, page 1.2.4).

In the rest of this chapter, we present a few results that we have proved

about the JVM and its bytecode verifier. These results are strategic steps for

constructing a final safety proof for the JVM and its bytecode verifier.

7.2 Bootstrap Class Loader Verified

The bootstrap class loader updates a JVM state. It modifies the class table

to reflect the facts that new classes have been loaded. It also introduces new

objects into the heap to represent the runtime constant pool and the class

itself. It does not change the thread’s execution state.

A safe class loader shall first maintain the consistency in a JVM

state. For example, each loaded class has a corresponding object of type

java.lang.Class in the heap, superclasses of all loaded classes need to be

loaded, all newly created objects in the heap must be consistent objects —

their classes are loaded, and they have all the declared fields, and these fields

are initialized to values of suitable type.

A safe class loader shall never invoke operations with inputs that vio-

lates the guards of these low level operations.

In this section, we describe the ACL2 proofs that shows that the class

loader preserves the consistent-state, as well as proofs necessary to guard-

verify the class loader.
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(defun resolveClassReference1 (classname s)

(declare (xargs :guard (and (load_array_class_guard s)

(load_class-guard s))))

(if (array-type? classname)

(load_array_class (array-base-type classname) s)

(if (class-loaded? classname s)

s

(load_class classname s))))

...

(defun resolveClassReference (classname s)

(declare (xargs :guard (resolveClassReference-guard s)))

(let ((new-s (resolveClassReference1 classname s)))

(if (not (hasAccessToClass (current-class s) classname s))

(state-set-pending-exception-safe

"java.lang.IllegalAccessException" s)

new-s)))

...

(defthm resolveClassReference-preserve-consistency

(implies (consistent-state s)

(consistent-state (resolveClassReference any s)))

Figure 7.19: Class loading preserves consistent state

7.2.1 Consistent State Preserved

What we proved

We proved that the bootstrap class loader of the M6 preserves consistent-

-state (figure 7.19). 8

To prove that an update operation preserves the consistent state pred-

icate, we prove two kinds of lemmas. The first kind of lemma asserts that

8We proved the above results with some ACL2 skip proofs.
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(defun consistent-state (s)

(and

...

(consistent-class-hierachy

(instance-class-table s))

(consistent-heap (heap s)

(instance-class-table s)

(array-class-table s))

(consistent-heap-init-state (heap s)

(instance-class-table s)

(heap-init-map (aux s)))

(consistent-heap-array-init-state (heap s)

(instance-class-table s)

(array-class-table s)

(heap-init-map (aux s)))

(consistent-class-table (instance-class-table s)

(external-class-table s) (heap s))

(consistent-thread-table (thread-table s)

(instance-class-table s)

(heap s))

...

(instance-class-table-inv s)

(array-class-table-inv s)

(boot-strap-class-okp s)

...

))

Figure 7.20: Class loader: consistent-state
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unchanged components are consistent in the new state. The second kind of

lemma asserts that the updated components are consistent with the new state.

Consider a simple operation that creates a new object and adds it to

the heap. We prove that the simple operation preserves the consistency of

the heap. The first kind of lemma asserts that any object that exists in the

heap before inserting the new object, will remain a good object in the new

state. 9 A second kind of lemma asserts that the newly created objects are

good objects with respect to the newly updated state. That is, each newly

created object has all the fields declared by its class and its superclasses. Each

field is initialized either by NULL or a valid reference to some object in the

heap, and the referenced object is of suitable type.

What the challenges are

The complexity for proving that the class loader preserves the consistent state

property (figure 7.20) results from two facts:

• The definition of consistency is complicated.

There are many consistency requirements between different state com-

ponents. Whether a value is valid not only depends on the type of the

value and the heap, but also depends on the class table. Updates to any

of the three obligate us to prove that a previously valid value remains

valid — even when the value itself has not changed. Similarly, whether

a class declaration is valid depends on the class table, the heap, and the

external class table. Whether an object is a valid object depends on the

9To prove this is not as trivial as it may appear. The judgement about whether an object
is good depends directly on what other objects exist in the heap. We need to know that the
operation does not remove an existing object nor change the type of any existing object.
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heap, the class table, and the values in every field.

• The class loading operation is complicated.

The class loader invokes multiple update operations to load a class. To

show the class loading operation as a whole preserves the consistent

state predicate, we need to show that each individual low level operation

preserves the predicate.

These two factors together make it necessary to prove n2 number of properties

(in the worst case) — assuming the number of consistency constraints is on

the order of n and the number of different operations is on the order of n.

The following is an example showing the lemmas that are necessary

to prove that one simple update operation preserves one specific consistency

property on the JVM state.

The simple state update operation we want show is a cons operation

— the operation adds a new runtime representation of a class into the class

table. It is one of the lowest level operations invoked by the class loader.

The specific consistency requirement in this example is that a good

thread runtime state remains good. We want to prove consistent-thread-

-entry-add-new-class as shown in figure 7.21.

We know the class loader does not change the thread’ execution state.

However in order for one to conclude a thread’s execution state is good, one

needs to check that

• all values stored in the call frames are valid;

• the methods pointed by the method-ptr fields of call frames exists;
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(defthm consistent-thread-entry-add-new-class

(implies (and (consistent-thread-entry thread cl hp)

(consistent-class-hierachy (cons class-rep cl))

(wff-class-rep class-rep)

(isClassTerm class-rep)

(not (isClassTerm

(class-by-name

(classname class-rep) cl))))

(consistent-thread-entry thread

(cons class-rep cl)

hp)))

Figure 7.21: Cons Preserving consistent-thread-entry

• the object pointed to by the thread-ref field exists and the type of the

object is assignmentCompatible to java.lang.Thread or implements

java.lang.Runnable interface;

• the caller-callee relation holds between adjacent frames in the call stack.

We know that judgement about all these four type of consistency conditions

depend on the class table — what is a valid value depends on the class table

that we are checking the validity against, whether a method pointer points to

anything also depends on the class table, and so on.

Although the simple operation only add a new runtime class represen-

tation to the class table, we need to prove many lemmas to show that what

has been valid will remain valid. Specifically, figure 7.22 gives an incomplete

list of lemma necessary to prove that consistent-thread-entry is preserved

over this simple update operation.

Some of these lemmas are highly non-trivial.
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(defthm consistent-value-x-add-new-class

(implies (and (consistent-value-x v cl hp)

...)

(consistent-value-x v (cons class-rep cl) hp)))

(defthm deref-method-equal-add-new-class

(implies (and (deref-method method-ptr cl)

...)

(equal (deref-method method-ptr (cons class-rep cl))

(deref-method method-ptr cl))))

(defthm isJavaSubclass1-cons-new-class

(implies (and (isJavaSubclassOf1 new1 new2 cl seen)

...)

(isJavaSubclassOf1 new1 new2

(cons class-rep cl) seen)))

(defthm assignmentcompatible-cons-new-class

(implies (and (assignmentCompatible new1 new2 cl)

...)

(assignmentCompatible new1 new2

(cons class-rep cl))))

(defthm consistent-call-frame-add-new-class

(implies (and (consistent-frame frame cl hp)

...)

(consistent-frame frame (cons class-rep cl) hp)))

(defthm consistent-thread-entry-add-new-class

(implies (and (consistent-thread-entry thread cl hp)

...)

(consistent-thread-entry thread

(cons class-rep cl) hp)))

Figure 7.22: Lemmas needed to show consistent-thread-entry is preserved
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(defthm assignmentcompatible-cons-new-class

(implies

(and (assignmentcompatible new1 new2 cl)

(isClassTerm class-rep)

(consistent-class-hierachy (cons class-rep cl))

(not (isClassTerm

(class-by-name (classname class-rep) cl))))

(assignmentcompatible new1 new2 (cons class-rep cl))))

Figure 7.23: AssignmentCompatible judgement not affected

For example, in order to prove the first lemma in the list, consistent-

-value-x-add-new-class (figure 7.22), we need to prove the assignment-

compatible-cons-new-class lemma (figure 7.23).

This lemma roughly asserts that a positive assignmentCompatible

judgement will never be changed to a negative judgement, after we introduce a

new class that has not been loaded yet — assuming adding the new class into

the class table, the resulting class table describes a consistent class hierachy.

To prove this lemma, we need to make good use of the third hypothesis,

consistent-class-hierarchy, which asserts if a class is loaded, then all its

superclasses and superinterfaces are already loaded. Adding some new class

to the leaves of the class hierarchy tree does not affect a previously positive

judgement.

One tips for proving complicated inductive invariants

Our definition of consistent-state is a conjunction of 23 conditions. We

often face the challenge of proving that a given operation when executed under

specific conditions will produce another state that satisfies the consistent-

-state predicate.
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(implies (consistent-state s)

... (op-condition-x value s) ...

(consistent-state (op value s)))

If we let ACL2 to blindly expand both consistent-state terms, the

goal theorem will have a very complicated form. The ACL2 theorem prover’s

built-in heuristics seem always to fail to pick a correct proof strategy. Further-

more, with such a complicate term, ACL2’s human operator cannot identify

helpful lemmas to guide the theorem prover.

To prove such a complicated theorem, we have used the following strat-

egy — instead of proving the above theorem, we prove the following alternative

version first

(implies (consistent-state s)

... (condition-x value s) ...

(consistent-state-step (op value s)))

Here, the definition of consistent-state-step exactly matches consistent-

state but by giving it a different name we can control the expansion of the

two definitiions separately.

We keep consistent-state disabled — we tell ACL2 never to use the

definition of consistent-state directly. We keep consistent-state-step

enabled. So the above intermediate form can be reduced by ACL2 theo-

rem prover into 23 cases. In the very beginning, because the definition of

consistent-state is disabled, the ACL2 theorem prover knows nothing about

a state s that is a consistent-state. All the subgoals will fail. We then iden-

tify necessary properties of a consistent-state and encode them as lemmas.

We prove these lemmas with consistent-state enabled. After we identified
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enough properties of a consistent-state, we can prove the intermediate form

of the lemma.

Then we can prove a very simple and very specific lemma

(implies (consistent-state-step (op value s))

(consistent-state (op value s)))

and then disable consistent-state-step.

We find this trick generally useful for proving that a complicated prop-

erty on a data structure is preserved over an update operation.

7.2.2 Guard Assertions Verified

Guard and guard verification

We write guards for the JVM operations. We use them to express requirements

on operands that we expect to invoke the operations with. For the simple

operation car, which returns the first element of a pair, the guard asserts that

the input shall be a pair consp.

Different from a typical assertion in a program, by writing down the

guard assertions, we are also expressing an internal consistency requirement on

the interactions between operations that invoke each other. Suppose operation

A invokes operation B under certain conditions C. We consider the guard

assertions for them as expressing the condition that when A is invoked with

inputs satisfing its guard and the condition C holds, B is guaranteed to be

invoked with inputs that satisfy B’s guard.

To show that an operation is safe, we guard-verify the operation. We

prove that when the input to the operation satisfies the guard, all subsequent
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(defun load_CP_entry (cpentry-s S)

(declare (xargs :guard (load_CP_entry_guard cpentry-s S)))

(if (equal (cpentry-type-s cpentry-s) ’STRING)

(let ((str (string-value-cp-entry-s cpentry-s)))

(mv-let (the-String-obj new-S)

(ACL2-str-to-JavaString str S)

(let* ((heap (heap new-S))

(new-addr (alloc heap))

(new-heap

(bind new-addr the-String-obj heap)))

(mv (make-string-cp-entry new-addr)

(update-trace

new-addr

(state-set-heap new-heap new-s))))))

(mv cpentry-s s)))

Figure 7.24: Guard: load CP entry

low level operations are invoked with inputs that satisfy their guards. For

example, when load CP entry (figure 7.24) is used to create a runtime repre-

sentation with an input satisfing load CP entry guard , the operation used to

create a new java.lang.String object ACL2-str-to-JavaString is invoked

with suitable inputs.

If (1) we can guard-verify the top-most level operation that starts the

JVM interpreter and (2) we can show that all the initial states for executing

verified programs satisfy the guard of the top-most operation, we can conclude

with confidence that during executions of verified programs, none of the low

level operation will be invoked with their guard violated. We can then inspect

the guard definition of each operation and see whether it captures our safety

requirement.
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What we proved

We defined guards for the class loading operations. We defined the guards for

executing a subset of the JVM instructions. We verified the guards of these

operations.

It is worth noting that we do not explicitly write down the ACL2 for-

mulas to state that a function is guard verified. Doing so would require writing

down too many formulas. Instead, the ACL2 theorem prover automatically

generates the proof obligations when we (implicitly) ask it to guard-verify a

function by exhibiting a guard for the function.

What the challenges are

The first challenge is to identify meaningful and verifiable guards for JVM

operations. As we explained in the section 6.5.4, there is an uninteresting way

to define verifiable guards. If one adopts such a approach, evaluating a guard

is just as complicated as executing the operations. We want the guard that we

define to be simpler than the operation — it should capture the intrinsic safety

requirements on the input for the operation but not peculiarities of a specific

implementation of the operation. The intrinsic safety requirement is ideally be

expressible directly without resorting to executing the operation and checking

all the conditions along the way.

The second challenge is to configure the ACL2 theorem prover to verify

the guards. This is a non-trivial task. It is often the case that in order to

guard-verify an operation composed of a few simpler operations, we needs to

prove theorems that capture the effects of executing these simpler operations.

Consider an operation OP, defined as (B (A x)) — a composition of two
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simple operations A and B, where A’s outputs become inputs to the operation B.

To guard-verify OP, not only do we need to prove theorems that relate the guard

of OP with the guard of A, but also we need to prove theorems for characterizing

the effects of executing the operation A. We need the latter kind of theorems

before we can prove that the guard of B will be met when OP is invoked with

inputs that satisfies its guard. When the operation B is a recursively defined

operation, we also need to use induction to prove any property of executing B.

7.3 Proofs Relating Two Bytecode Verifiers

7.3.1 Introduction

In proving that the Small machine is safe and its CLDC-style static checker

is effective (section 7.1), one key concept that we have identified is the on-

track requirement, which asserts that a good concrete state needs to be in

the “predictable” part of the state space by being on track with the abstract

executions of the static checker.

To express the “on-track” property, we need to be able to refer to the

bytecode verifier’s abstract execution in a step by step way — what is the

current abstract state at a specific program counter and what are checked

against the abstract state at that step. We can then match the step-by-step

concrete execution with the abstract execution.

However, a CLDC-style static checker is defined as a function that re-

turns an “yes” or “no” answer. We need to define an alternative version of

the static checker to expose the intermediate abstract states observed by the

static checker.

251



We also need to prove that all programs verified by the CLDC-style

static checker can be verified by the alternative version of the static checker.

For the Small machine, we defined the alternative static checker

bcv-simple-method (figure 7.14). We proved a verified program by the

alternative static checker preserves the good state predicate. We proved that

any program verified by the original CLDC-style static checker can also be

verified by the alternative version of the static checker.

In this section, we present the alternative definition of the JVM byte-

code verifier (in the style of bcv-simple-method from the Small machine).

We present the ACL2 proofs showing that any verified program by the origi-

nal CLDC bytecode verifier are also verifiable with respect the simpler JVM

bytecode verifier.

7.3.2 Alternative Bytecode Verifier

The official CLDC specification describes the bytecode verification process

with over 100 Prolog-style derivation rules. Although the specification is

declarative in form (as declarative rules), the verification process encoded is

procedural in essence. The official specification describes how different steps

shall be implemented and sequenced together — instead of describing directly

what needs to be checked at each offset into the program.

To verify a method, the CLDC specification describes: (1) how to ex-

tract stackmaps, (2) how to merge the stackmaps with the instructions into

a single mixed stream of stackmaps and instructions, and (3) how to symbol-

ically execute the mixed stream of instructions and stackmaps. There is no

way to know what is checked at a particular offset into the program — except
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by using the procedural bytecode verifier to symbolically execute the program

from the program start until the execution reaches the program location, and

then consulting the abstract state of the bytecode verifier to find out what is

checked.

We defined an alternative bytecode verifier in BCV/typechecker-

-simple.lisp [22]. What is checked at each program location is made more

explicit.

The core of the alternative bytecode verifier takes three inputs: a se-

quence of instructions — code, a mapping that maps pcs of instructions into

the abstract states that the instruction will be executed in — stackmaps,

and a data structure representing the environment in which the verification is

conducted — env (figure 7.25. The env data structure records the class, the

method, and the type hierarchy information.

For each instruction inst from the code, the new algorithm first locates

the recorded abstract state from the stack-maps with

(searchStackFrame (instrOffset inst)

(stack-map-wrap stack-maps))

. Then, it checks whether it is safe to execute the instruction in such an

abstract state by calling

(instructionIsTypeSafe inst env ... the-abstract-state..)

. The algorithm also checks that the state resulting from executing the instruc-

tion is compatible with the next abstract state that is recorded in stack-maps

with

(frameIsAssignable nextStackFrame
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(defun bcv-simple-method1 (code stack-maps env)

(if (endp code) t

(let* ((inst (car code)))

(and (instructionIsTypeSafe inst env

(searchStackFrame (instrOffset inst)

(stack-map-wrap stack-maps)))

;; locate the abstract state for executing

;; the instruction in.

;; check whether it is safe to execute

(mv-let (nextStackFrame exceptionStackFrame)

(sig-do-inst inst env

(searchStackFrame

(instrOffset inst)

(stack-map-wrap stack-maps)))

;; compute next state

;; need to check

;; (1) compatible with exception handler

;; (2) compatible with recorded next state

(and (instructionSatisfiesHandlers

env

(instrOffset inst)

exceptionStackFrame)

(or (equal nextStackFrame ’aftergoto)

(and (consp (cdr code))

(not (isEnd (cadr code)))

(frameIsAssignable

nextStackFrame

(searchStackFrame

(instrOffset

(cadr code))

(stack-map-wrap

stack-maps))

env)))

(bcv-simple-method1 (cdr code)

stack-maps env)))))))

; remaining code are safe.

Figure 7.25: Alternative bytecode verifier
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(searchStackFrame

(instrOffset (cadr code))

(stack-map-wrap stack-maps))

env)

The key difference between this definition and the original bytecode

verifier definition (figure 5.7) is that at each instruction, the new bytecode

verifier checks

(instructionIsTypeSafe

inst env

(searchStackFrame (instrOffset inst)

(stack-map-wrap stack-maps)))

, where stack-maps and env remain unmodified. The only variable is

(instOffset inst). On the other hand, the original bytecode verifier checks

(instructionIsTypeSafe instr Enviornment StackFrame)

where the StackFrame is updated on the fly — during the bytecode verification

process — to capture the accumulated effects of the symbolic execution of the

merged stack frame and instructions up to the current instruction.

7.3.3 Bytecode Verifier Is Effective

In our efforts to showing that the CLDC bytecode verifier is effective and the

JVM is safe for executing verified programs, we followed the approach that

we had successfully used for proving the CLDC-style static checker verifier

(section 7.1).
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The top level proof step is to show that (1) the alternative bytecode

verifier is effective and (2) programs verified by the alternative bytecode verifier

are safe to execute.

To prove the alternative bytecode verifier is effective,

• We need to define a strong good state.

We strengthen the inherent safety requirement — such as the operand

stack sizes being within bound and fields in objects holding sensible

values — by also asserting an on-track property.

The on-track property asserts that the current JVM runtime state is

approximated with some corresponding abstract state observed by the

bytecode verifier.

• We relate the outcome of the runtime checking on a runtime state to the

result of the static checking on the corresponding abstract state with

which the runtime state is on-track.

We make use of the on-track property between the concrete and the ab-

stract state. We show that if the static checking succeeds on the abstract

state — which we know it will because we can assume the program being

executed has been verified — the concrete machine’s runtime checks will

also succeed.

• We prove that the next concrete state remains on-track with the next

abstract state observed by our alternative bytecode verifier.

We need to prove this third property to construct our inductive proof

that executing verified programs from a good state will remain safe.
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We call the second and third bullets above leaf-level properties that we

need to prove for each simple JVM operation.

We have not finished the proof that our alternative bytecode is effective

for M6. In the later section 7.4 Proving Leaf-level Lemmas, we explain the leaf-

level lemmas that we have formulated for showing that the bytecode verifier

is effective. We explain our support lemma library infrastructure for proving

them.

7.3.4 Reduction Theorem Verified

Following our overall approach for proving that the CLDC bytecode verifier is

effective, we need to prove a reduction theorem — in addition to the important

theorem that asserts that the alternative version of the bytecode verifier is

effective.

The reduction theorem states that any program verified by the CLDC

bytecode verifier can be also verified by the alternative version of the bytecode

verifier. Once we prove this reduction theorem, assuming that we proved that

all programs verified by the alternative version of the bytecode are safe to

execute, we can then show that the CLDC bytecode verifier is effective and

program verified by the CLDC bytecode verifier execute safely.

The reduction theorem

The desirable reduction property is captured in this ACL2 formula shown in

the figure 7.26 from the ACL2 book BCV/bcv-succeed-implies-bcv-simple-

-succeed.lisp in [22].

The first hypothesis (mergedcodeIsTypesafe env ...) asserts that
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(defthm mergedCodeIsTypeSafe-implies-bcv-simple-method1

(implies (and (mergedCodeIsTypesafe env

(allinstructions env) init-frame)

(good-frame init-frame env)

(pc-wff-mergedcode1 0 (allinstructions env))

(all-good-frames

(extract-frames (allinstructions env))

env)

(good-env env))

(bcv-simple-method1

(extract-code (allinstructions env))

(collect-sig-frame-vector env

(allinstructions env)

init-frame)

env)))

Figure 7.26: Alternative verifier accepts all CLDC verified programs

the (allinstructions env), which is a mixed stream of instructions and

stack maps, can be verified with respect to the initial abstract state init-

-frame.

Good-frame asserts that the initial frame represents a valid abstract

state — all types mentioned in a good-frame are well defined in the context of

the env. 10

The third hypothesis (pc-wff-mergedcode1 ...) asserts that the pro-

gram counters from the mixed stream of instructions and stack maps are well

formed — the program counters are consecutive in a non-decreasing order. If

the n-th element of the stream (with program counter pc) is an instruction,

10We need these types to be well defined, because in proving the reduction theorem, we
often need to show that when a certain check succeeds on a more general abstract state, the
check will succeed on a more specific abstract state. We need to show that the more general
and more specific relations between abstract states are transitive. However, we can only
prove the type assignment compatible property when the types involved are known types in
a consistent type hierarchy.
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(defun pc-wff-mergedcode1 (pc mergecode)

(if (endp mergecode) nil

(cond ((isEnd (car mergecode))

(and (integerp pc)

(< 0 pc)

(equal (nth 1 (car mergecode)) pc)

(endp (cdr mergecode))))

((isStackMap (car mergecode))

(and (equal (mapOffset (getMap (car mergecode))) pc)

(consp (cdr mergecode))

(not (equal (mapFrame (getMap (car mergecode)))

’aftergoto))

(not (isEnd (cadr mergecode)))

(pc-wff-mergedcode1 pc (cdr mergecode))))

((isInstruction (car mergecode))

(and (equal (instrOffset (car mergecode)) pc)

(<= 1 (jvm::inst-size (car mergecode)))

(pc-wff-mergedcode1

(+ (JVM::inst-size (car mergecode)) pc)

(cdr mergecode))))

(t nil))))

Figure 7.27: Well-formed program counter: pc-wff-mergedcode1

the n+1-th element of the stream will have a program counter pc + length

of the instruction. If the n-th element of the stream is an abstract state,

the n+1 element of the stream needs to have a program counter equal to pc.

The fourth hypothesis asserts if we pick out stack maps from the input

to the mergedCodeIsTypeSafe and we build an abstract state out of them,

every abstract state must represent a good abstract state with respect to env.

The last hypothesis (good-env ...) asserts that the class descriptions

from the env represents a good class hierarchy — the superclass chain from

any class does not have loops in it, that the superinterface chains do not
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have loops, and that the superclass and superinterfaces of a class are also

represented, except for java.lang.Object’s superclass.

The conclusion asserts that we can then collect a vector of stack frames.

We can verify the sequence of instructions against this vector of stack frames

in the context of env. We call this vector of stack frames a witness vector.

(bcv-simple-method1

(extract-code (allinstructions env))

(collect-sig-frame-vector env

(allinstructions env)

init-frame)

env)

The reduction theorem says if the CLDC bytecode verifier mergedCode-

IsTypeSafe succeeds, we can construct a witness with (collect-sig-frame-

-vector ...) and our alternative bytecode verifier accepts this witness as a

proof that the sequence of instructions is safe to execute on the JVM.

We construct the witness using the function collect-sig-frame-

-vector (figure 7.28). The function works much like the function mergeCode-

IsTypeSafe (figure 5.7, page 146). Collect-sig-frame-vector symbolically

executes the mergecode following the same core algorithm. In addition,

when an instruction is known to be safe to execute, the operation records

the abstract state in which the instruction is executed. When the symbolic

execution of mergecode ends successfully, the collected stack frames are

returned.
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(defun collect-sig-frame-vector (env mergedcode stackmap)

(if (endp mergedcode) nil

(if (endp (cdr mergedcode)) nil

(if (equal stackmap ’afterGoto)

(if (isStackMap (car Mergedcode))

(collect-sig-frame-vector

env (cdr mergedcode)

(mapFrame (getMap (car mergedcode))))

nil)

(cond ((isStackMap (car mergedcode))

(and (frameIsAssignable stackmap

(mapFrame (getMap (car mergedcode)))

env)

(collect-sig-frame-vector env

(cdr mergedcode)

(mapFrame (getMap (car mergedcode))))))

((isInstruction (car mergedcode))

(let ((offset (instrOffset (car MergedCode)))

(instr (car MergedCode)))

(and (instructionIsTypeSafe instr env stackmap)

(mv-let (NextStackFrame ExceptionStackFrame)

(sig-do-inst instr env stackmap)

(and (instructionSatisfiesHandlers

env offset

ExceptionStackFrame)

(mergedCodeIsTypeSafe

env

(cdr MergedCode)

NextStackFrame)

(cons (list offset stackmap)

(collect-sig-frame-vector

env

(cdr mergedcode)

NextStackFrame)))))))

(t nil))))))

Figure 7.28: Creating a “witness”: collect-sig-frame-vector
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Sketch of the mechanically verified proof

Our goal is to prove that all programs accepted by the CLDC bytecode verifier

will also be accepted by the alternative simpler bytecode verifier. We first ob-

serve that the alternative version of the bytecode verifier bcv-simple-method1

(figure 7.25) does the two kinds of checks

• For instruction, it looks up its corresponding abstract state in the witness

— vector of stack maps. It checks that the safety pre-condition for

executing the instruction is met.

• It symbolically executes the instruction. It looks up the abstract state

that corresponds to the resulting state after execution. It checks the

safety post-condition that the state resulting from symbolic execution is

compatible with the recorded state.

We need to prove that both pre-condition and post-condition checks

against the recorded states from the witness vector (collect-sig-frame-

-vector ...) will succeed, when the original CLDC bytecode verifier

mergedCodeIsTypeSafe accepts the program as verified.

We first prove that the first kind of checks succeeds (figure 7.29. That is,

if a program is verified by mergedCodeIsTypesafe (the original bytecode ver-

ifier), the precondition for executing a given instruction is met in the abstract

state witnessed by collect-sig-frame-vector.

We use induction to prove the reduction theorem. The natu-

ral choice appears to be inducting according to the recursive pattern of

mergedcodeIsTypesafe or bcv-simple-method1. However, we observe that

the induction patterns of mergedcodeIsTypesafe and bcv-simple-method1
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(encapsulate ()

(local (include-book "bcv-instructionIsTypeSafe-if-verified"))

(defthm mergedcodeIsTypesafe-implies-instructionIsTypeSafe

(implies (and (mergedcodeIsTypesafe env mergedcode

stackframe)

(pc-wff-mergedcode1 0 (allinstructions env))

(is-suffix mergedcode (allinstructions env))

(member inst (extract-code mergedcode)))

(instructionIsTypeSafe

inst

env

(searchStackFrame

(instrOffset inst)

(stack-map-wrap

(collect-sig-frame-vector env

mergedcode

stackframe)))))))

Figure 7.29: Instruction safe to execute in recorded abstract state
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do not match with each other — the CLDC bytecode verifier inducts on the

mergedCode, while the bcv-simple-method1 inducts on the actual sequence

of instructions from the mergedCode. Between any two real instructions

in the mergedCode, there can be an unknown number of stackmaps all

associated with one specific program counter. A CLDC bytecode verifier

mergedcodeIsTypesafe may have to execute unknown number of steps to

reach the next instruction to check for the next instructionIsTypeSafe,

while the simple bytecode verifier always takes one step.

We define the induction scheme mergedCodeIsTypeSafe-induct (fig-

ure 7.30).

We prove the following lower level lemma to relate two mergedCodeIs-

TypeSafe terms that appear in the induction scheme. From the fact that

(mergedcodeIsTypesafe

env mergedcode

(mapFrame (getMap mergedcode1)))

we conclude that one can “skip ahead” to obtain the fact that

(mergedcodeIsTypesafe

env

(forward-to-next-inst (cons mergedcode1 mergedcode))

(next-stackframe (cons mergedcode1 mergedcode)))

We also need to prove how the next-stackframe relates to the recorded

stack maps at the next program counter — because the bcv-simple-method1

(figure 7.25, page 254) is expressed as first looking up the recorded stack map

at a program counter, then checking whether the next instruction is safe to
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(defun mergedcodeIsTypeSafe-induct

(env init-frame mergedcode stackmap)

(if (endp mergedcode)

(list env init-frame mergedcode stackmap)

(if (endp (cdr mergedcode))

(list (list env init-frame mergedcode stackmap))

(cond

((isinstruction (car mergedcode))

(cond

((isStackMap (cadr mergedcode))

(mergedcodeIsTypeSafe-induct

env init-frame

(forward-to-next-inst (cdr mergedcode))

(next-stackframe (cdr mergedcode))))

((isInstruction (cadr mergedcode))

(mv-let

(next-stack-frame exception-frame)

(sig-do-inst (car mergedcode) env stackmap)

(declare (ignore exception-frame))

(mergedcodeIsTypeSafe-induct env init-frame

(cdr mergedcode)

next-stack-frame)))))

((isStackMap (car mergedcode))

(mergedcodeIsTypeSafe-induct

env init-frame

(forward-to-next-inst mergedcode)

(next-stackframe mergedcode)))))))

Figure 7.30: Induction scheme for proving reduction theorem
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(defthm mergedcodeIsTypesafe-forward-to-next-inst-b

(implies (and (mergedcodeIsTypesafe

env mergedcode

(mapFrame (getMap mergedcode1)))

(isStackMap mergedcode1)

(pc-wff-mergedcode1 (next-pc mergedcode)

mergedcode))

(mergedcodeIsTypesafe

env

(forward-to-next-inst

(cons mergedcode1 mergedcode))

(next-stackframe

(cons mergedcode1 mergedcode)))))

Figure 7.31: Adapting the induction pattern of mergedcodeIsTypesafe

execute and whether the resulting state is compatible with the recorded stack

map.

Different from mergedCodeIsTypeSafe, the bcv-simple-method1 im-

mediately checks the post safety conditions after symbolically executing one

instruction (figure 7.25).

(frameIsAssignable

nextStackFrame

(searchStackFrame

(instrOffset (cadr code))

(stack-map-wrap stack-maps))

env)

The mergedCodeIsTypeSafe does not check such a requirement (fig-

ure 5.7) directly. Instead, the symbolic execution engine (as encoded in

mergedCodeIsTypeSafe) will take the nextStackFrame from state resulting
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(encapsulate ()

(local (include-book "bcv-searchStackFrame-reduce"))

(defthm searchStackFrame-is-if-stack-map

(implies (and (isStackMap (car mergedcode))

(equal (forward-to-next-inst mergedcode)

(forward-to-next-inst x))

(is-suffix mergedcode all-merged-code)

(pc-wff-mergedcode1 pc all-merged-code)

(mergedcodeIsTypeSafe env

all-merged-code

init-frame))

(equal

(searchStackFrame

(instrOffset (car (forward-to-next-inst x)))

(stack-map-wrap (collect-sig-frame-vector

env

all-merged-code

init-frame)))

(next-stackframe mergedcode)))))

Figure 7.32: Rewriting searchStackFrame: I
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from sig-do-inst as its current state and continue. This safety post-

condition is indirectly enforced by mergedCodeIsTypeSafe when a stack

frame is encountered in the mergedcode. mergedCodeIsTypeSafe checks

that the current abstract state is compatible with the next stack frame that

symbolic execution will encounter.

(cond

((isStackMap cur)

(let ((MapFrame (mapFrame (getMap cur))))

(and (frameIsAssignable StackFrame MapFrame Environment)

...))))

We prove the following theorems to relate the post-condition checks

by the bcv-simple-method1 with the checks done by the mergedcode-

IsTypeSafe.

This theorem (figure 7.33) asserts that if the next item in the mergecode

is an instruction — (isInstruction (next-inst inst mergecode))11, then

the recorded stack map at the next program counter is just the result of exe-

cuting the current instruction —

(equal (car (sig-do-inst ...))

(searchStackFrame ...))

.

With this lemma, we know the additional postcondition check by the

bcv-simple-method1 is degenerate, because the recorded state at the next

11(next-inst inst mergecode) should have been named as next-item; it returns the
item that appears right after inst in the list mergecode.
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(encapsulate ()

(local (include-book "bcv-searchStackFrame-reduce"))

(defthm |mergecodeIsTypeSafe-

implies-collect-sig-vector-compatible-1|

(implies

(and (mergedcodeIsTypeSafe env mergecode stackframe)

(member inst mergecode)

(isInstruction inst)

(isInstruction (next-inst inst mergecode))

(pc-wff-mergedcode1 (next-pc mergecode) mergecode))

(equal (car (sig-do-inst

inst

env

(searchStackFrame

(instroffset inst)

(stack-map-wrap

(collect-sig-frame-vector

env mergecode

stackframe)))))

(searchStackFrame

(instroffset (next-inst inst mergecode))

(stack-map-wrap (collect-sig-frame-vector

env mergecode

stackframe)))))))

Figure 7.33: Rewriting searchStackFrame: II
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program counter is the state resulting from executing the current instruction

itself. And it is easy to prove

(frameIsAssignable nextStackFrame

nextStackFrame

env)

.

Consequently, we can conclude that it is fine for the mergecodeIs-

TypeSafe to skip this degenerate of check in this context — when the next

item in the list is an instruction.

When the next item in the list is a stack map, (instead of an instruction),

we prove the frameIsAssignable-transitive-specific lemma to assert

that the postcondition check done by the bcv-simple-method1 is not skipped

and is enforced by mergecodeIsTypeSafe, although indirectly. The lemma

is proved in BCV/bcv-sig-do-produce-compatible-next-state.lisp [22].

The form of lemma is complicated (71 lines with 3775 characters) and is omit-

ted here.

With our induction scheme and supporting lemmas, we have been able

to prove the reduction theorem (figure 7.26).

7.3.5 Summary

We introduced the alternative version of the bytecode verifier to separate the

procedural aspects of the CLDC bytecode verifier specification from the essen-

tial aspects of an effective bytecode verifier.

Defining the alternative bytecode verifier is one part of our overall strat-

egy for proving the JVM is safe for executing verified programs. The overall
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strategy has been used for proving that a simpler machine — Small — does

not overflow its operand stacks, when the program being executed has been

verified by a CLDC-like static checker.

Following the strategy, we need to prove a reduction theorem. The

reduction theorem asserts that all programs verified by the procedural CLDC

bytecode verifier can also be accepted by the simpler bytecode verifier. We

completed the proof of this theorem.

7.4 Leaf-Level Lemmas and Their Proofs

One key to prove that M6 is safe while executing verified programs is to relate

the success of checks done by the bytecode verifier to the safe execution of M6.

We defined a defensive JVM — DJVM — to make explicit what we

mean by safe execution of M6 (see Chapter 6). A safe execution shall not get

stuck because some runtime check conducted by the defensive JVM is violated

and the next state is not well defined.

We defined the alternative bytecode verifier to expose the essential

checks conducted during the bytecode verification, so that we can refer to

what is checked at a specific program location directly. We proved the reduc-

tion theorem, which asserts that the original CLDC bytecode verifier at least

enforces these checks — all programs verified with the CLDC bytecode verifier

will be verified with the alternative bytecode verifier.

The remaining task is to prove — for each instruction:

Passing the safety checks on an abstract state will ensure that the defen-

sive checks will succeed on some concrete DJVM state. Obviously, arbitrary

safety checks of the bytecode verifier cannot be used to predict the outcome
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of unrelated, defensive checks. We identify the consistent-state that as-

serts that (1) the state representation is internally coherent that they present

a sensible configuration of the machine state, and (2) the state is externally

consistent — on-track — with the abstract state observed by the bytecode

verifier.

We need to prove two broad kinds of lemmas for each instruction.

• Assuming that a concrete state is internally coherent and externally con-

sistent, the success of the bytecode verifier checks imply the success of

the defensive checks on the concrete state.

• Executing a step from the concrete state, the resulting concrete state

remains both internally coherent and externally consistent (with the next

corresponding abstract state).

We call these kinds of lemmas for each instruction as leaf-level lemmas.

In this section, we describe a sufficient set of leaf-level lemmas that we have

identified. 12 We also describe our supporting ACL2 library for proving specific

types of leaf-level lemmas from this set.

We have used our supporting library to prove the leaf lemmas for a

limited subset of instructions including AALOAD, IFEQ, and GETFIELD.

7.4.1 Leaf-level Lemmas

DJVM is safe

Because DJVM is a very complex program in itself, one may want to have

more direct evidence that DJVM itself is in fact safe besides looking at the

12Since we have not proved the final M6 is safe theorem, the sufficiency of our set of
leaf-level lemmas is only speculative.
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definition of DJVM itself.

We identified the following leaf-level lemmas to prove:

• when DJVM is not stuck, executing each instruction preserves the

consistent-state property. 13

• the execute-XXX style operations are guard verified. 14

Taking AALOAD instruction as an example, we identified and proved the

following lemmas that assert the DJVM’s execute-AALOAD operation is safe.

• execute-AALOAD is guard verified (figure 7.34)

• execute-AALOAD preserves the consistent-state when executed with

its guard met.

(defthm |AALOAD-guard-implies-

execute-AALOAD-perserve-consistency|

(implies (AALOAD-guard inst s)

(consistent-state-strong

(execute-AALOAD inst s))))

• In a consistent state, if the DJVM’s runtime checking check-AALOAD

succeeds, the preconditions for executing AALOAD, AALOAD-guard, will

be met.
13Our current definition of consistent-state-strong only captures the consistency

requirement for its internal components. It does not assert the external consis-
tency requirement that the execution state is on track with with some abstract state
seen by the bytecode verifier. The latter requirement is captured in the definition
consistent-state-bcv-on-track (figure 6.21). We prove that DJVM operations also pre-
serve the consistent-state-bcv-on-track with a separate leaf-level lemma.

14There is no formal statement in form of a theorem that asserts that an operation is
guard verified. But we do need to prove a set of supporting lemmas that ACL2 can use to
prove that invoking the top level operation in a state that satisfies its guard will result in
the no guard of a lower level operation being violated.
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(defthm check-AALOAD-implies-guard-succeeds

(implies (and (consistent-state-strong s)

(check-AALOAD inst s))

(AALOAD-guard inst s)))

M6 behaves the same as the DJVM

After proving that DJVM’s step is safe when its runtime check check-AALOAD

succeeds, we prove the following to assert that if DJVM is taking a step without

violating its guard, M6 behaves the same as DJVM.

(encapsulate ()

(local (include-book "base-state-equiv"))

(defthm equal-AALOAD-when-guard-succeeds

(implies (and (AALOAD-guard inst djvm::djvm-s)

(state-equiv m6::m6-s djvm::djvm-s))

(state-equiv (m6::execute-AALOAD inst m6::m6-s)

(djvm::execute-AALOAD

inst

djvm::djvm-s)))))

Bytecode verifier checks implies the DJVM checks

We prove the following leaf-level lemma to relate the checks done by the byte-

code verifier to the runtime checks done by the DJVM.

• If the bytecode verifier asserts that it is safe to execute AALOAD in the

type signature state of the current state, the DJVM’s runtime checking

check-AALOAD always succeeds.
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(defun AALOAD-guard (inst s)

(mylet*

((index (safe-topStack s))

(array-ref (safe-secondStack s)))

(and (consistent-state-strong s)

(wff-inst inst)

(topStack-guard-strong s)

(secondStack-guard-strong s)

(wff-REFp array-ref)

(INT32p (value-of index))

(<= (len (operand-stack (current-frame s)))

(max-stack s))

(or (CHECK-NULL array-ref)

(and (CHECK-ARRAY-guard (rREF array-ref) (heap s))

(not (primitive-type?

(array-component-type

(obj-type (binding

(rREF array-ref)

(heap s)))))))))))

(defun execute-AALOAD (inst s)

(declare (xargs :guard (AALOAD-guard inst s)))

(let* ((index (safe-topStack s))

(array-ref (safe-secondStack s)))

(if (CHECK-NULL array-ref)

(raise-exception "java.lang.NullPointerException" s)

(if (check-array (rREF array-ref) (value-of index) s)

(ADVANCE-PC

(safe-pushStack

(tag-REF (element-at-array (value-of index)

(rREF array-ref)

s)

(safe-popStack (safe-popStack s)))))

(raise-exception

"java.lang.ArrayIndexOutOfBoundsException" s)))))

Figure 7.34: Guard verified: execute-AALOAD
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(encapsulate ()

(local (include-book "base-bcv"))

(defthm bcv-check-aaload-ensures-djvm-check-aaload

(implies (and (bcv::check-AALOAD

inst

(env-sig s)

(frame-sig

(current-frame s)

(instance-class-table s)

(heap s)

(heap-init-map (aux s))))

(wff-inst inst)

(not (mem ’*native*

(method-accessflags

(current-method s))))

(consistent-state s))

(djvm::check-AALOAD inst s))))

• If it is safe for the bytecode verifier to execute AALOAD in some type sig-

nature state, it is safe to execute AALOAD in a more specific type signature

state provided both type signature states are good with respect to some

consistent type hierarchy good-icl.

(encapsulate ()

(local (include-book "base-bcv-check-monotonic"))

(defthm |sig-check-AALOAD-on-more-general-implies-

more-specific|
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(implies (and

(good-icl icl)

(good-scl (classtableEnvironment env1))

(sig-frame-more-general gframe

sframe env1)

(consistent-sig-stack (frameStack gframe)

icl)

(consistent-sig-stack (frameStack sframe)

icl)

(not (equal (nth1OperandStackIs 2 sframe)

’NULL))

(not (equal (nth1OperandStackIs 2 gframe)

’NULL))

(bcv::check-AALOAD inst env1 gframe)

(icl-scl-compatible

icl

(classtableEnvironment

env1)))

(bcv::check-AALOAD inst env1 sframe))))

With these two types of leaf-level lemmas, together with the on-track

requirement asserted in a consistent-state, we can conclude that if the bytecode

verifier’s check succeeds in the more general abstract state seen by the bytecode

verifier, the corresponding runtime checks will succeed in the concrete state.

This is because the on-track requirement will provide us the needed hypothesis

that the type signature state of the concrete state is no more general than the
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type signature state observed by the bytecode verifier.

DJVM execution remains on track

Our existing definition of consistent-state-strong captures the internal

consistency requirement for a DJVM state to represent a sensible machine

state.

Another important requirement for a useful consistent state is that the

executions from such a state need to remain on track with the abstract exe-

cution of the bytecode verifier. As explained in the previous section, we need

the on-track property to relate the checks done by the bytecode verifier to the

runtime check done by the DJVM.

To prove that this property is preserved over the DJVM execution of a

verified program, we identified the following leaf-level lemma that one needs to

prove about every instruction. We state the lemma for the case of the AALOAD

instruction.

• If the DJVM is safe to execute AALOAD and the starting state is a

consistent-state, the type signature of the state obtained by execut-

ing the AALOAD instruction is no more general than the state resulting

from executing one step of the bytecode verifier from the type signature

state of the starting state.

(encapsulate ()

(local

(include-book

"base-next-state-more-specific"))

(defthm next-state-no-more-general-aaload
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(mylet* ((oframe (frame-sig

(current-frame s)

(instance-class-table s)

(heap s)

(heap-init-map (aux s))))

(ns (djvm::execute-aaload inst s))

(nframe (frame-sig

(current-frame ns)

(instance-class-table ns)

(heap ns)

(heap-init-map (aux ns)))))

(implies (and (consistent-state s)

(bcv::check-aaload

inst

(env-sig s) oframe)

(djvm::check-aaload inst s)

(not (check-null

(topStack (popStack s))))

(check-array

(RREF (topStack (popStack s)))

(value-of (topStack s)) s))

(bcv::sig-frame-more-general

(car (bcv::execute-aaload

inst

(env-sig s)

oframe))
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nframe

(env-sig s))))

• The execution of the bytecode verifier is monotonic. If two frames are in

the sig-frame-more-general relation (and both (and both are suitable

for executing an AALOAD), then the frames produced by executing AALOAD

on each of the two frames are in the same relation.

(encapsulate ()

(local (include-book "base-bcv-step-monotonic"))

(defthm AALOAD-monotonicity

(implies

(and (sig-frame-more-general gframe

sframe env1)

(consistent-sig-stack (frameStack sframe)

icl)

(consistent-sig-stack (frameStack gframe)

icl)

(not (equal (nth1OperandStackIs 2 gframe)

’NULL))

(not (equal (nth1OperandStackIs 2 sframe)

’NULL))

(bcv::check-AALOAD inst env1 gframe)

(bcv::check-AALOAD inst env1 sframe)

(good-icl icl)

(good-scl (classtableEnvironment env1))

(icl-scl-compatible
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icl

(classtableEnvironment env1)))

(sig-frame-more-general

(normal-frame (bcv::execute-AALOAD

inst env gframe))

(normal-frame (bcv::execute-AALOAD

inst env sframe))

env1))))

7.4.2 Libraries For Proving Leaf-level Lemmas

We have developed a set of ACL2 books. Each ACL2 book is a collection of the-

orems that can be accepted by the ACL2 theorem prover. More importantly,

each book configures the ACL2 theorem prover with specific set of “rules” for

proving the specific type of leaf lemma.

Methodology

We organized the leaf-level lemmas about one JVM instruction into one spe-

cific file in DJVM/INST directory [22]. For example, all leaf-lemmas about the

GETFIELD instruction appear in DJVM/INST/GETFIELD.lisp.

A GETFIELD.lisp-style file can be viewed as having four sections. Each

section corresponds to a specific type of the leaf-level lemmas. DJVM is safe,

M6 behaves the same as the DJVM, Bytecode verifier checks imply the DJVM

checks when on track, and DJVM execution remains on track. In each section,

we import specific ACL2 books to configure the ACL2 theorem prover for

proving the leaf-level lemmas in that section.
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In the process of proving a leaf-level lemma, we may identify supporting

lemmas. If the supporting lemma is consider generally useful for proving this

type of leaf-level lemma for other instructions, we move the supporting lemma

into the books that we have included in this section.

We build and expand our supporting books in this fashion. The process

of proving leaf-level lemmas for AALOAD, AASTORE, ANEWARRAY, ALOAD, ASTORE,

IFEQ, and GETFIELD, has guided us to build a set of useful supporting books.

These supporting ACL2 books are relatively complete and robust in

helping us proving leaf-level lemmas about new instructions. We expect that

one can follow our methodology and build on this set of books to eventually

prove all the leaf-level theorems for all M6 instructions.

The known limitation of the existing library include that:

• We have skip-proved the necessary lemma that reason about raising and

handling an exception. That means these lemmas have been assumed

rather than proved.

• We have not formulated and proved the lemma necessary for reasoning

about operations that updating the call stack in the implementation of

the INVOKEVIRTUAL operation.

• We have not defined verifiable guards for some low level operations.

• Some other lemmas in the supporting library have been “skip-proved”

and are yet to be proved by ACL2.

DJVM is safe

For each instruction, we always first load a fixed set of books
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(defthm pc-pushStack-unchanged

(equal (pc (pushStack v s))

(pc s)))

Figure 7.35: Selected lemma: pc-pushStack-unchanged

(include-book "base")

(include-book "base-consistent-state")

(include-book "base-extra")

These ACL2 books export useful lemmas/rules for proving that DJVM

is safe.

Exported properties can be as simple as asserting that pushing a value

on the current operand stack (pushStack v s) does not change the program

counter value (figure 7.35).

Among the more interesting lemmas exported by these books, the

following theorem REFp-not-NULLp-consistent-object-alternative (fig-

ure 7.36) asserts that if a value v is REFp with respect to (heap s) and v is

not a NULL value, and s is a consistent-state, then the object pointed to

by v — (deref2 v (heap s)) — is a consistent-object with respect to

(heap s) and a cl, as long as the cl is equal to (instance-class-table

s).

These books also contain proofs to guard-verify all the common op-

erations that are used to define execute-XXX operations. For example, be-

cause the operation execute-GETFIELD may invoke the class loading operation

resolveClassReference, these ACL2 books contain the proofs that help to

guard-verify the resolveClassReference operation.
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(defthm REFp-not-NULLp-consistent-object-alternative

(implies (and (consistent-state s)

(REFp v (heap s))

(not (check-NULL v))

(equal (instance-class-table s) cl))

(consistent-object (deref2 v (heap s))

(heap s)

cl))))

Figure 7.36: Non-null pointer points to consistent-object

(defun m6-getfield (classname fieldname obj-ref s)

(declare (xargs :guard

(field-access-guard classname fieldname obj-ref s)))

(binding fieldname

(binding classname

(java-visible-portion (deref obj-ref (heap s))))))

Figure 7.37: Operation: m6-getfield

For some more complicated instructions, such GETFIELD, we also in-

clude ACL2 books specific for proving properties about them. We include

two extra books to prove that the DJVM is safe style lemma for GETFIELD:

base-consistent-state-load-class and base-consistent-state-lookup-

field

One of the operations that execute-GETFIELD invokes is m6-getfield.

Operation m6-getfield defines a guard field-access-guard (fig-

ure 7.38), the core of which is the assertion that some particular field exists

in the object that we are trying to access — jvp-access-field-guard

(figure 7.39).

One key lemma that we have proved for guard-verifying the opera-

tion execute-GETFIELD base-consistent-state-lookupfield is presented
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(defun field-access-guard (classname fieldname obj-ref s)

(and (wff-state s)

(wff-heap (heap s))

(bound? obj-ref (heap s))

(wff-obj (binding obj-ref (heap s)))

(jvp-access-field-guard

classname fieldname

(java-visible-portion (binding obj-ref (heap s))))))

Figure 7.38: Guard for invoking field-access-guard

(defun jvp-access-field-guard (classname fieldname obj)

(and (alistp obj)

(bound? classname obj)

(alistp (binding classname obj))

(bound? fieldname (binding classname obj))))

Figure 7.39: Guard for accessing Java visible portion

in figure 7.40.

The theorem says that if the object obj that we used to access the

field is a subclass of the class (fieldCP-classname fieldCP), and the field

resolution operation lookupField confirms that there is such a field, then the

guard for accessing the java visible portion of the object will be met.

Another interesting lemma (figure 7.41) asserts if that we already have

an object that is assignable to of typ2, loading the class typ2 produces no

effect when the starting state s is a consistent-state.

We observe that the existing supporting library for proving DJVM is

safe style leaf-level is relatively complete. Although we have only proved the

DJVM is safe style lemma for a limited number of JVM instructions15, we

15AALOAD, AASTORE, ANEWARRAY, ALOAD, ASTORE, IFEQ, and GETFIELD
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(defthm |consistent-object-and-field-found-in-lookup

-implies-jvm-field-access-guard|

(implies (and (consistent-state s)

(consistent-object obj

(heap s)

(instance-class-table s))

(car (isAssignableTo

(obj-type obj)

(fieldCP-classname fieldcp)

s))

(lookupField (fieldcp-to-field-ptr fieldCP) s))

(jvm::jvp-access-field-guard

(field-classname

(lookupField (fieldcp-to-field-ptr

fieldCP) s))

(fieldcp-fieldname fieldcp)

(java-visible-portion obj))))

Figure 7.40: Safe to access fields from superclasses

(defthm |resolveClassReference-no-change-

if-already-loaded-if-not-array-Object|

(implies (and (consistent-object obj (heap s)

(instance-class-table s))

(case-split (not (isArrayType (obj-type obj))))

(car (isAssignableTo (obj-type obj) typ2 s))

(consistent-state s))

(equal (resolveClassReference typ2 s) s)))

Figure 7.41: Loading superclass of existing objects produces no effect
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expect that one does not need to add significantly more new lemmas to proving

this type of lemmas.

Consider the INVOKEVIRTUAL instruction, for which, we have not yet

proved the DJVM is safe style lemma. The INVOKEVIRTUAL operation will first

lookup the method, it then will pop some values of the operand stack, create

a new frame and initialize the values in the new call frame. Among these low

level operations, only frame creation is new. In proving the leaf-level lemma

for AALOAD, we proved that popping an operand off the stack will preserve the

consistent state. In proving the leaf lemma for ASTORE, we proved lemmas for

reasoning about operations that write the local variables in a frame. The same

lemmas can be used for reasoning about initializing the new call frame. The

method resolution operation invoked by INVOKEVIRTUAL is very similar to the

field resolution operation invoked by GETFIELD, which has been verified. It is

reasonable to expect our load superclass produces no effect lemma (figure 7.41)

to be directly useful. For guard-verifying the method resolution operation, we

can benefit from a similar one for guard-verifying field access (figure 7.40).

M6 behaves the same as DJVM

Our DJVM model maintains additional type information for the values in

the operand stack and locals. Before DJVM executes an instruction with

execute-XXX style operations, DJVM also checks the preconditions (that are

explicitly stated in the official JVM specification for the instruction) by exe-

cuting check-XXX style operations — if such checks return false, the bytecode

interpreter keeps DJVM in the same (stuck) state.

Our regular JVM model, M6, executes like DJVM with two exceptions.

M6 does not maintain type information for values stored on the operand stack
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(encapsulate ()

(local (include-book "base-state-equiv"))

(defthm equal-GETFIELD-when-guard-succeeds

(implies (and (state-equiv M6::m6-s DJVM::djvm-s)

(GETFIELD-guard inst DJVM::djvm-s))

(state-equiv (m6::execute-GETFIELD inst M6::m6-s)

(djvm::execute-GETFIELD

inst

DJVM::djvm-s)))

:hints (("Goal" :do-not ’(generalize fertilize)))))

Figure 7.42: M6 and DJVM behaves the same for executing GETFIELD

and local variable arrays. M6 does not check the precondition listed in the

JVM specification before carrying out the operation described in the JVM

specification.

While DJVM may stick when executing a program, M6 will continue

— violating the preconditions – and may invoke an operation with inputs that

do not meet its guards.

Our supporting library DJVM/INST/base-state-equiv.lisp contains

effective supporting lemmas for proving that M6 behaves the same as the

DJVM — when (1) the DJVM guard for the instruction is met and (2) the

initial M6 state and the DJVM are essentially the same state.

For GETFIELD, we proved the leaf-level lemma equal-GETFIELD-when-

-guard-succeeds (figure 7.42) in DJVM/INST/GETFIELD.lisp

Combining this M6 behaves the same as DJVM type result with the

DJVM is safe type result for GETFIELD (figure 7.43) — which asserts that

in a consistent state, if check-GETFIELD succeeds, the guard for executing

GETFIELD will succeed — we can conclude that when the precondition as spec-

ified in the JVM specification is met, executing GETFIELD on M6 and the DJVM
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(defthm check-GETFIELD-implies-guard-succeeds

(implies (and (consistent-state-strong s)

(check-GETFIELD inst s))

(GETFIELD-guard inst s)))

Figure 7.43: Check-GETFIELD Implies GETFIELD-guard

produce the “same” resulting states, if the initial states are the “same” and

the DJVM state has is a consistent-state.

The supporting lemmas for proving lemmas such as equal-GETFIELD-when-

-guard-succeeds are simple and their proofs straightforward. We have chosen

to “skip-proof” many simple support lemmas of this type in DJVM/INST/base-

-state-equiv.lisp.

Bytecode verifier checks implies the DJVM checks

The key for proving this type of leaf-level lemma is to make good use of the

property that that a consistent state is approximated by some abstract state

observed by the bytecode verifier.

We identify four bytecode verifier checks implies the DJVM checks type

leaf-level lemmas.

• (1) If the bytecode verifier can safely execute the current instruction with

respect to the current type signature state, the DJVM can safely execute

the instruction.

• (2) If the bytecode verifier state can safely execute an instruction in a

more general type signature state, the bytecode verifier can safely execute

the instruction in a more specific signature state
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• (3) If the current state is on-track with some corresponding abstract

state seen by the bytecode verifier, then its type signature state is no

more general than the abstract state observed by the bytecode verifier.

• (4) If the program is verified, for each instruction in that method, there

exists an abstract state such that the bytecode verifier can safely execute

that instruction in that abstract state.

We observe that only the first two of these are specific to individual JVM

instructions. Lemma (3) depends on how we define the on-track requirement

for a consistent state. Lemma (4) depends on how the bytecode verifier is

formalized. Consider the fact that we have successfully reduced the procedural

CLDC bytecode verifier into a much simpler bytecode verifier; then it is easy

to show that lemma (4) holds.

To state lemma (1), we defined an operation frame-sig that extracts

the current type signature state from a concrete DJVM state.

The frame-sig takes a call frame from the DJVM state and returns

a type signature state that a bytecode verifier can use to check the whether

it is safe to execute an instruction. One operation that frame-sig uses is

value-sig. The operation value-sig (figure 7.44) takes a tagged value and

other parameters corresponding to the context and returns the type of the

value.

The definition of value-sig is complicated. When the reference value

is a NULLp pointer, the return type is null. When the object pointed to by

the reference value is already initialized — one of the constructors has been

executed with the object as the input — the type returned by value-sig is

the actual type of the object. When the object pointed to by the reference
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(defun value-sig (v cl hp hp-init curMethodPtr)

(declare (xargs :guard ....))

(if (REFp v hp)

(if (NULLp v)

’null

(let ((obj-init-tag (deref2-init v hp-init))

(obj (deref2 v hp)))

(if (not (consp obj-init-tag))

; if initialized, we return the actual type

; of the object pointed by the reference value

(fix-sig (obj-type obj))

(if (equal (cdr obj-init-tag) curMethodPtr)

; if the object is created in this method

; then translate into an uninitialized(Offset)

(cons ’uninitialized (car obj-init-tag))

; else translate it into a ’uninitializedThis

’uninitializedThis))))

; The following is an invariant: at any point

; of program execution, at the give frame,

; there is at most one uninitialized object

; not created from this frame.

;

; We have asserted this in the

; consistent-state-strong

(djvm-translate-int-type (tag-of v))))

Figure 7.44: Extracting type: value-sig
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(defthm isArrayType-bcv-isArrayType

(implies (and (ISARRAYTYPE (OBJ-TYPE (DEREF2 v hp)))

(not (deref2-init v hp-init))

(REFp v hp)

(not (NULLp v)))

(bcv::isArrayType

(value-sig v cl hp hp-init method-ptr))))

Figure 7.45: Relating isArrayType checks

value is not yet initialized, depending on whether the object is created in the

current frame, the type returned can either be ’(uninitialized <Offset>

or ’(uninitializedThis).

We proved lemmas that relate the checks done by DJVM to the

checks done by the bytecode verifier on the extracted type signature state,

including the simple lemma isArrayType-bcv-isArrayType (figure 7.45) and

the much more complicated lemma bcv-isAssignable-value-sig-djvm-

-isAssignableTo (figure 7.46).

Supporting lemmas are collected into the ACL2 book base-bcv (DJVM-

/INST/base-bcv.lisp from [22]). We have used the book to prove that the

bcv-check-GETFIELD-ensures-djvm-check-GETFIELD style leaf lemmas for

the subset of DJVM instructions that we have defined — AALOAD, AASTORE,

ALOAD, ASTORE, ANEWARRAY, IFEQ, and GETFIELD.

To prove lemma (2) of the Bytecode verifier checks implies the DJVM

checks type leaf level lemmas, we have created the base-bcv-check-monotonic

book (DJVM/INST/base-bcv-check-monotonic.lisp from [22]). The book

contains lemma like TypeListAssignable-isMatchType-prefix-class (fig-

ure 7.48) which asserts if that a list of types sl is TypeListAssignable to a

list gl and if we can pop a value of type (prefix-class any) from the list
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(defthm bcv-isAssignable-value-sig-djvm-isAssignableTo

(implies

(and (isAssignable

(value-sig v

(instance-class-table s)

(heap s)

(heap-init-map (aux s))

(method-ptr (current-frame s)))

(prefix-class typ)

(env-sig s))

(not (NULLp v))

(isClassTerm (class-by-name typ

(instance-class-table s)))

(no-fatal-error? s)

(consistent-value-x v (instance-class-table s) (heap s))

(consistent-state s)

(class-by-name typ

(classtableEnvironment (env-sig s)))

(not (classIsInterface

(class-by-name

typ

(classtableEnvironment (env-sig s))))))

(car (djvm::isAssignableTo

(obj-type (deref2 v (heap s)))

typ s))))

Figure 7.46: Relating the BCV’s IsAssignable to DJVM’s isAssignableTo
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(encapsulate ()

(local (include-book "base-bcv"))

(local (include-book "base-bcv-djvm-getfield"))

(defthm bcv-check-GETFIELD-ensures-djvm-check-GETFIELD

(implies (and (bcv::check-GETFIELD

inst

(env-sig s)

(frame-sig

(current-frame s)

(instance-class-table s)

(heap s)

(heap-init-map (aux s))))

(wff-getfield inst)

(wff-fieldCP (arg inst))

(no-fatal-error? s)

(lookupField

(fieldcp-to-field-ptr (arg inst)) s)

; need to assert that field is found!!

; otherwise this is not true!!

(not (mem ’*native*

(method-accessflags

(current-method s))))

(consistent-state s))

(djvm::check-GETFIELD inst s))))

Figure 7.47: Relating check-GETFIELD results
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(defthm TypeListAssignable-isMatchType-prefix-class

(implies (and ...

(consistent-sig-stack sl icl)

(TypeListAssignable sL gL env)

(consistent-sig-stack gl icl)

(good-bcv-type (prefix-class any) icl)

(good-icl icl)

(good-scl (classtableEnvironment env))

(icl-scl-compatible icl

(classtableEnvironment env))

(consp gL)

(isMatchingType (prefix-class any) gL env))

(isMatchingType (prefix-class any) sL env)))

Figure 7.48: Relating IsMatchingType checks on two type signature states

gl, we can pop a value of the same type from the list sl — with additional

side conditions that the relevant state is consistent.

Our base-bcv-check-monotonic book is complete. We do not expect

that one needs distinctively new lemmas for proving that when bytecode veri-

fier checks succeed on more general abstract states then the checks will succeed

on more specific states.

DJVM execution remains on-track

We also need to prove leaf-level lemmas that assert that DJVM execution

remains on-track. For each instruction, we need to prove two leaf-level lemmas:

first, executing DJVM for one step and then extracting the type signature state

produces a state is no more general than the type signature state obtained by

first extracting the type signature state and executing the bytecode verifier for

one step — BCV next state is more general than DJVM next state. Second,
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starting from a more general type signature state and executing the bytecode

verifier results in a state still more general — BCV step is monotonic.

These two leaf-level lemmas, together with generic lemmas (3) and (4)

from the previous section, are sufficient to prove that DJVM executions will

remain on track.

We have created suitable ACL2 books for proving these two types of

leaf-level lemmas.

The base-bcv-step-monotonic book helps to prove the latter — start-

ing from a more general abstract state, executing one bytecode verifier step

will reach a more general ending state. For a concrete example, see lemma

AALOAD-monotonicity on page 281.

We created the base-next-state-more-specific, base-bcv-frame-

-sig-expansion and base-frame-sig-expansion books to prove the former:

executing a DJVM step and then extracting the abstract state produces a

more specific abstract state than extracting the abstract state then executing

a bytecode verifier step.

We proved useful rules such as bcv-typelistAssignable-modify-

-local-variable-slot (figure 7.49) in the base-bcv-check-monotonic

book.

In the book base-frame-sig-expansion, we proved rules as shown in

figure 7.50 to reduce the effect of executing the DJVM operation update-nth

on the resulting type signature state to the effect of executing a bytecode

verifier operation on the extracted type signature state of the starting state.

We produced a substantial set of supporting libraries (with over 4000

supporting lemmas in over 200 files). However, we expect that new supporting

lemma are still needed before one can use the library to prove all the leaf-level
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(defthm bcv-typelistAssignable-modify-local-variable-slot

(implies (and (typelistassignable sl gl env1)

(consistent-sig-locals sl icl)

(consistent-sig-locals gl icl)

(integerp i)

(<= 0 i)

(< i (len gl))

(isAssignable s g env1)

(not (equal g ’topx)))

(typelistassignable (modifylocalvariable i s sl)

(modifylocalvariable i g gl)

env1)))

Figure 7.49: ModifyLocalVariable operation is monotonic

lemma for the remaining JVM insturctions.
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(defthm |local-sig-frame-set-locals-update-nth-plus-

invalidate-1-strong|

(implies (and (< 0 i)

(< i (len (locals (current-frame s))))

(integerp i)

(consistent-state s)

(consistent-value-x v (instance-class-table s)

(heap s))

(equal (type-size (tag-of v)) 1)

(equal (type-size

(tag-of

(nth (- i 1)

(locals (current-frame s)))))

1))

(equal (locals-sig (UPDATE-NTH i v

(locals (current-frame s)))

(instance-class-table s)

(heap s)

(heap-init-map

(aux s))

(method-ptr (current-frame s)))

(bcv::modifylocalvariable

i

(value-sig v

(instance-class-table s)

(heap s)

(heap-init-map (aux s))

(method-ptr (current-frame s)))

(locals-sig (locals (current-frame s))

(instance-class-table s)

(heap s)

(heap-init-map (aux s))

(method-ptr (current-frame s)))))))

Figure 7.50: Effect of update-nth on type signature state
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Chapter 8

Conclusion

We studied the Java Virtual Machine (JVM) [45] as an abstraction layer. We

formalized the safety guarantee provided by this layer. We studied how the

safety guarantee may be correctly and efficiently provided by a specification

compliant JVM implementation.

The official JVM specification (JVMSpec) describes the safety guaran-

tee of the layer as (1) that all reachable states meet a set of constraints (see

section 4.8.2,Structural Constraints, of the JVMSpec [45]) and (2) that JVM

instructions are always executed with their preconditions met.

We identified the implicit guarantee of the JVM specification that, as

long as JVM implementors correctly implement the operationally specified

JVM operations (including the bytecode verifier and class loader), their JVM

implementation will provide the declaratively specified safety guarantees.

We moved on to prove that this implicit guarantee is in fact true. In

such efforts, we realized that in order to prove that the JVM provides the

original form of the safety guarantee, we first need to prove by mathematical

induction that the JVM satisfies a stronger version of the safety guarantee.
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As a necessary intermediate step, we identified a consistent state that

needs to be maintained by the JVM. We observed that a consistent state not

only needs to represent a sensible JVM (by satisfying a set of consistency

constraints among its own components), it also needs to satisfy an on-track

requirement. The on-track requirement demands that every call frame of the

JVM is approximated by some corresponding abstract state observed by the

bytecode verifier.

8.1 Contributions

This dissertation presents our work towards formalizing these aforementioned

concepts and observations, and proving that our model of the JVM and its

bytecode verifier have desired properties. We made the following contributions:

Detailed JVM model

We built a detailed executable formal model of the JVM.

It serves as a platform for reasoning about properties of the JVM and

properties of Java programs [14]. Simpler JVM models have been used for

reasoning about Java programs that do not rely on features available in this

JVM model [32].

JBook [35] describes a detailed JVM model of comparable complexity.

Our JVM model, M6, is written in ACL2. We benefit from the fact that

proofs about M6 can be mechanically checked by the ACL2 theorem prover.

The ACL2 theorem prover acts both as a meticulous critic and a personal

assistant in finding a machined checked proof.

Our JVM model is also built with an emphasis to capture what is spec-
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ified in the official JVM specification. We specified “guards” for JVM op-

erations, which capture all the side conditions for the JVM to execute that

operation safely.

Detailed bytecode verifier model

We created an executable CLDC bytecode verifier by translating the Prolog-

style rules used in the official bytecode verifier specification [11].

It is the only formal bytecode verifier model built directly from the

2003 bytecode verifier specification. Differing from related work [12, 21], we

aimed at proving properties of the official bytecode verifier. Type hierarchy

information is explicitly encoded in a data structure, the class-table.

Useful JVM safety specification

We introduced an alternative formulation of the JVM safety guarantees. We

specified the JVM safety guarantees in terms of (1) that an inductive invariant

on the runtime state that will be preserved and (2) that all guards that we

have defined for the JVM operations will be met.

We argued that this formulation of the JVM safety guarantees is useful

for JVM implementers (1) to pick a low level representation for JVM states, (2)

to implement the JVM operations with low level primitives, and (3) to check

that their implementation can provide the safety guarantee (see Chapter 6).

We also observe that defining this alternative safety specification is a

necessary intermediate step for proving that the operationally specified JVM

can provide the declaratively specificied safety guarantees in JVMSpec.

We note that our safety specification is not yet complete (see Section 1.3.
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A framework for proving a JVM is safe

We designed an overall approach and a supporting lemma library for proving

that the JVM is safe and the bytecode verifier is effective.

We demonstrated the approach by proving that a simple machine is safe

and that its CLDC-style static checker is effective (see Section 7.1). The proof

is mechanically verified by ACL2.

The key observations obtained are (1) we need to identify the on-track

property as a part of the global invariant that a safe JVM execution will

maintain and (2) we need to introduce an alternative bytecode verifier to

separate the procedural aspects of the CLDC bytecode verifier specification

from the essential reasons for the static checking to be effective.

We have identified leaf-level lemmas that we need to prove about every

instruction. We have created an (incomplete) library for proving such leaf-level

lemmas.

We have defined the alternative bytecode verifier. We proved a reduction

theorem which asserts that all program verified by the original CLDC bytecode

verifier will also be verified by our non-procedural alternative bytecode verifier.

This theorem is one important step in our overall approach to show that the

JVM is safe.

8.2 Challenges and Lessons Learnt

We identify the following major challenges and remark on how one can improve

on the approach that we have taken.

• M6 is too complex.
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M6 contains many details that are necessary for using it as a realis-

tic JVM simulator. However these details are not directly relevant for

showing that the bytecode verifier is effective.

For example, M6’s INVOKE-family instruction may call a synchronized

method. To implement this correctly, M6 defines a set of operation for

acquiring a lock, setting up the wait queue associated with the lock, and

updating thread execution status.

We consider that a better way to proceed is to define a cut-down version

of M6. The cut-down version of M6 will have only one thread. It will

have neither native methods nor “magic” operations for setting up an

initial state for executing a program.

• The type hierarchy information used by M6 and the bytecode verifier is

not exactly the same.

Our CLDC bytecode verifier checks a method against the external class

table. However, DJVM conducts its runtime checks against its internal

class table.

This adds the difficulty of relating the static checks done by the bytecode

verifier to the corresponding defensive checks done by DJVM.

Furthermore, we have decided to be accurate to the facts (1) that classes

are dynamic loaded and (2) we only know that the internal class table

encodes a consistent type hierarchy. We have decided not to assume any

properties about the type hierarchy information encoded in the external

class table (which the bytecode verifier uses).

As a result, in order to derive consistency properties of the type hierarchy
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information encoded in the external class table, we have to resort to

the facts (1) that internal class table encodes consistent type hierarchy

information and (2) the internal class table is loaded from the static class

table by an operationally specified class loader.

This choice adds much difficulty to our proof. In retrospect, considering

the fact that the real bytecode verification of a method uses the internal

class table, we would recommend that if one is to continue our work, one

should consider either defining the bytecode verifier to use the internal

class table or asserting a similar consistency requirement on the type

hierarchy information encoded in the external class table.

• ACL2 has the cumbersome requirement that the a guard definition must

itself have a verifiable guard of t.

Instead of just proving meaningful JVM operations can be guard verified,

we need to first guard verify the guard of the operation. When the guard

definition for an operation becomes complicated, to verify the guard of

the guard also becomes more complicated. We need to guard verify every

operation used in defining the guard.

We hope that the ACL2 theorem prover can be updated to remove

this unnecessary requirement. Alternatively, we may extend the ACL2

programming language to allow attaching pre-conditions and post-

conditions to every function definition. We may extend the ACL2

theorem prover to systematically generate proof obligations to show

that the function does meet its specification: (1) when input meets

the precondition, the output meets the post-condition and (2) all

sub-operations are invoked with their precondition met.
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• The full scale of this project is big. Manging the proofs itself becomes a

challenge.

We have defined 2104 ACL2 functions. We proved over 4764 theorems.

196 of them are “skip-proofed”. To prove the rest of them, 971 inductions

are necessary. The total line count of the ACL2 input is 136000. They

are organized in 282 files. The dependency graph between the 282 ACL2

books has 2012 edges.

One needs to be very conscious about how one organizes his proofs —

how to group lemmas into books, how to only export effective rules

outside a book, and how to use ACL2’s in-theory hints.

• M6 has been built with “ad-hoc” data structures.

When we first built M6, we chose the obvious way for representing differ-

ent components of the M6. Many data structures have been represented

as simply lists.

Although we have defined primitive operations to access and update

these data structures, we have not strictly followed the abstract data

type (ADT) discipline to use only these operations to access and update

them.

Occasionally, we exploited the internal representation of the data struc-

ture to define other operations. This problem of ADT discipline viola-

tion occurs regularly when we are defining the guards for accessor op-

erations. Ideally the guards themselves should be expressed as a set of

requirements on components of the ADT and these components should

be retrieved with the accessor functions. However, before we could define
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the accessors, we first have to define the guards for the accessors.

We feel that we have not invested enough efforts to identify an effec-

tive strategy to reason about these imperfect ADTs. We think that an

effective strategy would tell how to define a new data structure, what

rules we need to prove about the new data structure, and how to set

up ACL2’s current theory to prove properties about operations that use

these ADTs.

Should a researcher decide to continue this effort, we think she should

first decide on such an effective strategy. She then needs to follow such

a strategy and define a set of books to reason about the common ADTs,

such as stack, list, dictionary. She may consider rebuilding M6 using

these as building blocks.
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